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Abstract: The authors propose a class of procedures for local likelihood estimation from data that are

either interval-censored or that have been aggregated into bins. One such procedure relies on algorithm

that generalizes existing self-consistency algorithms by introducing kernel smoothing at each step of the

iteration. The entire class of procedures yields estimates that are obtained as solutions of fixed point

equations. By discretizing and applying numerical integration, the authors use fixed point theory to study

convergence of algorithms for the class. Rapid convergence is effected by the implementation of a local

EM algorithm as a global Newton iteration. The latter requires an explicit solution of the local likelihood

equations which can be found by using symbolic Newton–Raphson, if necessary.

Estimation de la densité par vraisemblance locale à partir de données censurées par
intervalle

Résumé : Les auteurs proposent une classe de procédures pour l’estimation de la densité par vraisemblance

locale lorsque les données sont censurées par intervalle ou qu’elles ont été regroupées en classes. L’une de

ces procédures s’appuie sur un algorithme qui, en faisant appel à un noyau lissant à chaque itération, gé-

néralise les algorithmes auto-convergents déjà existants. Les estimations auxquelles la classe conduit sont

des points fixes de certaines équations. En s’appuyant sur des techniques de discrétisation et d’intégration

numérique, les auteurs se servent de la théorie des points fixes pour étudier la convergence des algorithmes

de la classe. La convergence est accélérée par l’emploi d’un algorithme EM local dans l’itération globale

de la méthode de Newton. Cette dernière fait intervenir une solution d’équations de vraisemblance locale

qui, au besoin, peut être trouvée au moyen d’un algorithme de Newton–Raphson symbolique.

1. INTRODUCTION

Kernel density estimation is a simple and flexible method whose popularity is grounded in its
interpretive appeal. Central to its use are kernel weights which depend on the proximity of an
observation to the point of estimation, lending the estimator a local interpretation. In the context
of interval censored data, an observation is only known to lie within some interval and it seems
natural to define the weight as the conditional expectation of the kernel over that interval. Doing
so not only yields an estimator that retains the interpretive appeal of a kernel density estimate,
but also leads to some innovative techniques. For example, when the conditional expectation is
computed with respect to the density estimate itself, a fixed point equation arises. Solving the
equation iteratively leads to a generalization of the classical self-consistency algorithms of Efron
(1967), Turnbull (1976) and Li, Watkins & Yu (1997). In addition, the estimator avoids some
arbitrary aspects associated with the standard technique of directly smoothing the nonparametric

1



maximum likelihood estimator (NPMLE) of the cumulative distribution function. These details
are discussed in Section 2 of this paper.

In Section 3, the kernel density estimator proposed in Section 2 is embedded in a broader class
of local likelihood density estimators for interval censored data. The class generalizes the methods
of Loader (1996) and Hjort & Jones (1996) by addressing the interval censoring through the use
of an EM-type strategy. As in Loader (1996), we focus on local polynomial approximations of the
log density. The coefficients of this polynomial form the basis of local linear and local quadratic
estimators that have the potential to reduce bias.

Estimates of the coefficients of the local polynomial are computed using an EM-type algo-
rithm and numerical integration. Here convergence to a unique solution is assured under certain
conditions. By implementing the local EM algorithm as a global Newton iteration, very rapid
convergence can be achieved. While such an implementation offers dramatic improvements in
computational efficiency, it requires an explicit expression for the solution of the local likelihood
equations, or rather, the M-step. When this is not directly available, the methods of symbolic
computation given in Andrews & Stafford (2000) can be used. Here symbolic Newton–Raphson
is shown to extend the exact results of Hjort & Jones (1996) for a Gaussian kernel but it also
provides an explicit expression for any kernel. Issues concerning implementation and convergence
are treated in Section 4 with an accompanying empirical study.

In Section 5, a direct analogy with likelihood cross-validation for completely observed data leads
to a method for choosing a suitable value for the window size of the kernel. Concluding remarks
are given in Section 6. Throughout this paper, applications are given for HIV data and data
aggregated into a histogram. The latter demonstrates that our proposal is an effective alternative
to the methods of Jones (1989) and Bellhouse & Stafford (1999).

2. A KERNEL DENSITY ESTIMATE FOR INTERVAL CENSORED DATA

Assume independent random variables X1, . . . , Xn are drawn from a distribution with an unknown
continuous univariate density f . These X’s might not be directly observed. For each X, we assume
a partition T = {τ1, τ2, . . .} of the real line which is independent of X; the τ ’s might be monitoring
times, for example. The observed data are of the form I = (L, R), where

R = inf{τj : τj ≥ X}, L = sup{τj : τj ≤ X}.
Thus, the observed data are a sequence of independent intervals I1, . . . , In. Such data may arise
from panels in a study, bins in a histogram, or from visit times where an individual is tested for
HIV. If X is observed we have L = R and if R = ∞ (L = −∞) then X is said to be right (left)
censored.

2.1. Extending the usual kernel density estimate.

When we observe the complete sample X1, . . . , Xn, an appealing estimate of f is the usual kernel
density estimate

f̂(x) =
1
n

n∑

i=1

Kh (Xi − x) , (1)

with kernel function Kh (u) = h−1K (u/h). The appeal of f̂ lies in the interpretation of each kernel
weight, Kh (Xi − x), in terms of the proximity of an observation Xi to x, the location of the kernel.
When the data are interval censored, a natural extension of (1) is

f̂(x) =
1
n

n∑

i=1

E {Kh (Xi − x)| Ii} . (2)
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Figure 1: The kernel weight proposed in Section 2.1 is given for two intervals (solid horizontal
lines), both centered at 0 but with different lengths. The columns of the display refer to a distinct
interval; the rows to a distinct position of the kernel. When the kernel is also centered at 0, the
method rewards precision by giving the shorter interval a greater weight (upper left panel). When
the location of the kernel is shifted to “−2” it now assigns a larger weight to the longer interval
(lower right panel). The latter is due to the longer interval being more “local” to “−2” than the
shorter interval.

This retains an interpretation similar to (1) because the kernel weight for an observed interval is
the average height of the kernel over that interval. Figure 1 depicts how this weight depends on
the length of the interval and its proximity to the center of the kernel. Goutis (1997) proposed an
estimator somewhat similar to (2) but in the context of the nonparametric estimation of a mixing
density not applicable here.

