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Introduction

Risk theory is the branch of actuarial science that evaluates the global
risk of a portfolio subscribed by an insurance company, for example,
in home, auto, or group insurance. The individual and collective risk
models are two approaches to evaluate the global risk of a portfolio.
Traditionally, in the study of these two models, one makes the hy-
pothesis that the random variables are independent. This assumption
allows simplifying the calculations. Unfortunately, in many situations,
this hypothesis is not representative of the reality and some situations
may arise where it is impossible to deny the existence of dependence
between the risks. We can think, for example, of the occurrence of a
natural disaster which generates numbers of claims from the policy-
holders living in the accected area. Also, consider a group life insurance
or a group health insurance contract issued to a company for a section
of its employees working in a mine, on a steel plant, in a paper mill,
etc. In these cases, a single event (e.g. explosion, breakdown) inEu-
ences the risks of the entire portfolio. The impact of the hypothesis
of independence is nevertheless very important because ignoring the
dependence between the risks may bring to an underestimation of the
global risk of the portfolio. For this reason, it is important to consider
some models introducing dependence between the risks.

The grst part of this report will present the independent models.
The individual and collective risk models will be discussed. An exten-
sion introducing many classes in the collective risk model will also be
presented. The dependence models will then be introduced. The com-
mon mixture model will grst be treated, following by the components
models, where we discuss essentially of the common shock model. The
distortion method will then be presented, and we will close the section
with the copulas, where we also present some measures of correlation
useful for their analysis.



Independent Models

1. Individual Risk Model

The individual risk model is usually applied in life insurance, in
private health insurance, in car insurance and in other lines of non-life
insurance. We assume that a portfolio is constituted of a ¢gnite number
(n) of individual contracts. This model is characterized by the fact
that only a global claim amount can be associated with each risk of
the portfolio, and this global amount comes from many reclamations
made by the same policyholder.

We degne S as a random variable (rv) representing the aggregate
loss amount of a portfolio during a gxed period

S:X1++Xn,

where the random variables X; (i = 1,...,n) are the claim amount of
the ith contract for the given period. FXi is the cumulative distribution
function (cdf) of the 7v X; (i = 1,...,n). It is important to note that
the X;’s are independent but not necessarily identically distributed.
A more general model is to split the X;’s in two components, the
occurence of at least one claim and the amount of the claims for a given
period. As shown in Bowers et al. (1997), the rv of the claim amount

X; (i=1,...,n) is expressed as
Xi=1B;,

where [; is the indicator for the event that at least one claim occurs
and B;is a rv representing the total claim amount incurred during the
period. The rv’s I; and B; (i = 1,...,n) are independent (for a gxed 7).
The random variable I; is a Bernoulli rv with

P[Iizl]:qiand P[Iz:(]]:l—qz:p“

representing the probability that at least one claim occurs or not.
We are assuming that the I;’s are independent. The rv’s B; (i =
1,...,n) are mutually independent, but are not necessarily identically
distributed. One designates Fp, as the cdf of B; (i =1,...,n).
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We are interested in the cumulative distribution function of S, which
is very useful to determine the diceerent characteristics of a portfolio.
It is possible to gnd Fg, the cdf of S, through the convolution of the
cdf ’s of Xy, ..., X,

FS(S):FXl*FXg*---*FXn (S),

where
Fx,.x, (8) = / Fx, (s —y) fx, (v) dy,
0

and where fy, is the probability density function (pdf) of X; (i =1,...,n).
Convoluting the X;’s is often tedious, and in many cases, is it easier
to use the moment generating function (mgf) of S to determine Fg.
The mgf is degned as Mx (t) = F [etX}, and can be expressed with
the probability generating function (pgf), which is degned as Px (t) =
E [tX]. Hence, it is easy to see that

My (t) = Px (¢'),
and inversely

Px (t) = Mx (Int) .
Now, for the mgf of S, we have

Ms(t) = E[€¥]
E [et<X1+"'+X“)]

El I:etX1—|—...+tXni|

and by independence between the X;’s, it follows that
Ms (t) = E[e¥] . .E[e"¥"]
= My, (t)..Mx, (1). (1)

Since an insurance company groups its risks in homogeneous classes,
it is realist to suppose that the X,’s are independent and identically
distributed (iid). It then follows from (1) that

Ms (t) = (Mx (t))" .

After having obtained an explicit form for Mg (t), we can inverse it by
using numerical methods to approximate the cdf of S, Fj.
Sometimes, the mgf of the X;’s does not exists. A good way to
overcome this problem is to use the Fourier transform, or characteristic
function, degned as ¢y (t) = F [eitX]. Note that iis degned as v/—1.
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We develop the characteristic function of S. By the same argument
as (1), we have

s (t) = dx, (1) - 0x, (1) -
It is then possible to compute the cdf of S using the concept of the
Fast Fourier Transform (FFT).
We are interested in the moments of the aggregate loss amount S.
It is important to note that the variance is a good indicator of the risk
of a portfolio. Let E [B;] = y; and Var (B;) = 07; since the expectation
is a linear operator, we have

E[S] = E

£
= ZE [Xz] )

where
E[X;] = EL[E[LBi|L]]
= Elpd]
= wE[L]
= ;G (2)

For the variance of S, we develop

= ZV&T(Xi)+Z Z Cov (X;, X;).

i=1 j=1,ji

Var (S) = Var

Since the rv X; (i = 1,...,n) are independent, we have
n
Var (S) = Z Var (X;),
=1

where
Var (X;) = By, [E [(ILB)° |I]] - E[LB).
From (2), we have
Var (X;) = ¢E[B]] — (10:)"
= qi (o] + 1 (1 — @)
= g (1—q)+ojg (3)
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2. Collective Risk Model

We now present the collective risk model, which is dicerent from
the individual risk model by the fact that the number of claims is
now represented by a random variable. We grst present the classical
model, and we then present an mMm-class extension of this model. The
characteristic of this model is that the portfolio is considered as an
whole rather than in terms of the individual policies.

2.1. Classical Collective Model. We assume a homogeneous
portfolio with a degned number of contracts. N is a discret rv rep-
resenting the number of claims during a gxed period, for example a
year or a month. The amount of the ith claim s represented by the
rv X; (1 = 1,2,...). We suppose that the X;’s are independent and
identically distributed (iid). Furthermore, we assume that the rv’s X,
(1=1,2,...) and the rv N are independent. Fx is degned as the cdf of
the X;’s.

S, the random variable representing the aggregate claims for the
whole portfolio for a gxed and degned period, is degned as

N

=1

One designates the cdf by Flg, which is of the following form

N
Fs(s) = P|) Xi<s
=1

= iP[N:n]P iXiSS\N:n
n=0 i=1

Because of the hypothesis of independence between the rv N and the
v’s X; (1=1,2,...), we have

Fs(s) = iP[Nzn]P iXigs

= Y P[N=n]Fy(s), (4)
n=0

where FY" represents the n-fold convolution of the cumulative distrib-
ution function of X .

Convoluting the X;’s is often tedious, as mentioned in the previous
section, and it is often easier to use the moment generating function
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(mgf) or the probability generating function (pgf) of S to determine

Ms(t) = E[e”]
E [et(Xl—l—...-}-XN)]

= By [E [P IN]]
and since the X;’s are iid and independent of /N, we have
Ms(t) = Ey [E[eM|N]]
= By B [*]"]

= B |(Mx, (1)"]
= Py (Mx, (1)) (5)

After having obtained an explicit form for Py (Mx, (t)), we can inverse
Mg (t) by using numerical methods to approximate the cdf of S, Fj.

Sometimes, the mgf is undegned for the cdf of the X;’s and then,
we shall use the characteristic function since it always exists. Note that
we can express it with the mgf and the pgf, as

oy (t) = E [e"¥] = Px (e") = Mx (it), (6)
where 1 = /—1.

From (5) and (6), we have

¢s(t) = E [eits}
= My (it)
Py (Mx, (it))
Py (¢x, (1)) - (7)

It is then possible to compute the cdf of S using the concept of the Fast
Fourier Transform (FFT). The preceding results are used in an example
presented at the end of this section, along with Splus algorithms for
the discretization of a continuous distribution and for the FFT.