In (2) the ith expectation is conditional on the random interval Ii = [Li, Ri] which arises
from the partition Ti, and which contains Xi by definition. A common approach is to assume the
conditional distribution over the interval Ii is uniform, but because of the independence of Xi and
the partition Ti, the conditional distribution is in fact

FXi|Ii
(x) =

F (x)− F (Li)
F (Ri)− F (Li)

where F (x) =
∫ x

f(t)dt. Here the conditional distribution is itself unknown and must be estimated.
One choice involves the kernel density estimate itself, and this results in a fixed point equation for
f̂ ,

f̂(x) =
1
n

n∑

i=1

Ef̂ {Kh (Xi − x)| Ii} . (3)
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We propose solving (3) by an iterative algorithm where at the jth step

f̂j(x) =
1
n

n∑

i=1

Ef̂j−1
{Kh (Xi − x)| Ii} , (4)

and f̂0 denotes the initial value. The conditional density over the ith interval at the jth step is

f̂j−1;i(t) = 1(t ∈ Ii)
f̂j−1(t)
cj−1;i

where
cj−1;i =

∫

Ii

f̂j−1(t)dt.

We devote the remainder of this section, as well as Section 3, to placing the above estimator in
a broadening context. Computational details are deferred to Sections 4, 5 where, for example, we
prove that the fixed point of our implementation of (4) does not depend on f̂0. Finally, throughout
the rest of the paper use of the subscript j∗ will denote the fixed point of an algorithm, for example
f̂j∗ denotes the fixed point of (4).

2.2. Kernel smoothing the NPMLE.

An alternative to solving (3) involves directly smoothing the non-parametric maximum likelihood
estimator (NPMLE) of the cumulative distribution function, F , as is typically done for the empirical
distribution function, Fn, and the Kaplan–Meier product limit estimator, F̂k. For example, (1)
may be written as f̂(x) = EFn{Kh(X − x)}; see Section 6.2.3 of Wand & Jones (1995) for details
concerning smoothing F̂k.

When data are interval censored, Turnbull (1976) showed that the NPMLE, F̂t, is only defined
up to an equivalence class of distributions over gaps called innermost intervals. Associated with
each innermost interval is a probability mass whose location is left unspecified by the equivalence
class. As a result it is not clear how to directly smooth F̂t. One possibility is to deal with the
probability masses in a somewhat arbitrary fashion. For example, Pan (2000) suggests assigning
them to the right-hand points of the innermost intervals and using

f̂t(x) = EF̂t
{Kh (X − x)}

to estimate f . However, f̂t as defined is not unique, as we may prefer to place the probability
masses somewhere else, such as at the midpoint of the innermost interval or at the left-hand point
and so on. This complication does not arise when using (4), because the algorithm smooths the
data directly at every step of the iteration rather than smoothing F̂t once. Innermost intervals
never explicitly enter into the calculation resulting in the advantage that (4) fills in the gaps of F̂t

in a data driven way.
Figure 2 compares f̂j∗ with f̂t, where both are applied to a group of hemophiliacs whose time of

infection with the HIV virus was interval censored (De Gruttola & Lagakos 1989). The upper plot
gives the original data ordered by the left end point. Time is measured in six month intervals and
right censored observations are denoted by dotted lines. The lower plot gives f̂j∗ and f̂t; the same
window size is used throughout. Evidently f̂t is not uniquely determined, while the uniqueness of
f̂j∗ will be demonstrated in Section 4. In addition, f̂j∗ does a better job of smoothing what may be
a sampling anomaly on the left side of the plot without eroding the peak on the right. Both of these
improvements can be attributed to introducing kernel smoothing at each step of a self-consistent
algorithm (Section 2.3) rather than smoothing after such an algorithm has converged, as in the
case of f̂t. Finally, Figure 3 gives the result of (4) for the first four iterations and for a variety of
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Figure 2: The top panel shows the original data by a line joining the left and right endpoints of
each observed interval. The lower panel shows four kernel density estimates; the solid line indicates
f̂j∗ and the three dotted lines indicate various kernel smoothed versions of Turnbull’s estimator,
f̂t. The differences in the three dotted lines are due to placing probability masses at the left-hand,
right-hand, and mid-point of the innermost intervals.

initial values from a location-scale beta family. It is suggestive that the algorithm will converge
to a unique solution that is independent of the initial value f̂0. See Section 4 for more details on
convergence.

Note 1. Data that have been grouped into a histogram are interval censored. Here the NPMLE F̂t

has innermost intervals and probabilities that correspond to histogram bins and weights respec-
tively. When smoothing a histogram, as in the manner of Jones (1989) say, it is immediate that
placing weights in the center of bins is as arbitrary as Pan’s suggestion given above. In Section 3
we use the methods of this paper as an alternative to Jones (1989) and show the effectiveness of
polynomial adjustments.

2.3. Relationship to self-consistency.

The idea of filling in the gaps of Turnbull’s F̂t is not new. Li, Watkins & Yu (1997) propose an
EM algorithm designed specifically for this purpose. In this section we show that for a vanishing
window size, h, our algorithm coincides with that of Li, Watkins & Yu (1997) and hence with those
of Efron (1967) and Turnbull (1976) as well.

Efron (1967) proposed an algorithm for approximating the cumulative distribution function
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Figure 3: The figure gives from left to right then top to bottom f̂j for j = 1, . . . , 4. Each plot
has several estimates of the density that correspond to different initial values of the algorithm.
We appear to have convergence to a unique solution that does not depend on the initial value.
The final plot also gives a simultaneous confidence band based on a bootstrap scheme (Davison &
Hinkley 1997, p. 418) which is effective for all density estimates proposed.

when data are potentially right censored,

nF̃j(x) = N(x)−
∑
Li<x

δi=0

1− F̃j−1(x)
1− F̃j−1(Li)

.

Here N(x) = #{Xi ≤ x}, δi = 1 if Xi is observed exactly, and δi = 0 if Xi is right-censored. Efron
showed that F̃j converges to a fixed point that coincides with the Kaplan–Meier product limit
estimator and called this fixed point a self-consistent estimate. Turnbull (1976) then generalized
this self-consistency algorithm to obtain the NPMLE F̂t under general censoring and truncation
schemes. The non-uniqueness of F̂t over innermost intervals prompted Li, Watkins & Yu (1997)
to propose an EM algorithm which coincides with F̂t where it is uniquely defined, but converges
over the innermost intervals to a value that depends on the starting point of the algorithm. The
algorithm involves computing the conditional expectation of Fn at each step,

F̌j(x) = Ej−1 {Fn(x)| Ii ∀i} . (5)

The following theorem shows that (5) can be obtained as a limit of (4) as the window width,
h, of the kernel shrinks to zero at every step. In other words our algorithm modifies the usual
self-consistency algorithms by introducing kernel smoothing at each step of the iteration.
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Theorem 1. Let F̂j(x) =
∫ x

−∞ f̂j(t)dt be the estimate of the cumulative distribution function
corresponding to the jth iterate of (4), then

lim
h↓0

F̂j(x) = F̌j(x), ∀x, j = 1, 2, . . .