As mentioned in the previous section, we shall degne the expecta-
tion and the variance of S. We determine the expectation of S as

E[S] = E[X,+ ..+ Xy]

N
ZXi] ,
=1

= F
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conditioning on N, we get

. _
> Xi|N ]
=1 n

E[S] = Ev|E

r N
= Ey|)_E[X;IN]|,
Li=1 d

and because the X;’s are iid and independent of IV, it follows that
E[S] = En[NE[X]]
E[N]E[X]. (8)

We then develop an expression for the variance of S
Var (S) = E [S*] — E*[9]. (9)

For F [82], we have
N 2
E[S?’] = E (ZX)
=1
N N N
Sx+> Y X,-Xj|N”,
i=1

i=1 j=1,ji

:ENE

and again by the independence between N and the iid X;’s, we have
E[S?] = Ey[NE[X’]+N(N-1)E*[X]]
= E[N]E|[X?|+E|[N?| E*[X]- E[N]E*[X]. (10)
Replacing (8) and (10) in (9), we obtain
Var[S] = E[N]E[X?] + E [N?] E?[X]
~E[N]E*[X] - E*[N] E*[X]
= E[N|Var[X]+ Var[N]E*[X]. (11)

Example 2.1. Suppose that N is Poisson(100) and that the X;’s
are iid Lognormal(2,1). The pgf of a Poisson(A) is

Py(t) = E[t"]

o] n_—X
- >
1=0 n!
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and by the following result from the Taylor expansion

we get

Py (t) = e e
= A, (12)

Now, we can obtain the characteristic function of S from (7)

bg (t) = Py (¢X1 (t))
— Mo (t)—l),

where ¢y (t) is the characteristic function of X; (same for all Xj’s,
since they are iid). In our case, we have

s (t) = eloo(qsxl(t)—l)_

We can use this expression along with the FFT algorithm presented in
the appendix to plot diceerent functions of S. The grst graph (Figure
1) shows the cdf of S. The second graph (Figure 2) shows the stop-loss
premium, which we designate as the expectation of the rv I;. We degne
1, as

0, S <d
Id(s):{ S—d, S>d -

where d is the deductible. We also denote the stop-loss premium as
n(d)=FE [(S — d)+] . Note that the stop-loss premium allows to quan-
tify the risk related to a portfolio. Of course, as we increase the de-
ductible d, the stop-loss premium decreases. Also, for d = 0, we have

7 (d) = E[S] and from (8), 7 (d) = 100 (€*T1/?) = 1218.25.

2.2. Collective Model with m-class extension. We now con-
sider an adaptation of the preceding collective risk model. This exten-
sion of the classical model will allow to include dependence between
the diccerent classes of a portfolio. We suppose a portfolio including m
classes of risks. For the ith class, we degne the random variables

e N® =number of claims in the i*! class of policyholders (1 =1,...,m);
) XJ(.Z) = jth (j=1,2,...) claim in the i Class of policyholders
(1=1,...,m);
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Figure 1. Graph of Fg where N ~Poisson(100) and the
X;’s are iid Lognormal(2,1)

e S = total amount of claims in the i™® class of policyholders
(i=1,....,m) in a gxed period
N
; %
SO =3"x1, (13)
j=1

e S = total amount of claims for the portfolio in the gxed period
S=8W4 . 48mM. (14)

In the it class (t=1,...,m), we suppose that the random vari-

ables X](-i) (j=1,2,...) are iid. We also suppose that the rv’s XJ@

(i=1,..,mand j=1,2,...) and the rv’s N® (i =1,....m) are inde-
pendent. We designate by Fxu the common cdf of X(-Z) for each

?

J-We also make the additional hypothesis that the random vectors
(sz),XQ(Z),..) and (X{Z),XQ(Z),...) are independent for two diceerent
classes of policyholders (i # 7').
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Figure 2. Graph of E[(S—d)_J, the stop-loss pre-
mium with limit d, versus d

It follows from (4) that the cdf of SO, Fyq, is of the following form

Fyiy (s) =Y P (N9 =n) Fi, (s).
n=0

Then, the cdf of S is expressed as
FS (S) = FS(l) X ..0% Fs(n) (S) .
From the preceding development of the mgf of S for the classical

collective risk model, we know that each class taken individually is

expressed, from (5), as

Mso (t) = E [ets(i)]
= Py (MX(i) (t)) . (15)
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Hence, we the mgf of S for a model with m classes is
Ms(t) = E[€”]
- B [et(5(1)+...+s(mJ)}

Y

_ E[et5(1)+...+t5(m)}
and by independence between the classes and from (15), we obtain

us(t) = B[] B o]

m
= I Pvo (Mxe (1) (16)
=1
Now that we identiged the mgf of S for a model with m classes, we
can inverse it and ¢nd the cdf of S.
We now develop the expectation and the variance of S for this
model. For the expectation of S, we have

E[S] = E[SW+..+50M)]
= E[SW]+. . +E[S™].
Using (8), we obtain
E[S) = ENV]E[XW]+ .. +E[N™]E[x™]

= zm:E [INO] B [Xx®@].

The variance of S is

Var[S] = Var [SY + ...+ 5]

= Zn:Var(Xi)+2n: z”: Cov (X, X;). (17)
i=1

i=1 j=1,5#i

By independence between the random variables S (i=1,...m), (17)
becomes

Var[S] = Z Var [S(i)} ,
i=1

and from (11) we can deduct
Var[s] = 3" (E [N®] Var [X¥] 4 Var [N®] B? [X9]).

=1
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Example 2.2. We are interested in gnding the distribution of S
when SW, ..., S are distributed as independent Compound-Poisson
(CP) distributions with parameters A; and F'x() () (cdf of the rv of the
claim amount). We designate the distribution of the random variable

SO (i=1,..,m) by
SO ~ CP (N, Fxw (z)).

We use the hypotheses of the collective model with a portfolio of m
independent classes. From (16), we have for the mgf of S

m
Ms (t) = [ [ Pver My (1)) - (18)
i=1
Since the random variables N (Z =1, ,m) are distributed as Poisson

distributions with parameter A;, we have from (12)

Ms(t) = He My @) (H)— )

— e’\2¢:1 7( M i) (t)-1)

A, LISV (t)—1
— 6( i=1 "X " x(9) )’ (19)

which represents the mgf of a Compound-Poisson with parameters A =
Yo X and Fy (y) = Z’ 1 )\FX@( ) (i.e. a convex combination of
the cdf’s of the rv’s X@ (i =1,...,m)).

Thus,

S ~ CP ()\ Fy Z)\FX@) )

where S =90 4+ ... 4+ 80 and \ = Zi:l



Dependent Models

We now introduce some models allowing the inclusion of relations of
dependence. The models presented in this section are essentially based
on the paper of Wang (1998).

3. Common Mixture Models

In many situations, individual risks are correlated since they are
inKuenced by changes in their common environment, either in their
economic, climatic or any other environment. For instance, consider
many cultivators of cereals in Saskatchewan. Their crops all depend,
among other things, on the climatic conditions. Hence, they cannot
be considered as independent risks since they are related by the same
factor, the weather. Also, in property insurance, portfolios subscribing
risks in the same geographic area are correlated, since they are con-
tingent upon the occurrence of a natural disaster. We can think of a
particularly rigorous winter, a few years ago in Quebec, which brought
an incredible amount of snow and resulted in damages of roofs and
swimming pools. In liability insurance, the ecect of inFation may set
new trends that accect the settlement of all liability claims for one line
of business.

Individual risks {Xi, Xs,...} subject to the same factor may be
modeled by using a secondary mixing distribution. This factor’s un-
certainty is described by 6, a realization of the random variable ©,
allowing to represent the distribution of each individual risk. This
means that there exists a distribution function of the random variable
O representing the common factor, Fg, upon which each individual risk
depend. Thus, it is easy to see that these risks are not independent,
since they all depend on the same factor ©. However, when we know
the realization of this random variable, 0, then we can consider the
individual risks as independent, since they are not accected anymore by
the distribution function Fg.

The aggregate loss of the portfolio can then be determined in two
steps. First the parameter © = ) is drawn from Fg, the cdf of ©. This
means that we know the conditional distribution functions of Xi|@,

13
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Fx,je, (1=1,2,...), which are independent. Next, we obtain the claim
frequency (or severity) of each individual risk, which is a realization
from the conditional distribution function of X; [0, Fx,e, (1 =1,2,...).

In the previous example, we considered that the individual risks
depended only on one extern mechanism. However, in many situations,
the risks are subject to more than one factor and it is why we sometimes
need to extend this method to more than one mixing distribution. In
the case where the mixing distributions are independent, the situation
is not more complicated than that with only one mixing distribution.
The individual risks depend on the two independent distributions of ©
and A, Fg and F), respectively. Hence, the aggregate loss of the risk
portfolio can be determined by grst drawing the parameters © = 6 and
A = X from Fg and F). Then, knowing the conditional distribution
functions of X; |0, A, Fx,e., (1=1,2,...), which are independent, we
can obtain the claim frequency (or severity) as a realization of FX”@,A-

This method of including dependence may reveal itself very useful,
as we just seen. However, it has also some disadvantages. For instance,
consider the case where the individual risks depend on more than one
external mechanism, as we just seen, but this time the external mech-
anisms are dependent. In this kind of situation, we would need either
the joint cdf of all the factors, or another method to calculate the de-
pendence between them, which bring us to our initial problem. Since
the joint cdf’s are often complicated, this kind of situation is in gen-
eral more di(Ecult to manage and in such cases, we may be better to
use another method of including dependence. Also, note that in using
some distributions as the Negative Binomial, some restrictions in the
choice of the parameters arise and we cannot be as Aexible as we may
wish.