Proof: F̌j may be rewritten as

F̌j(x) = Ej−1 {Fn(x)| Ii ∀i}

= Ej−1

{
1
n

n∑

i=1

I(i≤ x)

∣∣∣∣∣ I1, . . . , In

}

=
1
n

n∑

i=1

[{
F̌j−1(x)− F̌j−1(Li)
F̌j−1(Ri)− F̌j−1(Li)

}
1i(x) + 1(x ≥ Ri)

]

=
1
n

n∑

i=1

Ej−1 {1(Xi ≤ x)| Ii} , j = 1, 2, . . .

Note Li, Watkins & Yu (1997) use the third expression for computation. Defining K∗(u) =∫ u

−∞K(y)dy and using Tonelli’s theorem to interchange expectation and integration we may simi-
larly write

F̂j(x) =
∫ x

−∞
f̂j(u) du =

∫ x

−∞

1
n

n∑

i=1

Ej−1 {Kh (Xi − u)| Ii} du

=
1
n

n∑

i=1

Ej−1 {K∗
h (Xi − x)| Ii} .

Since K∗
h(Xi − x) ≤ 1 for all h, we can bring the limit inside the expectation. The result obtains

since K∗
h(u− v) → I(u ≤ v) when h ↓ 0. •

In the case of right-censored data, the following corollary is an immediate consequence of
Theorem 1.

Corollary 1. If Ri = ∞ for all interval censored data points, and Li = Ri = Xi otherwise, then

lim
h↓0

F̂j(x) = F̃j(x), ∀x, j = 1, 2, . . . ,

Proof. The results of Efron (1967), Turnbull (1976) and Li, Watkins & Yu (1997) imply that
under right censoring, F̃j(x) = F̌j(x); hence the result. •

Figure 4 displays five estimates of the cumulative distribution function for the hemophiliac
data. These include F̂j∗ , Turnbull’s F̂t and three separate estimates F̌j∗ based on the algo-
rithm Li, Watkins & Yu (1997) with different initial values. Here the innermost intervals are
{(5, 6), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (12, 13), (13, 14), (14, 15), (15, 16)} leaving Turnbull’s es-
timator undefined nearly everywhere in regions of interest (except on the interval (6,7) and at the
points {8, 9, 10, 11, 12, 13, 14, 15, 16}. Furthermore, the estimate based on Li, Watkins & Yu (1997)
is not uniquely determined and interpolates Turnbull’s estimator, resulting in a rather implausible
shape. However, F̂j∗ is defined in regions of interest, is uniquely determined and has a familiar
appealing shape.
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Figure 4: Five estimates of the cumulative distribution function for the hemophiliac data. These
include F̂j∗ , Turnbull’s F̂t and three separate estimates F̌j∗ based on the algorithm of Li, Watkins
and Yu with different initial values. While F̂t is mostly undefined, and F̌j∗ ill determined, F̂j∗

looks like a continuous cumulative distribution function.

2.4. An example: Gentleman & Geyer (1994).

The above theorem shows that the proposed estimator broadens the class of self-consistent al-
gorithms by introducing kernel smoothing at each step of the iteration. We conjecture that the
addition of kernel smoothing at each step of a convergent self-consistent algorithm is unlikely to
introduce convergence problems. In fact, the following example suggests that smoothing improves
convergence behaviour; see also Section 4.

Gentleman & Geyer (1994) consider an artificial data set where Turnbull’s NPMLE F̂t exists,
but there are two fixed points of Turnbull’s self-consistency algorithm. The data consist of six
intervals (0, 1), (0, 2), (0, 2), (1, 3), (1, 3), (2, 3) with three innermost intervals (0, 1), (1, 2), (2, 3). In
this case, F̂t can be shown to have weights 1/3, 1/3, 1/3. That is, 1/3, 1/3, 1/3 is a fixed point of
Turnbull’s algorithm, but so is 1/2, 0, 1/2. This highlights another difficulty with smoothing after
a self-consistency algorithm has converged: the wrong fixed point might be smoothed to obtain
the density estimate.

Interestingly, for reasonable values of h the estimator f̂j∗ seems to always result in a smoothed
version of the NPMLE, even if we begin with an initial value that favours the fixed point 1/2, 0,
1/2. Consider the reduced data (0, 1), (0, 2), (1, 3), (2, 3) that again has innermost intervals (0, 1),
(1, 2), (2, 3) but where the NPMLE now has weights 1/2, 0, 1/2. Figure 5 gives the result of our
algorithm for the reduced and full data sets using the same window size in both cases. The density
estimate for the reduced data has two modes because the NPMLE in this case has weights 1/2,
0, 1/2. However, the density estimate for the entire data set, where the NPMLE has weights 1/3,
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Figure 5: The estimate f̂j∗ for the Gentleman & Geyer (1994) data set and the reduced data set.
The solid horizontal lines indicate the reduced data and the dotted horizontal lines represent the
complement. The two curves are the density estimates for the reduced data (solid) and for the
entire data set (dotted).

1/3, 1/3, has only one mode. This is true even when the density estimate for the reduced data is
used as the initial value of our algorithm. That is, even though we begin with an initial value that
favours the fixed point 1/2, 0, 1/2, our algorithm still converges to an estimate that smooths the
weights for the NPMLE, namely 1/3, 1/3, 1/3.

What is going on is clear if one contrasts Turnbull’s algorithm, where no smoothing occurs,
with ours. The key interpretation is evident from Figure 1: smoothing permits all the data to
influence the estimate at any location. Hence probability massed on the intervals (0, 1) and (2, 3)
is smoothed repeatedly over the entire interval, where the extent to which this occurs depends
on the window size h. The difficulty with Turnbull’s algorithm, and subsequently Li, Watkins
and Yu’s, is that h = 0 and no smoothing takes place. Turnbull’s algorithm can get stuck at
local solutions, while smoothing permits our algorithm to move away from these regions. Finally
there is a caveat. Theorem 1 implies that convergence of our algorithm to a unique fixed point
will depend critically on h, and that as h ↓ 0 our algorithm can exhibit the same difficulties as
Turnbull’s algorithm. These issues are addressed formally in Section 4.

3. A CLASS OF LOCAL LIKELIHOOD DENSITY ESTIMATES

In this section, we embed the fixed point of (3) in a class of local likelihood density estimates for
interval censored data. Algorithm (4) is seen to be a member of a class of local EM algorithms
associated with this likelihood.
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Local likelihood techniques for density estimation were pioneered by Loader (1996) and Hjort &
Jones (1996) in the context of completely observed data. Both propose estimating the unknown
density locally at x by maximizing the criterion

L(f, x) =
n∑

i=1

Kh(Xi − x) log{f(Xi)} − n

∫

<
Kh(u− x)f(u)du (6)

over some suitable class of functions. Loader (1996) suggests approximating the log density near
x using polynomials, i.e.,

log{f(u)} =
p∑

j=0

aj(u− x)j . (7)

Upon substitution of the polynomial expansion into (6) one may estimate the coefficients
{a0, . . . , ap} by maximizing to get {â0, . . . , âp}. The density estimate is then

f̂(x) = exp(â0).