Note that the mixing distribution can be either discrete or con-
tinuous. However, we must specify two important points about gnite
mixtures. First, such models are often oversimpliged, since the risks
are generally more likely to generate numbers of risk levels (maybe a
continuum of risk levels). Also, the number of parameters to estimate
in a gnite mixture is very high. If we have 7 classes, then we will have
7 — 1 mixing parameters in addition to the total number of parameters
in the r component distributions. These reasons justify the fact that
continuous mixtures are frequently preferred to gnite ones. We now
present an example of a continuous mixture.

Example 3.1. Suppose the parameter ¢ of a binomial follows a
beta distribution with parameters « and (3. The beta distribution has
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pdf
Fa+p8) -
Flg) = 20ED) go
I'(e)I(B)
where 0 < ¢ <1, >0, 5>0.
Then, the mixed distribution has probabilities

mo= [ () oo g a0

m P(Of‘{’ﬁ) ! a+k—1 _ \B+m—k-1
(&) rayr [, o =
(m) F'a+p) T'(a+k)T(B+m—k)
E)T()T'(B) T(a+k+B+m—k)
"T(a+k+B8+m—k) .., Btm—k1
/0 TaswTGimnt (179 dg-
Since we have the pdf of a beta with parameters o = a+ k and * =

B+m—k integrated over its whole range (0, 1), then the integral equals
1, which gives
m\ I'(a+0) T'(a+k)T(B+m—k)
(k)F(a)F(ﬁ) [ (a+ B +m)
_ Tm+ )T (a+B8)T (a+ k)T (B+m—k) k= 0.1.9
T+ DI (m—k+ DL (@I (B (atBtm) e

This distribution is called Binomial-Beta, Negative Hypergeometric, or

(]' - Q)ﬁil ’

Pk

Polyo-Eggenberger.

4. Components Models

If we consider the aggregation of diceerent lines of business, we can
realize that each of them may be diccerent from one region to another.
Therefore, dividing the risks into components and model each one sep-
arately may be a more appropriate way to perform the calculations.
For instance, the amount of risk may diceer if some lines of business are
located in a high catastrophe risk region, while others are located in
a safer one. In this case, the use of a common mixture model or of a
common shock may be required in order to include the high risk factor
in the grst lines of business.

When using the components models, the distributions ingnitely di-
visible are very useful. Many families of frequency or severity distribu-
tions have this property. A distribution is said to be ingnitely divisible
if it can be obtained by a sum of independent distributions in the
same family. It is very useful because they allow dividing risks into
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independent components. Among the most famous ingnitely divisible
distributions, we can state the Poisson, the Negative Binomial and the

Gamma
Poisson (A1) @ Poisson (Ag) = Poisson (A1 + Ag)
NB (a1, 3) ®NB (a2,8) = NB (a1 +ay,p)
Gamma(ay, 8) @ Gamma (g, ) = Gamma (a1 + ag, §),

where @ is used to represent the sum of two independent random vari-
ables.

4.1. Common Shock Models. We shall begin by consider the
case where the risks can be accected by only one common shock. Let
X;=X;a®Xjp, 7=1,2,..., be a decomposition into two independent
components. If we assume that Xi, = X9, = ... = X, then we obtain
X; = Xo® X, j = 1,2,.... This means that each risk is aceected
by the occurrence of a same event (the common shock Xj), or by the
occurrence of individual events (Xj ). Hence, the only relation of de-
pendence between the diceerent risks comes from the common shock
Xo. This can be seen by calculating the covariance between X; and X

Cov [Xz, X]] = Cov [X() + X’iba X() + ij]
= Cov [Xo, Xo] + Cov [Xo, X]b]
+COV [Xib; X()] + Cov [Xib; ij] .

Since the diccerent components are independent, we have
Cov [XZ,X]] =Var [Xo] .

This common shock model may be easily extended to higher dimen-
sion. For instance, if we consider three variables, we get

where Xgrepresents the common shock among all three variables, Xij
represents the common shock between % and j, Xj; represents the com-
mon shock between k and j, and Xjj represents the individual risk.
Also note that Xy, X;j, Xij, and Xj; are independent. Hence, the
correlation will be included through
Cov [XZan] = Cov [XO + XZ] + sz + XibaXO + X” -+ ij =+ ij]
= Cov [X(),X()] + Cov [X(),Xij] + ...+ Cov [Xib;ij] .

Since the diccerent components are independent, we have

Cov [Xza X]] = Var [X()] + Var [XZ]] ,
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which shows that ¢ and j are correlated under the common shock among
all three %, j, and k, and under the extra common shock between % and
j.

Note that as we increase the dimension, i.e. as we increase the
number of independent components for a risk, the calculation becomes
tedious since we have to consider new sources of correlation, and this
number grows rather fast. Thus, for situations where the variables are
subject to numbers sources of dependence, some other models may be
more appropriate or, at least, easier to compute.

Example 4.1. Consider a portfolio with two risks. Let
X1 = Xo® Xyp and Xo = X ® Xop,

where X1, ~Gamma(ay, ), Xop ~Gamma(ag, \), Xg ~Gamma(ag, \),
and where Xyp, Xop, X are independent. We are interested in the dis-
tribution of S = X; + Xy. This results by ¢nding the mgf of S, Mg (?)

MS (t) = F [ets}
E [et(Xl—f—Xz)}

E [et(X0+X1b+XO+X2b):|

By independence between Xy, X5, and Xyp, we have
Ms(t) = E [ E [e?] E [e92]
= My, (2t) Mx,, (t) Mx,, (t).

We can then inverse Mg (t) by numerical methods, as stated previously.

4.2. Peeling Method. We saw in the section treating the com-
mon mixtures that this method presents some restrictions in the choice
of the parameters. The Peeling method presents a way to overcome this
limitation, ocering more Aexibility in the choice of the parameters of
our distributions.

As an example, if N;|© ~Poisson(f);) and © ~Gamma(c, 1), then
the marginal distribution of N;is a NB (o, Aj)(see Wang (1998), p.892).
We can see that the same parameter (¢ is required in the marginal Neg-
ative Binomial distributions. However, the components method allows
to construct correlated multivariate Negative Binomial distributions
with arbitrary parameters (o, A;) through two methods.

The grst method shows that this can be done by separating each
marginal N; (j = 1,...,k) of a set of k marginal Negative Binomial
distributions into the following decomposition

Nj = Ni; & Ny,
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where
Nlj ~ NB ((l/(), )‘j)a and Ngj ~ NB (ij — O, )\J) y

and where NB represents a Negative Binomial distribution and ¢y is
such that o < min{ay, ..., o}

The second method assumes that the «;’s are in ascending order
a1 < ... < . We can then write each marginal distribution in the
following decomposition

NB (aj, Aj) = NB (a1, ;) ®NB (a2 — a1, Aj) @ ... BNB (aj — j_1, ).

4.3. Mixed Correlation Models. This method may be useful in
testing a set of possible scenarios. It consists in mixing joint probability
generating functions having the same set of marginal probability gener-
ating functions, and this results obviously in a mixed joint probability
generating function still having the same set of marginal probability
generating functions. Hence, assembling each scenario with its prob-
ability of occurrence, it may be a good way to compute the overall
probability of an event.

5. Distortion Method

This method consists to introduce a correlation structure in a joint
probability generating function through a function, say g¢.

Let Xi,..., X, be n random variables with probability generating
functions Px, (t1),..., Px, (tn), respectively. Assuming that the X’s
are mutually independent, we can write

Px, . x, (t1, .., ty) = H Px; (t;) .
j=1
Also, let g be a strictly increasing function over [0, 1], with g (1) =1
and whose inverse function is gfl. We assume that QOPXl,...,Xn consists
in a joint pgf with marginal pgf’s go Px;, (j = 1,...,n).If we assume
that these marginal pgf’s are non-correlated, we then have

n
g o PXl,...,Xn (tla atn) = Hg o PXj (t]) .
j=1

A correlation structure is now introduced to the original joint proba-
bility generating function:

Px,..x, (t1y s ty) = g Hg o P, (t;)
j=1
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Note that for mathematical convenience, the function h(z) =Ing(z),
which is a strictly increasing function over [0, 1] with A (1) = 0, is often
used instead of g(x) Hence, the joint pgf is expressed as

PXl,---,Xn (tl, ,tn) = h_l Hh, (@) PXj (tj) . (20)
j=1

However, we should note that since the only constraint on the joint
probability function is that it sums to one, we might not obtain a
proper multivariate distribution. It degnes a proper multivariate dis-
tribution only if the joint probability function le,___,Xn, is non-negative
everywhere. Hence, PX1,...,Xn degnes a proper joint probability generat-
ing function if, and only if, its partial derivatives at t; = ... = ¢, = Qare
all non-negative.

Theorem 5.1. Suppose that Equation (20) degnes a joint proba-
bility generating function; we have

R (1)
h' (1)

Cov[X;, X;] = { + 1} E[X]E[X,].

Proof. This can be shown be taking the second order partial de-
rivative, 0%/0t;0t; (i # j), on both sides of the equation

hoPx, .. x, (t1,...,ty) = H ho Px, (t;).
j=1

For a complete proof, see Wang (1998). 1

Note that the distortion method also oceers the possibility to include
dependence in a set of Negative Binomial distributions having diccerent
parameters (i.e. no restriction on the «;’s).

Example 5.1. Consider the following common Poisson mixture
model: N;|© ~Poisson(#);), and © has a chi-squared distribution
with 1/p degrees of freedom. According to Wang (1998), if we degne
h(y) = Mél (y), then the joint pgf for this model satisges (20).

Since the mgf of © is Mg (2) = (1 — 22)71/21), degne

hy)=(1—y )/2.
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Using (20), we get the following joint pgf:

Py, (t1yest) = h71 Zh o Py, (t;)
j=1

" (1- Py, ;)"

= p! Z :

Jj=1

1 a _
= h,fl 5 n— Z PN]. (tj) p
j=1

1 n _1/2])

§ : -2

= 1—-2 5 n— PNj(tj) P
j=1

n *1/21)
= ZPNJ. (tj)72p—n+1 s
j=1

where p # 0. By the preceding theorem on the covariance, we have
Cov[N;, Nj| = =2pE [N E[Nj],
since
R (y) = py_(2p+1) and h" (y) = —p(2p + 1)y—(2p+2)’

which implies that

=
<
—~
—_
~—

Finally,
lim PNl,---,Nn = PN1 (tl)PNn (tn),

p—0

since the covariance goes to 0.

We will see in the next section, that the distortion method has an

application in the construction of some copulas.

6. Copulas

The popularity of this concept is due, among other things, to the
fact that it is often very di(Ecult to work with multivariate distrib-
utions. They are di(Ecult to invert, di(Ecult to simulate, etc.. The
copulas allow, in comparison with the preceding methods presented,
a dependence structure more Eexible. Wang (1998) provides a good
introduction to this concept.
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Definition 6.1. A copula is degned as the joint cumulative dis-
tribution function of k£ uniform random variables

C (U1, ..oyug) = PUp < gy, U < ] -

Let Y3, ..., Y} be a sequence of random variables with cdf ’s Fy,, ..., Fy,
respectively. We can then express the multivariate cdf (Fylj___,yk)with
a copula C

FYl,...,Yk (yl: teny yk) =C (FY1 (yl) JEEED) FYk (yk)) .

We can also express the joint survivor function

SYl,...,Yk (yla ey yk) =C (SYI (yl) LRRRY SYk (yk)) .

A copula C is a cdf of a random vector (Uj,...,Ug), where Uj; is
a uniform variable on the interval (0,1). This multivariate function

C : |0, l]k — [0,1] has, among others, the following properties:
(0,...,0) = 0;
(1,...,1) =1;
(1, .y tjy ey 1) =y, for i =1,...,k and u; € [0,1];
(ul,...,uk) is increasing in each component u;;
e For each (ai,...,ax), (b1,...,0x) € |0, 1]k with a; < b;, we have
2 . .
>y e (uff, ) 2o,

21:1 Zk:1

where uﬁi) = a; and ugi) =bfori=1,..,k.
The last property state that there is no negative weight on [a1,b1] X
. X [ak,bk]. These properties are required for C' to be a cumulative
distribution function.

With the copulas, with can distinguish the choice of the marginal
distributions (Fy;,Sy;) from the dependence structure. Also, if the
marginal distributions are continuous, there exists a unique copula to
represent the multivariate cdf, and every multivariate cdf can be ex-
pressed as a copula. Unfortunately, some problems are due to the fact
that we cannot always identify this copula. However, it is important
to notice that even if the copula for the joint c¢df and that for the joint
survivor function have the same set of Kendall’s tau and of rank cor-
relation coe(Ecients, they are usually diceerent. The copulas have the
nice property to be easily simulated. We will show an example of this
application at the end of the section.
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6.1. Measures of correlation. We now present some measures of
correlation, concepts that will be very useful for a better understanding
of the copulas.

There exists diceerent methods of measuring the correlation between
two random variables. The most famous is probably the Pearson cor-
relation coe(E cient, which is degned as

Cov[X,Y]

P e

and always lies in the range [—1,1]. A linear relationship between X
and Y (X = aY + b,for some constants @ > 0 and b) is traduced by
p(X,Y) =1, a linear relationship between X and —Y has p(X,Y) =
—1, while p(X,Y) =0 when X and Y are independent.

The covariance coe(Ecient is degned as
Cov[X,)Y]
E[X]E[Y]
o[X]o[Y]
EX]E[Y]
= p(X,Y)ov (X)cv (Y),

w(X,Y)

= p(X,Y)

where CV refers to the coe(Ecient of variation. This time, the range of
w(X,Y) depends on the shape of the marginal distributions.
The Spearman’s rank correlation coe(E cient is

RankCorr (X,Y) = 12E [(Fx (z) — 0.5) (Fy (y) — 0.5)] .

The Kendall’s tau is the measure of correlation the most used with the
concept of copulas. It is degned as

T = 7(X,Y)
= P[(X; - Xy) (Y2 - Y1) 2 0] - P[(Xz2 — Xy) (Y2 — V1) < 0]

= //FXnydey(.’L‘y) 1

where (X1,Y7) and (X3, Y3) are two independent realizations of a joint
distribution.

Both Kendall’s tau and Spearman’s rank correlation coe(Ecient sat-
isfy the following properties:
—1<7<1;—1 < RankCorr < 1;
if X and Y are comonotonic, then 7 =1 and RankCorr = 1;
if X and —Y are comonotonic, then 7 = —1 and RankCorr = —1;
if X and Y are independent, then 7 = 0 and RankCorr = 0;
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e 7 and RankCorr are invariant under monotone transforms, i.e.
T(f(X),g(Y)) =7(X,Y)
and

RankCorr (f (X),g(Y)) = RankCorr (X,Y).

Note that a non-parametric estimate of Kendall’s tau is given by
2
TXY) = FE—1) ZSiQn (X — X;) (Vi —Y))].
1<)
A Splus function allowing to estimate the Kendall’s tau for a random
sample of bivariate observations, (X;,Y;),7 = 1,...,k, is shown in the
appendix.

We now present further important concepts concerning bivariate
random variables, say (X,Y). Let

Fxy (z,y) =P[X <2,Y <y
be the joint cdf and
Sxy (z,y) = P[X >z,Y >y
be the joint survivor function of (X,Y’). Note that
Sxy (x,y) = 1= Fx(z) = Fy (y) + Fxy (z,y)
# 1—-Fxy(z,9).

Lemma 6.1. For any bivariate cumulative distribution function FX,Y
with given marginal distributions F'x and Fy,we have

max [Fx () + Fy (y) — 1,0] < Fxy (z,y) < min [Fx (z), Fy (v)],

where max [Fx () + Fy (y) — 1,0] and min[Fx (z), Fy (y)] are called
the Frechet bounds.

Proof. We will prove each inequality separately. For the lower
bound, we have

Fxy (z,y) = Fx () + Fy (y) — Sxy (2,9) .
Since we know that Sxy (z,y) <1, we then have
Fxy (z,y) > Fx (z) + Fy (y) — 1.
Also, since Fxy (z,y) > 0,we can write
Fxy (z,y) > max[Fx (z) + Fy (y) — 1,0].
Now, for the upper bound, we have

Fxy(z,y)=P[X <z, Y <y|=P[X<znY <yl.
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Since P[AN B] < P[A] and P[AN B] < P[B], we have

Fxy(z,y) < min[P[X <z, P[Y <y
= min[Fx (z), Fy ()],

which complete the proof. |
The concept of comonotonicity is closely related with Frechet bounds.

Definition 6.2. Two random variables X and Y are comonotonic
if there exists a random variable Z such that

X =u(Z), Y=uv(Z), with probability one,
where the functions % and v are non-decreasing.