Loader (1996) and Hjort & Jones (1996) show that using p = 0 yields the usual kernel density
estimator. The use of p = 1 and p = 2 yield linear and quadratic approximations that can reduce
bias at the boundaries of the data, at peaks, points of inflection, and so on.

When the data are interval-censored, we propose replacing (6) with

L(f, x) =
n∑

i=1

E[Kh(Xi − x) log{f(Xi)}|Ii]− n

∫

<
Kh(u− x)f(u)du. (8)

This device allows for essential use of the above machinery when we adopt an EM-type strategy.
Use of the polynomial expansion renders (8) as

Lp(f, x) =
n∑

i=1

E
{

Kh(Xi − x)
∑

aj(Xi − x)j |Ii

}
− n

∫

<
Kh(u− x) exp

{∑
aj(u− x)j

}
du (9)

which is accompanied by a system of local likelihood equations for the coefficients of (7)

1
n

n∑

i=1

E
{

Kh(Xi − x)
(Xi − x)r

hr
|Ii

}
=

∫

<
Kh(u− x)

(X − x)r

hr
exp

{∑
aj(u− x)j

}
du (10)

for r = 0, . . . , p. These equations retain the moment matching interpretation of Loader (1996),
although here the sample moments on the left-hand side are not directly computable; the condi-
tional expectations in (10) must be estimated by an iterative scheme. A local EM approach seems
natural. It cycles through two steps at each iteration:

E-step: compute the relevant expectations using the current estimate of f restricted
to the observed intervals;
M-step: solve the equations (10) to get updated estimates of {a0, . . . , ap} and f .

The algorithm differs from the typical EM algorithm, because, while expectation at the E-step is
computed with respect to an estimate of the global parameter f , the equations (10) must be solved
locally at each x. As such the typical arguments concerning convergence of the EM algorithm can
not be brought to bear. The initial examples below show however that the local EM algorithm can
lead to fixed point equations similar to (3). Convergence and efficient implementation of these are
discussed in Section 4.
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Example: A kernel density estimate for interval censored data. In the locally constant case, the
polynomial at (7) is truncated at the leading term a0. Solving the equations (10) at the jth step
of the iteration of the local EM algorithm yields

1
n

n∑

i=1

Ef̂j−1
{Kh(Xi − x)|Ii} =

∫

<
Kh(u− x) exp(â0)du = exp(â0) = f̂j(x).

Thus, the fixed point algorithm (4) is a special case of the local EM algorithm. Here the operator
E has been subscripted by f̂j−1 to explicitly indicate that expectation is computed with respect to
the density estimate from the previous iterate.

Example: Linear and quadratic adjustments. In the special case of a Gaussian kernel, truncating (7)
at two or three terms results in explicit fixed point equations that provide a density estimate with
linear and quadratic adjustments:

f̂j,l(x) = f̂j(x) exp
[
−h2

2

{ ˙̂
f j(x)/f̂j(x)

}2
]

, (11)

f̂j,q(x) = f̂j(x)R̂ exp

[
−h2R̂2

2

{ ˙̂
f j(x)/f̂j(x)

}2
]

, (12)

where R̂ = (1 + h2D̂)−1/2 with D̂ = ¨̂
f j(x)/f̂j(x) − { ˙̂

f j(x)/f̂j(x)}2. The equations resemble the
exact results of Hjort & Jones (1996) except that now

˙̂
f j(x) =

∂

∂x
f̂j(x) = n−1

∑
Ef̂j−1,r

[
∂

∂x
{Kh(X − x)}|Ii

]
, (13)

¨̂
f j(x) =

∂2

∂x2
f̂j(x) = n−1

∑
Ef̂j−1,r

[
∂2

∂x2
{Kh(X − x)}|Ii

]
. (14)

The subscript f̂j−1,r on the expected value operator E has r = `, q depending on whether the
linear or quadratic adjustments are used. This also applies to the expected value operator in
the definition of f̂j(x) for (11), (12). Establishing these results is analogous to the developments
in Section 5 of Hjort & Jones (1996) and hence not given. Alternatively, they may be obtained
through the use of symbolic computation where the advantage is that other explicit equations may
be given for any arbitrary kernel. See Section 4.1 for details.

Example: The hemophiliac data. When applied to the hemophiliac data in Figure 6, the local
linear and local quadratic estimators agree quite closely at the boundaries of the data, but differ
considerably from the original, locally constant, estimator. In addition, the two adjustments
themselves differ quite dramatically particularly at the peak of the estimate. Window sizes for all
the estimates were determined using the cross-validation technique of Section 5. It could be argued
that the quadratic adjustment is inappropriate here given that the amount of interval censoring
renders the identification of such fine structure unlikely. In the next example the local quadratic
estimator is viewed as more appropriate.

Example: Smoothing histogram data and the Ontario Health Survey. Histogram data consists of a
set of bins Br, with midpoints mr, and weights pr, r = 1, . . . , k. Jones (1989) suggests smoothing
histograms by computing

f̂(x) =
k∑

r=1

p̂rKh

(
mr − x

h

)
,

11
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Figure 6: Density estimate of Section 2 (solid) with the local linear (dotted) and quadratic (dashed)
estimators. All are members of the local likelihood class introduced in Section 3.

where, as in many statistical methods for histograms, the weights pr are placed arbitrarily at
the midpoints mr. In addition, Jones (1989) notes that histograms are themselves binned kernel
density estimates. As such, the above estimator is susceptible to multiple sources of bias since the
original data have been smoothed, binned and then smoothed again.

Data that have been summarized as a histogram are interval censored since all we know about
any observation Xi is to which bin, Ii ∈ {Br; r = 1, . . . , k}, it belongs. By construction, such data
has an abundance of ties, i.e., Ii = Ij whenever Xi and Xj belong to the same bin. Here the
NPMLE F̂t for the data I1, . . . , In reproduces the histogram where the innermost intervals are the
bins Br and the probability masses are pr. This may seem like a redundant observation, but, it
should impress upon the reader that the methods of this paper may be applied directly to I1, . . . , In

as an alternative to Jones(1989). Not only will this remove the arbitrary use of midpoints, but
concerns of bias may be addressed by local linear and local quadratic estimators.

In Figure 7 a histogram of body mass index based on the Ontario health survey is smoothed
using Jones’ f̂ and various local likelihood estimators. The effect of the large bin [33.5, 45.5] results
in an unreasonable peak for f̂ that does not appear in the other estimators. In addition, the linear
and particularly the quadratic adjustments appear to correct bias at the peak of the smoothed
histogram.