We can see this concept as an extension of the perfect correlation.
For example, we can think of the variable Z as the salary of an indi-
vidual, the variable X as the amount of taxes and the variable Y as
the percentage of salary deducted for the pension of this individual in
a year.

alZ, OSZSdl
X = CYQ(Z—dl), di < Z <d,
O!g(Z—dQ), Z > dy

where 0 < a1 < ap < a3 < 1, di < dy, and
Y =pZ Z>0,

where 0 < 8 < 1. Since the proportion of taxes paid is a step function
and the deduction for the pension is a constant percentage, then we
cannot express X as a linear function of Y, or vice versa. However, X
and Y are non-decreasing functions depending on the variable 7, and
then are comonotonic. They depend on the same variable, and they do
not hedge against each other.

The concept of comonotonicity has a property related to the Frechet
bounds.

Proposition 6.2. If X and Y are comonotonic, then the upper
Frechet bound is reached and if X and —Y are comonotonic, then the
lower Frechet bound is reached.

Proof. To prove the grst case, let X = u(Z) and Y = v (Z) for
some random variable Z and non-decreasing functions % and v. Degne
also the inverse functions of u and v as

ut(z) =sup{z:u(z) <z} and v (y) =sup{z:v(2) <y}.
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Hence, we have
Fxy (z,y) = P[X <z,Y <y
= Pu(Z)<zv(Z) <y
= PlZ<u'(2),Z<v"(y)]
= P[Z <min (v (z),v" (v))] -
This leads to

Fxy(z,y) = min(P[Z<u'(2)],P[Z<v'(y)])
min (P [u (Z) < z],P[v(Z) < y])
= min(P[X <z],P[Y <y])
(

and the grst case is proved.

To prove the case where X and —Y are comonotonic, let X = u (Z)
and —Y = —v(Z) for some random variable Z, and non-decreasing
functions ¥ and v. Hence, —v is a non-increasing function. Degne also
the inverse functions of ¥ and —v as

u ' (z) =sup{z:u(z) <} and —v t(y) =inf{z: —v (2) > y}.

We then have
Fx_y(z,y) = P[X <z,-Y <y]
Plu(Z)<z,—v(Z)<y]
= PlZ<u'(2),Z>v""(—y)]
= PlZ<u'(2)]-P[Z<v ' (~y)],

which leads to
Plu(Z)<az]-Pl-v(Z) >y

= Pu(Z2)<z]—(1—-P[-v(2) <y
P[X <z]+P[-Y <y] -1

Fx (z) 4+ F_y (y) — 1.

FX,—Y (.T, y)

Since we know that Fx,_y (fL‘,y) > 0, we must write
FX,fY (Qi,y) = maX(FX (37) + FfY (y) - 1a0) )

which completes the proof. I

The concept of comonotonicity is also related to the Kendall’s tau.
When two random variables X and Y are comonotonic, Kendall’s
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tau, 7 (X,Y), equals one. Suppose that for a realization of the ran-
dom variable Z, we get the bivariate sample (Xi,Y]), and for a sec-
ond realization of Z, we get (Xy,Y2). Hence, we can say that X
< Xo <= Y, <Yy and Xy < Xj <= Y, <Y, since X =u(Z) and
Y = v (Z) bet on the same event Z, and since u and v are both non-
decreasing functions. Thus, the expression (Xo — Xi)(Ys —Y7) must
be greater or equal to zero (2 0), since it represents a multiplication of
two numbers either both positive or both negative. We can then write
for the Kendall’s tau 7

T = 7(X,Y)
= P[(Xo—-X1)(Y2—-Y1) >0 -P[(Xy - Xy) (Yo —Y7) <0
=1

Y

since P[(Xo— X1)(Y2—Y1) >0]=1and P[(Xo— X3) (Yo— Y1) <0] =
0 from the preceding explanation.

We can also show that when X and Y are independent, Kendall’s
tau equals O :

T o= 4/01/01FX,Y(x,y)dQFX,Y(x,y)—1
= o[ [ Fe@ e ar @ ary o) -1,

by independence between X and Y. Since fx (z) and fy (y) are the
derivatives of Fx () and Fy (y), respectively, we have

724/0 FX(x)fX(x)dac/O Fy () fr (v) dy — 1,

and by letting s = Fx (x), ds = fx(x)dzr and t = Fy (y), dt =
fr (y) dy, we gnd

= 0.

Now that we know the principal measures of correlation, we will
present some particular copulas.
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6.2. Cook-Johnson Copula. There exists a lot a copulas, which
are often classiged in families. The Archimedean family of copulas is
one of them, and the copulas belonging to this family are constructed
with the distortion method. The Cook-Johnson copula belongs to the
Archimedean family.

(Ui, ..., Uy) is a k-dimensional uniform distribution with support on
the hypercube (0, 1)kand having the joint cdf

—Q

k
F,(;:)Uk (U1, .o, ug) = Zuj_l/a —k+1 , (21)
=1

where u; € (0,1),j=1,...,k and a > 0.
The Cook-Johnson copula can be simulated by the following algo-
rithm:

1. Let Y1,...,Y; be k iid Exponential(1) random variables;

2. Let Z be a Gamma(q,1) random variable independent of the
Yi's;
3. Compute the variables

Y\ ¢ .
Uj:<1+?]> ,i=1,...k.

Then, the U;’s have a joint cdf given by (21). As an exercise, we
will show this result. We have

FI(J?,)...,U;C (’U,l, ,uk) = P (Ul S ULy -eey Uk S ’U,k)

i\ “ AN

By the law of total probabilities, we have

a o Y —Q
F((Jl,)...,Uk (ulﬂ"'7uk) = /0 P ((1+ é) < Uty -eny

<1+%>_a < ug |Z=z) fz(2)dz

= / P(le(ul_l/a—l)z,...,
0

Y, > (ulzl/a — 1) z|Z = z) fz(2)dz.
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Since Y7, ..., Y} are #id Exponential(l) and Z is Gamma(a, 1), it follows
that

FO (g, ug) = /“e(ul—l/al)zme(u,;l/al)z 1)Za_1€_zdz
0

U1,...,Ug

(Z?Zl “;1/a —k+ 1)‘1

o (S yTVe g 1)a
/ (2‘721 Y + Za—1efz(2f:1 uj_l/a*k—l-l) dz
0 ' ()

We now integrate a Gamma density function with parameters o = «

and \* = (E§:1 u;l/a —k+ 1) over its whole range (0,00). Thus, we
gnd

—

k
- —1/a
D ) = {5 k1
j=1

where u; € [0,1] and a > 0.
It is possible to show that this multivariate uniform distribution
has a Kendall’s tau:

1
T (X, X)) =7(U;,U;) = .
( %) .7) ( 2 .7) 1+2a
Then, when « decreases to 0, 7 goes to one, i.e. the correlation ap-
proaches its maximum and by the preceding results on the Frechet
upper bound, we have

. () .
ill)% Fy o, (Uay ey ug) = min [ug, .., ug] -
Also, when «increases to ingnity, 7 goes to 0, as well as the correlation,
which gives

An example on the simulation of the Cook-Johnson copula will be
presented at the end of this section. The Splus program used is shown
in the appendix.
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For a set of arbitrary marginal distributions, Fy,, ..., Fx,, we can
degne a joint cdf by

k —
F = Fx, (z;) /" —k+1
X1y Xk (x17 AR xk) - ¢ (x]) ’
Jj=1
and we can also degne a joint survivor function by
—

k
SXl,...,Xk (CEl, ,:L‘k) = ZSXj (.Ij)—l/a k41

j=1
We will now show that the Cook-Johnson copula is constructed through

the distortion function g (t) = exp {1 — t_l/a} , > 0. We have

k

915x.,..x, (®1,...,xK)] = Hg [Sx;, (z;)]

i=1

which leads to
k
Sx1y Xy (X1 oy Tg) = g' Hg [SXj (1"3)]
j=1

If we let h(t) = —logg(t) =t /% — 1, we get

k
Sxioxy @1, mmy) = B R[Sy, (3;)]
7j=1

k
- (> [SXj (;)7* - 1] +1
j=1
k —Q
= ZSXj ($j)_1/a—l€+1 ;

=1

which is the same joint survivor function as previously.

In this dependency model no restriction is imposed on the marginal
distributions Fx; or Sx,, j =1,..., k. However, we are restricted at the
correlation parameters level, since this model requires to have the same
set of Kendall’s tau between any pair of risks.

Example 6.1. Let S = X + ... + Xg9, where the X;’s all have
a Gamma(a = 2,\ = 2) distribution. If the X;’s are independent, we
want to gnd the distribution of S. We grst determine the moment
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generating function of X;, 2 =1,...,20
Mx (t) = E[e"]

oo 2\
— / etm xoeflef)\wdm
0 ' ()

_ A T A=DT ai —epy
= ()\_t)a/() () % e dzx.

Since we integrate the pdf of a Gamma with parameters o = « and
A* = X —t over its whole range (0,00), it equals 1 and

My (t) = (%)a

My (t) = (%)2

We want the mgf of S, Mg (t)
Ms(t) = E[¥]
— E[et(X1+...+X20)]
B

In our case the mgf is

etX1 —I—...—|—tX20j|

= E[e™]..E[¢¥],

since the X;’s are independent. Hence, we have
20
Ms(t) = [[E[e™]
Jj=1
= (B[]

92 40
B (2 +t) ’
since the X;’s are identically distributed. It follows that the distribution
of Sis Gamma(a = 40, = 2).

Now, we assume that the X;’s are correlated, with 7 (X;, X;) =
2/3.We also assume a Cook-Johnson correlation structure, and we sim-
ulate 1000 samples of X7, ..., Xgg, i.e. 1000 values of S. The following
plot (Figure 3) shows the cdf of S under the hypothesis of indepen-
dence, and also the empirical distribution of S under the introduction
of the correlation structure. The variance of Fg under Cook-Johnson is
bigger than the variance of Fg under independence. Also, we should no-
tice that the introduction of dependence allows extreme values, compar-
atively with the Fg under independence. The maximum claim amount
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Figure 3. Graph of Fg for a Gamma(40,2) (indepen-
dence hypothesis) and under a Cook-Johnson correlation
with 7 =2/3 (dependence hypothesis)

for S under the hypothesis of independence is around 25, while that
for S with a correlation structure is around 50. The two distributions
cross about in the center, around (20,0.5).Note that the expectation of
a Gamma(40,2) is 20.

6.3. Normal Copula. As the Cook-Johnson copula, the normal
copula does not impose any restriction on the choice of the marginal
distributions. This copula also occers more Aexibility, as it allows com-
plete freedom in selecting Kendall’s tau between any pair of risks. This
copula also has the property to be easily implemented as a computa-
tional algorithm.

Theorem 6.3. Assume that (Zi,...,Zg) have a multivariate nor-
mal joint probability density function given by

1 1
o= e L)
(2n)* 3|

where z = (21, ..., 2¢) with correlation coe(E cient Pij = p(Zi, Z;) . Let
H(Zl,...,zk) be their joint cumulative distribution function. Then

C (Ul, . uk) =H ((D_l (Ul) g eees (I>_1 (uk))

degnes a multivariate uniform cumulative distribution function called
the normal copula.



6. COPULAS 32

For any set of given marginal cdf’s Fi,..., Fi,the variables
X, =F(®(Z), ... Xpe = F' (P (Z))
have a joint cdf
Fx,,..x, (@1, .y 25) = H (@7 (Fy (21)) 500, @7 (Fi (1))

with marginal cdf’s Fi,..., Fx. The multivariate variables (X7,..., X)
have Kendall’s tau

2 i
(X0, Xj) =7(Z;,Z;) = — aresin (pi;)
and Spearman’s rank correlation coe(Ecients
6 . ij
RankCorr (X;, X;) = RankCorr (Z;, Z;) = — arcsin (%) .
™

The analytical form of the normal copula is not very simple, but
it makes possible to implement a very simple Monte Carlo simulation
algorithm. In practice, it is common to have only some information
about the correlation parameters, without necessarily knowing the ex-
act multivariate distribution. In these cases, the normal copula allows
to simulate the correlated variables in a simple way.

We presented only two copulas, but we have to notice that there
exists an ingnity of them. The Cook-Johnson and the normal copulas
are among the most popular.



Conclusion

We have presented a set of tools for modeling and combining correlated
risks. We discussed some common mixtures, components and distor-
tion models, as well as copulas. We also presented some measures of
correlation, as well as concepts relating to that. Using these methods
along with some algorithms and Monte Carlo simulation methods may
reveal to be very useful in modeling dependency.
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Appendix

The Splus functions used are presented in this section.

stoploss <- function(fs, d1, pas = 1)-
#This function calculates the stop-loss(d) premiums
psld <- ¢()
s <- c(1:length(fs) - 1) * pas
for(i in 1:length(d1)) —
sl <- ((s > d1[i]) * (d1[i] >= 0)) * (s - d1[i])
psld <- c¢(psld, sum (sl * fs))

return(psld)

MC.poisson <- function(pas = 0.25, lambda = 100, mu = 2, sigma
=1, vl = 0:120 * 16)—

#This function calculates f(s), F(s) and the stop-loss(d) premium
for Compound-Poisson and Lognormal(mu,sigma)

Fx1 <- plnorm(0:(2°12 - 1) * pas, mu, sigma)

fx1 <- dice(c(Fx1, 1))

long <- 2715

fx11 <- ¢(fx1, rep(0, (long - length(fx1))))

Mx1 <- oet(fx1])

Msl <- exp(lambda * (Mx1 - 1))

fs <- Re(cet(Msl, inverse = T))[l:long]

fs <-(fs >=0) * fs

fs <- fs/sum (fs)

Fs <- cumsum (fs)

plot(vl, Fs[vl/pas + 1], col = 1, type = jlj, main = jGraph of
F(s) (Poisson, Lognormal)j, ylab = jF(s);, xlab = jsj)
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psld <- stoploss(fs, vl, pas)
matplot(vl, psld, col = 1, type = jlj, main = jGraph of stop-loss
premium (Poisson, Lognormal)j, ylab= jpi(d);, xlab = jdj)

kendtau <- function(data)-

#This function calculate a non-parametric estimate of Kendall’s
tau

#Take a matrix as argument, with a column of X and a column of

Y
#Number of pairs (X,Y)
len <- nrow(data)
#Set the grst vector of row positions (in formula,position=i)
vl <-rep(l:(len - 1), (len - 1):1)
v2 <-¢()
#Set the second vector of row positions (in formula, posi-
tion=j)

for(i in 2:len) —
v2 <- ¢(v2, ilen)

#Dicerence between the dataset with row positions vl and row
positions v2 (for vl1<v2)
#Set of possibles dieerences for (i<j)
dice <- data[vl, ] - data[v2, ]
#Use the signs of the diccerences to determine the non-parametric
estimate of the Kendall’s tau
kendalltau <- (2 * sum (sign(dice[, 1] * dice[, 2])))/(len * (len -
1))

return(kendalltau)

CJ <- function(n = 1000, k = 20, tau = 2/3, F = qgamma, param
= ¢(2, 2))-
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#This function simulates n samples of size k of rv’s with a speciged
marginal dist’'n (F) and Kendall’s tau (tau)

alpha <- ((1/tau) - 1)/2

#Create a matrix (n x k) of random exponential(1) all diceerent

yij <- matrix(rexp(n * k), n, k)

#Create a matrix (n x k) of random gammaf(alpha,l), diccerent for
each row

zi <- matrix(rep(rgamma(n, alpha), k), n, k)

#Apply the transformation

uij <- (1 + yij/zi)"( - alpha)

#Invert the uij, giving a matrix with diccerent sample on each row

samp <- matrix(F (uij, param[1], param[2]), n, k)

return(samp)

Fn2 <- function(x, sample = x)-

#This function calculates the empirical distribution of a dataset.

#1t takes as arguments the dataset x, and the sample of points for
which we want to know the empirical cdf (x by default).

n <- length(x)

out <- ¢()

#Create a matrix with the dicerent values in column 1 and the
empirical cdf of each of these values in column 2.

Fn <- cbind(rle(sort(x))$v, cumsum (rle(sort(x))$1)/length(x))

#Calculate the empirical cdf at each point required in sample.

for(i in l:length(sample)) -

out[i] <- max((((sample[i] - Fn[, 1]) >= 0) * 1) * Fn[, 2])

return(out)

n6 <- function(n = 20, alpha = 2, lambda = 2, s = 0:60)-

#This function plots the independent cdf of S and the dependent
one on the same graph

#Number 6(b)
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#Generate 1000 samples of size 20 using the function CJ

emps <- apply(CJ(1000, 20, 2/3, qgamma, param = c(2, 2)), 1,
sum )

#Find the empirical dist’n using the function Fn2

empcdfs <- Fn2(sort(emps), s)

#Set matrices for the matplot

Fs <- cbind(pgamma(s, n * alpha, lambda), empcdfs)

matplot(s, Fs, xlab = js3, ylab = jF(s)j, main = jGraph of F(s)
(Cook-Johnson)j, type = jlj, Ity = ¢(3, 1), col = 1)

legend (35, 0.4, legend = c¢(jIndependent), jJCook-Johnsonj), lty=

c(3, 1))






Introduction

This project summarizes four articles treating the concept of depen-
dence in risk theory. The grst article presents principally a set of tools
conducting to a better understanding of the other papers. The second
and the third articles treat rather theoretical results, the authors being
concerned with the bounds of risks in the sense of stop-loss order and
with the bounds of the total claim of an insurance portfolio. In risk
theory, the bounding of risks is a concept of interest, since it may be
useful to classify and compare the risks, and also to determine the pos-
sible range for stop-loss premiums. The last article is written in a more
practical way, and introduces the concept of ruin theory. A summary
of the results of each paper is presented, along with some numerical
examples and also a simulation study that aims to verify some results
obtained by the authors of the last paper. It is important to note
that although these articles present a lot of theorems and corollaries,
the proofs are most of the time omitted, as the results stated often
come from other articles. This is the reason why the proofs are rarely
presented.