4. IMPLEMENTATION AND CONVERGENCE

We propose to implement the above local EM algorithms by computing conditional expectations
using numerical integration. This approach, outlined in Section 4.1, leads to practical numerical
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Figure 7: Histogram for body mass index, smoothed in various ways. Smoothing the histogram in
the manner of Jones (1989) results in a second mode that is clearly an artifact of a large histogram
bin. The local likelihood estimators eliminate this artifact and the local linear and quadratic
estimators provide bias correction at the mode.

solutions, and it allows us to use fixed point theory to gain insight into convergence issues, including
a proof of convergence to a unique estimate in the local constant case. These results set the stage for
the development in Section 4.2 of an alternative Newton iteration which assures rapid convergence.
It should be noted that establishing convergence of competing implementation strategies, like
MCEM or multiple imputation, has proved to be very difficult. Furthermore, due to the quadratic
convergence of Newton’s method, our estimators can be calculated rapidly while the EM algorithm,
for example, is notoriously slow.

Central to the Newton implementation is the need for an explicit solution for the local likelihood
equations at the M-step. In cases where the local likelihood equations have a closed form solution
this is straightforward; otherwise, an explicit expression for that solution can be found by symbolic
Newton–Raphson (Andrews & Stafford 2000).

We conclude this section with a discussion of the use of an informal diagnostic tool which can
be used to check whether a given iteration will converge. We demonstrate the usefulness of the tool
with some numerical examples which also give an idea of how rapidly the iterations can converge.

4.1. Numerical integration and fixed point results.

Consider the estimator introduced in Section 2. Suppose we set out an equal-spaced mesh M =
{xk}M

k=1, with ∆ = xk − xk−1, and define fk = f(xk) with f = (f1, . . . , fM )T . If a trapezoidal
quadrature rule is used for integration (ignoring correction at interval endpoints) then the fixed
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point equation (3) becomes

fk =
1
n

n∑

i=1

{∑
`:x`∈Ii

Kh(x` − xk)f `∆∑
`:x`∈Ii

f `∆

}
=

1
n

n∑

i=1

{∑
`:x`∈Ii

Kh(x` − xk)f `

∑
`:x`∈Ii

f `

}
, (15)

for k = 1, . . . , M .
Viewing (15) as a prototype example, we may regard any local EM algorithm considered in

Section 3 as an attempt to solve

f = G(f) (16)

by iterating the rule
fj+1 = G(fj) (17)

until convergence. Here G depends on the choice of kernel, the bandwidth, the number of terms
in the polynomial approximation and the form of integration, whether it’s the trapezoidal rule or
something more sophisticated. Thus, use of numerical integration gives us a general framework for
dealing with the entire local likelihood class.

For iterations like (17), we may exploit a well-known fixed point theorem (Ortega 1972) that
says if the image of a compact convex set D under a continuous mapping G lies in D, then G has a
fixed point in D. Furthermore, a way of proving convergence of (17) to a unique fixed point is via
the contraction mapping theorem (Ortega 1972, p. 152). Here G(f) is assumed to be continuously
differentiable with M × M Jacobian ∇G(f), and D is a closed, convex set. If G(f) ∈ D and
0 ≤ ||∇G(f)|| ≤ α < 1 whenever f ∈ D, then G has a unique fixed point f∗ ∈ D, and for any
f0 ∈ D, the iterates (17) converge to f∗. The symbol ||.|| denotes a vector-induced matrix norm
(Ortega 1972, p. 20); we will use the infinity-norm (i.e. the maximum row-sum of the absolute
values of the matrix entries).

4.1.1. Convergence of the locally constant iteration.

Let Gc denote the mapping whose kth component is given by the right-hand side of (15). The
contraction mapping theorem allows us to prove convergence of the fixed point iteration based on
Gc for sufficiently large bandwidths h. Thus, the theoretical behaviour of the density estimate is
in agreement with what was observed in Section 2.4.

Theorem 2 Suppose K(u) is a Hölder continuous symmetric probability density function with
support in [−1, 1], and such that K(0) > 0. Let

Dh =



(f1, . . . , fM ) : 0 ≤ fk ≤ sup

u

K(u/h)
h

and
∑

k:xk∈Ii

fk ≥ K(0)
hn

for i = 1, . . . , n



 .

There exists an H > 0 such that, for all h > H, Gc(f) has a unique fixed point f∗ in Dh, and for
any f0 ∈ Dh, the corresponding fixed point iteration converges to f∗.

Proof. A routine calculation shows that, for any fixed h > 0, Dh is a closed and convex subset of
RM . Next, suppose f ∈ Dh. Because of the nonnegativity of the kernel and of f , it follows from
the definition of Gc that all components of Gc(f) are nonnegative, and that

Gk
c (f) ≤ 1

n

n∑

i=1

∑
`:x`∈Ii

supu Kh(u)f`∑
`:x`∈Ii

f`
≤ sup

u

K(u/h)
h

.
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We may then deduce that Gc(f) ∈ Dh, since

∑

k:xk∈Ii

Gk
c (f) ≥

1
n

∑
`:x`∈Ii

∑
k:xk∈Ii

f `Kh(x` − xk)∑
`:x`∈Ii

f `
≥ Kh(0)

n
.

We next check the Jacobian condition. Differentiating gives

∂Gk
c (f)

∂f j
=

1
n

n∑

i=1

1(xj ∈ Ii)

[∑
`:x`∈Ii

f `
{
Kh(xj − xk)−Kh(x` − xk)

}
(∑

`:x`∈Ii
f `

)2

]
. (18)

For f ∈ Dh, a crude upper bound for the absolute value of this is

(M + 1)γ∆γL

hγ+1n

n∑

i=1

1(xj ∈ Ii)
1∑

`:x`∈Ii
f `
≤ (M + 1)γ∆γLn

hγK(0)
,

where L and γ ∈ (0, 1) arise from the Hölder continuity condition on K:

|K(x)−K(y)| ≤ L|x− y|γ .

The upper bound can be made arbitrarily small by taking h large enough. Thus, there exists a
bandwidth H such that α = ||∇Gc(f)|| < 1, for all f ∈ DH . Taking h to be any bandwidth h
exceeding H, we can thus assure convergence of a fixed point iteration based on Gc to a unique
vector in Dh. •

Note 2. The proof can be extended to kernels with noncompact support such as the Gaussian
kernel.

Note 3. The facts that Gc(f) ∈ Dh when f ∈ Dh for any h > 0, and that Gc is continuous are
sufficient to assure existence of (though not uniqueness of or convergence to) a fixed point of Gc.
This follows from the fixed point theorem of Ortega (1972) quoted earlier.

Note 4. A practitioner might be concerned that a sufficiently large bandwidth for convergence
may be larger than a bandwidth that meets a particular optimality requirement such as that given
by cross-validation; our numerical work suggests that such optimal bandwidths are usually large
enough to guarantee convergence.

Note 5. When the iteration converges, the result is a vector which approximates a probability
density as the following argument demonstrates. In particular, we will show that if there is a
solution to (15) in Dh, then that solution approximates a probability density, when the kernel has
a bounded derivative. Nonnegativity of fk is immediate. Properties of Riemann integration and
the kernel imply that

M∑

k=1

fk∆ =
1
n

n∑

i=1

∑
`:x`∈Ii

f `
∑M

k=1 Kh(x` − xk)∆∑
`:x`∈Ii

f `

=
1
n

n∑

i=1

∑
`:x`∈Ii

f `
∫

Kh(x` − y)dy∑
`:x`∈Ii

f `
+ O(M−1) = 1 + O(M−1).
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4.1.2. The linear and quadratic adjustments.

Moving away from the locally constant case complicates the details considerably. Concerning
ourselves only with the case of a Gaussian kernel where closed form solutions exist, we give some
indication of these complications and how one might proceed. Extension to arbitrary kernels
through the use of symbolic computation are considered in Section 4.3.

Based on a trapezoidal quadrature approximation to the linear adjustment at (11), we define
the continuous mapping Gl as

Gl(f) = Gc(f) exp
[
−h2

2

{
Ġc(f)/Gc(f)

}2
]

where the operations multiplication, exponentiation, and so on, are componentwise. Occasionally,
one or more of the components of Gc(f) are 0, in which case the corresponding component of Gl(f)
will be defined as 0. Here, Ġc is defined via a trapezoidal version of the right-hand side of (13).
Now if we define

D =
{

(f1, f2, . . . , fM ) : 0 ≤ fk ≤ sup
u

K(u/h)
h

}
,

and note that
Gk

l (f) ≤ Gk
c (f), (19)

then, given all components of Gl are nonnegative, we have Gl(f) ∈ D; hence Gl satisfies the
conditions for the existence of a fixed point in D. Note that because of (19), the linear adjustment
will require normalization, upon convergence, in order to approximate a proper probability density.

Unfortunately, it is not possible to verify the derivative condition for convergence to a unique
fixed point of Gl using either D or the set Dh defined in Theorem 2. While it seems likely that the
condition may be verified for an appropriate domain, the matter is not pursued here other than
to conjecture that the requirement on h for such convergence will be more stringent (i.e., larger
bandwidths will be required) than in the locally constant case. We may also define a mapping Gq

for the local quadratic case, using trapezoidal versions of (12), (13) and (14). However, it is not
possible to prove that Gq has a fixed point, even in D, since the R̂ factor involved in its definition
may take on negative values. Thus, it is possible for Gq to map elements of D to vectors having
negative components.

In the absence of a proof of global convergence, local convergence should be considered. An
iteration is said to converge locally to a fixed point f∗, if such convergence occurs whenever the
initial guess is close enough to f∗. Ostrowski’s Theorem (Ortega 1972) states that if the iteration
function is differentiable in a neighbourhood of a fixed point f∗, and the spectral radius (maximum
absolute eigenvalue) of the Jacobian, ρ(∇G(f)) is less than 1 in a neighbourhood of f∗, then the
fixed point iteration converges locally to f∗.

Local convergence for the iterations based on Gl and Gq, for large enough h, follows from a
verification of the spectral radius condition. Because ρ(∇G(f)) ≤ ||∇G(f)||, for any vector-induced
matrix norm, we could proceed by similar arguments to those used to prove global convergence
in the locally constant case. However, it is well known that any fixed point iteration, with a
smooth enough iteration function, can be rendered locally convergent upon conversion to a Newton
iteration. Since the iteration functions under consideration are smooth, we will see, in the next
subsection, that conversion to a Newton iteration is a practical way of assuring local convergence.
It should be noted that a Newton implementation assures local convergence for any h > 0 in the
constant and linear cases.

4.2. Conversion to a Newton iteration.

We can improve upon any fixed point iteration proposed in Section 3 by re-expressing it as a
Newton iteration. For example, in the locally constant case the result is a stable, quadratically

16



convergent algorithm provided that the initial guess is close enough to the solution. In addition,
theoretical and numerical considerations suggest that a Newton iteration also works well in the
local linear and quadratic cases, provided minor adjustments are made. In particular, conversion
of the fixed point scheme for the linear adjustment to a Newton iteration assures local convergence,
since we have shown that a fixed point of Gl exists in a convex domain.

Letting

U(f) = f − G(f) (20)

the goal is to compute the fixed point of (16) by solving U(f̂) = 0. Differentiating (20) with respect
to f gives

∇U(f) = I −∇G(f),

and a Newton iteration can be constructed from

fj+1 = fj − [∇U(fj)]
−1 U(fj). (21)

For example, for Gc we may facilitate the Newton iteration without difficulty through use of the
gradient ∇G with (j, k) component being simply

(∇G)jk =
∂

∂fk
f j =

1
n

∑

{i:xk∈Ii,1≤i≤n}

{
Kh(xj − xk)∑

`:x`∈Ii
f `

−
∑m

`=1 Kh(xj − x`)f `

(∑
`:x`∈Ii

f `
)2

}
.

Similar expressions can be found for Gl and Gq.

4.3. Newton iteration through symbolic computation.

Use of Newton iteration depends on the computation of the gradient ∇G, which in turn requires
an explicit solution of the local likelihood equations. Immediate examples are given by Gc,Gl and
Gq, but the method may be applied to the entire local likelihood class through the use of symbolic
computation (Andrews & Stafford 2000). Symbolic Newton–Raphson permits the solution â0, and
hence exp(â0) to be written explicitly in terms of the expected value operator Ef̂ without ever
having to evaluate Ef̂ . This expression then becomes the basis for the Newton iteration. In other
words, for any local EM algorithm we only have to solve the local likelihood equations at the M-
step once throughout, and render iteration on the remaining E-step only. The result is a general
fixed point equation similar to Gc,Gl,Gq that is suitable for Newton implementation. Full details
are given in a Mathematica notebook which is available upon request. However, the result of the
linear case is summarized here. Letting µr denote the rth moment of the kernel K, then in general
the fixed point iteration for the local linear estimator can be expressed explicitly as

f̂j,l(x) = f̂j(x) exp




−1

2








ˆ̇
f j

f̂j(x)





2

h2µ2 +





ˆ̇
f j

4f̂j(x)





4

h4(3µ2 − µ4)








where
ˆ̇
f j =

1
n

n∑

i=1

Ef̂j,`
{Kh(X − x)(X − x)|Ii} .

Note for the case of a Gaussian kernel ˆ̇
f j = ˙̂

f j , 3µ2−µ4 = 0 and the above expression simplifies
to that given in Section 3. Also, in general, if one ignores the second term in the exponent, the
linear adjustment has a remarkably simple form that greatly resembles the closed form solution in
the Gaussian case. In addition, the second term in the exponent may be interpreted in terms of a
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class of implicit kernels that share cumulants with known kernels but for which there is a closed
form solution at the M-step. Issues of this type are deferred for a more general treatment of our
Newton iteration.