Comonotonicity, Correlation Order and Premium

Principles

We grst present a summary of the notions presented in Wang and
Dhaene (1998). This paper contains a lot of theoretical concepts that
will be useful in the following sections.

7. Stop-loss order and correlation order

A stop-loss premium is paid by an insurer to a reinsurer in order
to protect himself against catastrophic claims (or catastrophic years).
This means that for a retention level d > 0, the insurer will pay a
maximum amount of d on the total amount of claims during a period,
the excess being under the responsibility of the reinsurer. Thus, for a
sum of risks S we can degne the function (S —d), = max (0,5 — d)
taking only positive values, leading to the stop-loss premium subject
to a retention level d, E (S — d)+.

We now introduce some concepts, beginning with that of stop-loss
order.

Definition 7.1. A risk X is said to precede a risk Y in stop-loss
order, written X < g Y, if for all retentions d > 0, the net stop-loss
premium for risk X is smaller than that for risk Y:

E(X—-d), <E(Y —d),.
We illustrate this with a very simple example.

Example 7.1. Suppose that two risks X; and X5 are distributed as
exponential distributions with parameter A; and Ag, respectively. For
an exponential(\), we gnd

E(X—d), = /doo(x—d)fx(x)da:

= / :L")\e’\“”dx—d/ e Mdx
d d

1
\erd”
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Thus, if Ay < Mg, it implies that 1/A; > 1/X9 and also that e Md >
e~ 2% Hence, /\1_16_’\1d > )\2_16_)‘2“{ and this is true for all d > 0. We

can then say that X, precedes X in stop-loss order, written Xo <g Xj.
Of course, if A\ > Ag, then )\1_16_’\1d < )\2_16_’\2d and X; <4 Xo.

We also formalize in a degnition the notion of correlation for a pair
of random variables with given marginals. Ry (Flx, Fy) is considered
as a class of elements, where the elements Fx and Fy are the cumu-
lative distribution functions (cdf ’s) of the random variables X and Y,
respectively.

Definition 7.2. Let (X1,Y7) and (X5, Y5) be two elements of Ro(Fx,
Fy). We say that (X1,Y]) is less correlated than (Xy,Y3), written
(X1,Y1) <corr (X2,Y2), if either of the following equivalent conditions
holds:

1. For all non-decreasing functions f and ¢ for which the covari-
ances exist,

Cov (f (X1),9 (V1)) < Cov (f(X3),9(Y2)).
2. For all x,y > 0, the following inequality holds:

FX1,Y1 (CU, y) S FXz,Y2 (CU, y) .

In other words, this degnition says that the more correlated of the
two pairs is more likely to have closer amounts of claims than the less
correlated pair. On the other hand, very diecerent claims amounts is
an event that will more probably occurs to the less correlated pair of
risks. We now present another concept of dependency.

Definition 7.3. The risks X and Y are said to be positively quad-
rant dependent, written PQD (X, Y), if either of the following equivalent
conditions holds:

1. For all non-decreasing functions for which the covariances exist,

we have that

Co ( (X),4(Y)) > 0.
2. For all z,y > 0, the following inequality holds:

Fxy (z,y) > Fx (z) Fy (y) -

Degnition 1.2 and Degnition 1.3 are related in the sense that if a
pair of risks (X,Y) is PQD, then this pair has more probability to ex-
ceed a value (:E,y) than if the risks were independent. Hence, according
to Degnition 1.2, (X,Y’) are more correlated than independent risks.
Note that a similar degnition exists for the opposite concept of negative
quadrant dependency (NQD ), resulting by changing the sign > for <
in Degnition 1.3.
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Example 7.2. Let X; and Y] be continuous random variables with

joint probability density function (pdf)

cty f0<z<1, 0<y<l
f(x,y)={ Y = Y

0 elsewhere.

We can calculate the bivariate cdf:

0 2
We can also ¢nd the marginal pdf’s of X; and Y] by integration:

r@= [ = [ @i

0
211
_ vl :
—:cy—|-20 $+2,
and
1 1
)= [ fewdo= [ @+y)ds
0 0
x2+ ! +1
= — T = —-.
g T TV

If Xy and Y5 are considered as independent, their joint pdf is the
product of the marginal pdf’s, and is given by

ot (+3) 1)

for z,y € [0,1].

In the case of independence, the cdf is then:

F ( )—/y/w(t +t+s+1)dtd
v, (z,y) = s+-+=-+-= s
X, A 5 t511

_/‘?J .T_28+:C_2+E+§ ds
L2 4 2 4
2 2

_ S+.’L'S+ s xsl?
4 4 4 4,
9. 9 2 2
_ry  ry. 2w .
4 4 4 4
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If we compare the two cdf’s obtained, we gnd after some simpligca-
tions that

for x,y € [0,1]. Note that we could also have found the joint cdf of Xp
and Y3 with the relation Fl,y, (z,y) = FXx, () Fy, (v).

From the previous degnitions, we proved that X; and Yj are NQD,
and also that (X7,Y7) are less correlated than independent risks, (X, Y5).
We know that an equivalent condition to Fix, v, (z,y) < Fx, () Fy, (v)
for NQD risks is that Cov (f(X),g(Y)) < 0, for all non-decreasing
functions f and ¢ for which the covariances exist. Hence, assuming
f(z) =2z and g (y) =y yields to Cov (X1,Y;) < 0. We can verify this
by calculating Cov (X1,Y1) = E(X1Y1) — E(Xy) E (Y1):

E (X\11) //tst+sdtds—// (s + s7t) dtds
2 3
0 3 2 6 6],

Also,

E(Xl):/oltf(t)dt:/ol (t%%) dt

and similarly

E(Yl):/ol(SZ-i-g)ds:%.

We then obtain for the covariance

1 (7Y 1
Cov (X1,Y1) = 3~ (E) = T

which is negative as expected.

With all these new concepts, it is now possible to introduce a rela-
tion between stop-loss order and correlation order.
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Theorem 7.1. Let (X1,Y))and (Xy, Y2) be elements of Ro (Fx, Fy).
If

(Xl,Yi) Scorr (X2a YvZ) )
then
Xi+Y <g Xy + Y5,

In words, this means that for two pairs of random variables with
some given marginal distributions, the more correlated pair (in the
sense of Degnition 1.3) follows the less correlated one in stop-loss order.
That is, the more correlated pair has a bigger net stop-loss premium for
all retention levels. This makes sense, if we think that the probability of
facing catastrophic events in terms of insurance is higher for correlated
risks. For instance, an insurer covering two residences near to the same
river in a given region will more likely have to indemnify both risks than
an insurer covering a residence near to a river and another one close to
a ravine. The river represents a common risk of Aood for the houses
of the ¢grst insurer, while two dicerent risks, a Zood and a landslide
threaten the houses of the second insurer.

If we consider Example 1.2 then by Theorem 1.1, the independent
risk (X3, Ys) precedes the risk (Xi,Y]) in stop-loss order. This can be
concluded from the result we found stating that the risk (Xo,Y5) is less
correlated than (Xi,Y7).

We have seen in the last report that Frchet bounds are used to
determine the limits of a bivariate cdf (we will see later that they can
also be generalized to a multivariate cdf ). Theorem 1.1 along with
the concept of Frchet bounds bring another result on the concept of
orders. We should precise that the inverse F'~'is degned as F~'(q) =
inf{z € R: F(z) > q}, where 0 < ¢ < 1.

Theorem 7.2. Let U be uniformly distributed on [0,1]. Then for
any pair of risks (X, Y) the following ordering relations hold:

1‘ F);l (U) ’FY_I (1 - U) SCO?"'I‘ (X’ Y) SCO”"" F)EI (U) ’F;1 (U)’
2. F'(U)+F'(1-U) <y X+ Y <, F' (U)+ F(U).