4.4. A convergence diagnostic based on the spectral radius.

In cases where global convergence has not been established, as in the local linear or local quadratic
cases, the spectral radius of the Jacobian of the iteration function provides an informal way of
checking whether an iteration will converge. In Section 4.1.2, we noted that Ostrowski’s theorem
assured local convergence of an iterative scheme based on G if ρ{∇G(f∗)} < 1 at or near a fixed
point f∗. Since the iteration functions G that we are dealing with are smooth, it is not unreasonable
to conjecture that if ρ{∇G(f0)} < 1, then convergence will ensue. Moreover, if this spectral radius
condition holds for a succession of iterates, our confidence that the iteration will converge should
increase.

This convergence diagnostic is useful in additional ways. First, if ρ{∇Gc(f0)} < 1, then we
have some assurance that the bandwidth has been chosen large enough for the theory of Section
4.1.1 to apply, yielding global convergence. Second, if an iterative scheme based on G has been
converted to a Newton iteration, the condition ρ(∇G{f0)} < 1 provides a check as to whether the
initial guess is close enough to the solution for convergence of the Newton scheme to occur.

This last observation suggests a general strategy for obtaining an iterative scheme which will
converge rapidly. One applies a convergent fixed point iteration of the form (16) until its spectral
radius is less than one and uses the resulting estimate as the initial value for the Newton iteration.
This is analogous to the use of so-called “Spacer Steps” in nonlinear programming (see Luenberger
1973), where a Newton–Raphson iteration is interspersed with occasional steps of another method,
which is known to converge, though more slowly. The theory of Section 4.1 ensures that this will
work for locally constant density estimation provided a sufficiently large bandwidth is used.

The rest of this subsection is devoted to a description of empirical results that we have obtained
for specific data sets.

4.4.1. Applying the diagnostic to the original iteration.

We first applied the iteration based on Gc to the hemophiliac data (excluding right-censored ob-
servations), starting with a uniform initial density, m = 200 and various values of h. The first
five columns of Table 1 list the bandwidths, the spectral radii at the 1st, 2nd and final steps of
the original iteration, together with the respective numbers of steps required for the iteration to
converge. Convergence was declared when successive approximations differed by less than 10−7

in the Euclidean norm. Note that such convergence occurs for all values of h considered, and the
number of required iteration steps decreases with increasing h. When h = .3 and h = .4, the initial
spectral radius exceeds 1, but convergence occurs anyway. We also note that if h is very small,
then the spectral radius remains above 1 for all steps of the iteration.

Applying the spectral radius diagnostic to the linear adjustments Gl gives similar results. As
can be seen in Table 2, decreasing the bandwidth is associated with increased initial and terminal
spectral radii and with decreasing speed of convergence. Again, we encountered no convergence
failures when the spectral radius remains below 1, i.e., when the bandwidth is reasonably large.
This leads us to conjecture that an analogue of Theorem 2 holds for the linear adjustment.

We have noted already that it is possible for the iteration based on Gq to hit negative values of
the estimate, causing convergence difficulties, especially for small values of h. This kind of problem
can be eliminated by imposing a simple constraint at each step of the iteration. Nonnegativity is
enforced by setting to 0 any components of fj that may have fallen below 0 at the most recent
iterate. With this simple adjustment, we observe similar convergence and diagnostic behaviour in
Table 3 for Gq as we saw earlier for Gl and Gc.
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h ρ1 ρ2 ρ∞ Original Newton Hybrid
.01 7.74 1.26 1.0 125 fails fails
.3 1.475 .795 .800 53 fails 4
.4 1.180 .699 .716 41 50 3
.5 .981 .614 .633 30 3 3
.6 .878 .537 .588 26 3 3
.7 .777 .481 .551 24 3 3
1 .564 .364 .433 19 3 3

1.2 .488 .325 .368 17 3 3

Table 1: Spectral radius values, ρ1, ρ2, ρ∞, for the iteration based on Gc applied to the hemophiliac
data (without right-censored data) at the first, second and final steps. The last three columns list
the number of steps to convergence to within a tolerance of 10−7 for each method. (The hybrid
method consists of a single step of the original iteration before application of the Newton iteration.)

h ρ1 ρ2 ρ∞ Original Newton Hybrid
.3 1.502 .781 .858 53 fails 13
.4 1.242 .700 .796 51 fails 8
.5 1.044 .629 .756 47 4 4
.6 .926 .560 .730 47 fails 4
.7 .809 .506 .713 43 4 4
.8 .701 .443 .692 38 4 4
1 .580 .388 .659 31 4 4

1.2 .501 .348 .607 28 4 4

Table 2: Spectral radius values, ρ1, ρ2, ρ∞, for the iteration based on Gl applied to the hemophiliac
data (without right-censored data) at the first, second and final steps. The last three columns list
the number of steps to convergence to within a tolerance of 10−7 for each method. For h = 0.3
and h = 0.6, the positivity constraint had to be enforced, even in the hybrid case.

h ρ1 ρ2 ρ∞ Original Newton Hybrid
.3 2.280 1.070 .942 229 fails 95
.4 1.970 .943 .891 114 18 14
.5 1.660 .885 .857 110 fails 6
.6 1.500 .815 .832 84 fails 6
.7 1.375 .752 .819 77 fails 6
.8 1.239 .687 .808 72 fails 6
.9 1.162 .661 .773 62 6 6
1.0 1.084 .554 .747 56 6 6
1.1 .975 .500 .736 53 fails 5
1.2 .921 .465 .732 50 7 5
1.3 .868 .443 .732 47 8 5
1.4 .851 .419 .734 46 5 5

Table 3: Spectral radius values for, ρ1, ρ2, ρ∞, the iteration based on Gq applied to the hemophiliac
data (without right-censored data) at the first, second and final steps. (Nonnegativity was enforced
in all cases). The last three columns list the number of steps to convergence to within a tolerance
of 10−7 for each method. For h = 0.3, only 38 steps were required for convergence if the Newton
iteration was applied after two steps of the original iteration.
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When applied to the Gentleman & Geyer (1994) data considered in Section 2.4, the original
iteration converges to a smoothed version of the nonparametric maximum likelihood estimate for
all values of h tried (i.e., h = 0.2, 0.3, 0.4, 0.5). The spectral radius diagnostic is less than 1 for
all iterates in all cases.

We have tested the spectral radius diagnostic on several other artificial data sets, and we have
found that the spectral radius is usually less than 1 at reasonable values of the bandwidth parameter
h. The initial and terminal values of the spectral radius both tend to increase with decreasing h.
The speed of convergence tends to decrease as the spectral radius increases. These observations
are consonant with the theory set out in Section 4.1 as well as the assertions made in Section 2.4.

We have encountered several examples where the spectral radius is initially above 1 before
dropping below 1, where it remains until convergence is apparently achieved. These examples
typically involved very small bandwidths. We encountered no examples of non-convergence when
the spectral radius is eventually less than 1.

4.4.2. Applying the diagnostic to Newton’s iteration.

The final two columns of Tables 1, 2 and 3 give the number of steps required for convergence of
the Newton iteration applied respectively to Gc, Gl and Gq. When the initial spectral radius of
∇Gc is less than 1, the associated Newton iteration usually converges. When the initial spectral
radius exceeds 1, convergence behaviour is less predictable. Sometimes there is reasonably rapid
convergence (i.e., 3 or 4 steps); otherwise, the Newton iteration fails to converge. However, in the
latter cases, it is usually sufficient to apply a single step of the original scheme before applying the
Newton iteration. Rapid convergence ensues almost every time.

In addition, we note that when Newton’s method is applied to Gc with h = .01, it apparently
converges as well, but to a slightly different solution. The spectral radius at this other solution
was 1.42.

Non-uniqueness has arisen, because the bandwidth is not large enough, and the Newton it-
eration is converging locally, but to the wrong fixed point. Because ||∇G(f)|| > ρ{∇G(f)}, the
conditions of Theorem 2 are not met. The failures of the Newton iteration at low values of h point
out the potential usefulness of our diagnostic, since in all such cases, the diagnostic exceeds 1 at
the first step.

Similar results can be obtained for the linear adjustment Gl (with normal kernel) as for the
constant case. The only difficulty to note here is that when the initial spectral radius is above
1, it is possible for the Newton iteration to hit negative values of the estimate, causing conver-
gence difficulties. Again, these difficulties can be alleviated by imposing the simple nonnegativity
constraint at each step of the iteration.

Applying Newton’s method to the quadratic adjustment Gq requires the imposition of the
nonnegativity constraint even when the initial spectral radius of the original iteration is less than
1. Without this constraint, Newton’s method almost always fails to converge. This perhaps
explains why our theory fails to provide a sufficient condition for convergence in this case. The
imposition of nonnegativity (as described in Section 4.4.1) tends to fix the convergence problem,
so that the convergence behaviour is once again similar to that for the constant case.

When applied to the Gentleman & Geyer (1994) data, the Newton iteration also converges
in all cases tried; however, for h = 0.2 and h = 0.3, it converges to the incorrect self-consistent
estimate. (As usual, we are starting with a uniform initial guess.) In both of these cases, the initial
values of the spectral radius exceed 1.0. Again, the conditions of Theorem 2 for uniqueness of the
fixed point are not met. Interestingly, the original scheme converged properly, suggesting that the
original scheme is more stable than our theory suggests.

In the cases of convergence of the Newton iteration to the correct solution, the spectral radius is
always less than 1.0. If started with 1 step of the original iteration, the Newton iteration converges
to the correct solution in 2 steps.
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5. CHOICE OF SMOOTHING PARAMETER

A central component of kernel density estimation is the choice of the window size h or the smoothing
parameter. We propose a method based on likelihood cross-validation and analogous to the case
where the data are completely observed (Silverman 1986). For the latter, cross-validation aims to
maximize

CV (h) =
n∏

i=1

f̂
(−i)
h (Xi) (22)

with respect to h. It acts as a surrogate for the Kullback–Leibler distance between f and f̂h on
the basis of its expectation

E{CV (h)} ≈ −
∫

f(t) log{f(t)/f̂(t)}dt +
∫

f(t) log{f(t)}dt.

The superscript (−i) in (22) indicates that f̂
(−i)
h (Xi) is obtained by eliminating a point of support,

Xi, from the NPMLE, Fn, and using only the remaining data. Here the estimator is explicitly
subscripted by h and the notation f̂h can represent any density estimate proposed in this paper.

An analogy in the case of interval censored data leads to eliminating the points of support for
F̂t, namely the innermost intervals. Denoting an innermost interval as Jr, r = 1, . . . , m, where we
suppose there are m such intervals given by F̂t, we define the cross-validated likelihood as

CV (h) =
m∏

r=1

∫

Jr

f̂
(−r)
h (t)dt,

where
∫

Jr
f̂

(−r)
h (t)dt is obtained by dropping the innermost interval Jr when estimating the density.

Dropping an innermost interval is accomplished by removing all intervals in the original sample that
contribute to its presence but not to the presence of any other innermost interval. Often this is not
possible and the elimination of one interval leads to the elimination of others so that ultimately the
method resembles a form of k-fold cross-validation. However, the method conveniently addresses
the question of tied observations which are common for interval censored data (Figures 2 and
6). For example, the hemophiliac data contains only 40 distinct intervals in a sample of size 105.
In addition it also handles two observed intervals that are not tied but have a high degree of
overlap. If they both contain the same innermost interval then they are both eliminated from the
cross-validation process when that innermost interval is dropped.

The scheme worked well in a limited simulation study using 40 samples of size 20 with event
times from a Weibull distribution and interval censoring determined by an independent homoge-
neous Poisson process. Table 4 compares average values of the Kullback–Leibler distance with our
method of likelihood cross-validation where the latter picks a value of the smoothing parameter
that is close to the value which optimizes the Kullback-Leibler distance. We have used this method
of cross-validation in the paper without comparing it to alternatives like k-fold cross-validation. A
more thorough investigation of the scheme is needed, but beyond the scope of this paper.

6. DISCUSSION

There is a rich literature on smooth inference methods for interval-censored data. Examples include
Rosenberg (1995), Joly & Commenges (1999), Kooperberg & Stone (1992), Tanner & Wong (1987)
and papers by Betensky and co-authors. A survey of statistical methods for interval-censored
data is given by Lindsay & Ryan (1998). Often data augmentation algorithms (EM and multiple
imputation, respectively) are used for smooth inference methods for interval-censored data and
little about convergence has been formally developed. The approach taken in this paper, that of
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h 0.25 0.42 0.50 0.58 0.67 0.75 0.83 0.92 1.08
KL 0.1769 0.1309 0.1234 0.1149 0.1093 0.1131 0.1146 0.1190 0.1358
CV −3.845 −3.807 −3.789 −3.779 −3.770 −3.765 −3.764 −3.768 −3.779

Table 4: Kullback–Leibler distance and the logarithm of the proposed cross-validated likelihood
for the unadjusted density estimate. The cross-validated likelihood is maximized at a value of the
window size that is reasonably close to the value that minimizes the Kullback–Leibler distance.

recasting a local EM algorithm as a Newton iteration, has permitted some formal developments
concerning convergence. Its applicability to other local likelihood methods will be pursued in
subsequent work.
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