We should notice that Frchet bounds are now expressed as a func-
tion of U. With this representation, it is easier to see some concepts
closely related to each bound. For the upper bound, X and Y both
depend on U, and this underlines the strong dependence structure
(comonotonicity). For the lower bound, since X is function of U and
Y is function of 1 — U, this introduces a kind of negative association
that we will degne later as mutually exclusive risks.
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This theorem states that Frchet bounds also constitute bounds for
stop-loss premiums, and this is valid for any pair of risks with given
marginals. We can ggure it with the following relation, where Frchet
bounds are expressed in terms of the inverse cumulative distribution
functions of X and Y:

/01 [Fx'(9) + Fy' (1 - q) —d] dg
< E(X+Y-—d),

< /0 1 [Fx' (0) + Fy' (¢) — d], dg.

We have seen in this section some new tools that will be useful for
the next topic. We now move on premium principles and their relations
according to the degree of dependence of underlying risks.

8. Premium principles

There exist diccerent methods to ¢gx the premiums that will be
charged to the policyholders. The net premium of a risk X (or of
a sum of risks) is degned as the expectation of this risk, F (X). This
means that some years, the insurer may get progt or loss but on aver-
age, the insurer will have just enough money to respect his obligations.
Since this kind of industry is not really advantageous for the insurer,
he rarely charges only the net premium and habitually adds some risk
load, which gives the risk-adjusted premium. The procedure allow-
ing to obtain the risk-adjusted premium is called a premium principle,
written M. A premium principle 7 is a mapping that assigns to any risk
X a positive value 7 (X), which is called the risk-adjusted premium. Tt
is assumed that risks with the same cumulative distribution functions
lead to the same risk-adjusted premiums.

Among the desirable properties for a premium principle, there is one
stating that it should preserve stop-loss order, i.e. X < 4 Y implies that
7T(X) < 7T(Y) . The following result then follows from Theorem 1.1:

Theorem 8.1. Let 7 be a premium principle which preserves stop-
loss order, and (X7,Y7) and (X3, Y3) be elements of Ro (Fy, Fy). If

(XI,K) Sco'rr (X27Y'2)7
then

7T(X1+Y'1)§7T(X2+Y2)

This results agrees with our previous reasoning on the stop-loss pre-
miums and their dependence structure, i.e. an insurer should increase
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his premiums as the probabilities of occurrence of the risks subscribed
increase. From Theorem 1.2 and Theorem 2.1, we introduce a corollary:

Corollary 8.2. Let m be a premium principle which preserves
stop-loss order. Then, we have

T(Fer(U)+F'(1-0)) <n(X+Y)<n(Fg' U)+F'(U)).

Based on Frchet bounds expressed in terms of the inverse cumula-
tive distribution functions, this corollary says that we can gnd bounds
for the premiums obtained by a premium principle preserving stop-loss
order. These bounds are found by applying the premium principle to
each of the Frchet bounds. Hence, we can see that the upper bound
is attained for comonotonic risks. This is not surprising, since such
risks are an extension of the concept of perfect correlation, as each one
is a bet on the same event and they do not hedge against each other.
Hence, it is reasonable for an insurer to charge a bigger premium in
such cases since he is more likely to have higher claims than for any
other pair of risks. On the other hand, the lower bound is the opposite
case, as the second element of such a pair of risks will more probably
get a big claim for the grst element getting a small claim, and vice
versa. Hence, this pair of risks consists in an optimal hedge, and this
is normal to gnd the lowest premium in this case.

If we consider Example 1.2, a premium principle preserving stop-
loss order would imply that the premium for the risk X7+ Y] is smaller
than that for Xo+Y5, since X5 and Y5 are independent. If this is not the
case, the premium principle does not have the property of preserving
stop-loss order.

We now introduce the concept of additive premium principle. A
premium principle is called additive when the single premium for a
pair of risks is the same as the sum of the premiums for each of the
risks taken individually. That is,

T(X+Y)=n(X)+n(Y).

A premium principle is said to be sub-additive if the sum of the pre-
miums for the individual risks is greater than or equal to the single
premium for the pair of risks, i.e.

T(X+Y)<n(X)+n(Y).

Conversely, the super-additive principle is the opposite of the sub-
additive principle, and is obtained by replacing the sign < by >:

T(X+Y)>n(X)+n(Y).

From Theorem 2.1, another corollary has been found:
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Corollary 8.3. If a premium principle preserves stop-loss order
and is additive for independent risks, then it is sub-additive for nega-
tive quadrant dependent risks, and super-additive for positive quadrant
dependent risks:

T(X+Y)<7a(X)+n(Y) if NQD (X,Y),
T(X+Y)>n(X)+7n(Y) if PQD (X,Y).

Since the comonotonic risks are PQD, then a special case of this
corollary is that a premium principle preserving stop-loss order that is
additive for independent risks is super-additive for comonotonic risks.
From this reasoning, it is sensible to believe that a premium principle
preserving stop-loss order that is additive for comonotonic risks should
be sub-additive for other risks, since we cannot gnd more correlated
risks than comonotonic risks. This is formalized in the next corollary.

Corollary 8.4. If a premium principle preserves stop-loss order
and is additive for comonotonic risks, then it is sub-additive:

T(X+Y)<7(X)+n(Y) for all risks X and Y.

A consequence of this corollary is that for such a premium princi-
ple, it is always advantageous for a policyholder to subscribe a single
contract than to be protected by individual policies. We can call this
phenomenon a volume discount.

The premium principle to adopt depends on each situation. For
instance, an insurer may be tempted to use a super-additive principle
for comonotonic risks, since he prefers two independent risks, which
are safer in the sense of claims amounts, and may want to reAect his
preference in his prices. A coverage for comonotonic risks would then
be more expansive than for individual risks:

T(X+Y)>n(X)+7(Y).

On the other hand, if the coverage for each risk can be split into in-
dividual risks, it may be better for the insurer to use a sub-additive
principle for comonotonic risks,

T(X+Y)<n(X)+n(Y),

in order to avoid the splitting of risks by the policyholder. A good
compromise for the insurer is to use of an additive premium principle
for comonotonic risks, as this method avoids the splitting of risks, and
does not give any volume discount. However, if we are in the case
where the splitting of risks is not allowed, the insurer will obviously
make more progts by using a super-additive premium principle. Note
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that in this discussion, we do not consider the possibility of concurrence,
which may change the rules of the game!

Example 8.1. Consider a premium principle adding the standard
error to the net premium, i.e. for a risk X we have 7T(X) = E(X) +
0 (X). Consider also the random variables presented in Example 1.2.
If we calculate the premium for (Xi,Y)), we get

T(Xi+Y)=EXi+Y)+o(Xi+Y)
=E(X1)+E (1)
+ (Var (Xy) + Var (Y1) + 2Cov (X1, 1))'/?.

As explained in the previous section, X; and Y; are NQD, and then
Cov (X1,Y7) <0. Now, we get for (Xo,Y3)

T(Xo+Y2)=E(Xo+Y2) +0(Xo+Y2)
= E(Xy) 4+ E (Y2) + (Var (X2) + Var (Y2))?,
since X9 and Y5 are independent. Hence, it is easy to verify that
(X1 +Y) <7 (Xy+Ys),

and this result agrees with Theorem 2.1.

This result is not additive for independent risks, since o (> ., X;) #
Z?:lo (X;) . However, by Jensen’s inequality, we gnd that o (Z?Zl X;)
Z?:l o (X;) since this function is convex. This implies that 7 (Xo + Y3)
7 (X32) + 7 (Y2) and then this premium principle is sub-additive for in-
dependent risks, which means it is also sub-additive for NQD risks as
(X0, V).

However, if we consider a premium principle such that 7 (X +Y) =
E(X+Y)+ Var(X+4Y), then it is additive for independent risks
since the covariance between X5 and Y5 is 0:

7T(X2+Y'2) :E(X2+}/'2)+VCLT(X2+Y'2)
=FE(Xy) + E (Y2) + Var (Xz) + Var (Ys)
=7 (Xq) + 7 (V).

We should recall from Corollary 2.3 that in this case, this premium
principle would be sub-additive for NQD risks (X1,Y;).

<
<

We ¢gnally present a premium principle introduced by Wang, called
Wang’s premium principle:

Hg<X>=/O°°g<1—Fx<x>>dx:/0 F'(1-q)dg(q),

where ¢ is a non-decreasing concave function with ¢ (0) =0and g(1) =
1. This principle allows a pretty simple interpretation: the original tail
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function of the risk, 1 — Fx (z), is replaced by a new tail function
g(1 — Fx (z)), which gives more weight to the right-tail. In other
words, this premium principle gives more probability to bigger claims,
which is conservative for the insurer. Then, the risk-adjusted premium
is computed by ¢nding the expectation of X under this new tail func-
tion. The following theorem states some properties of Wang’s premium
principle:

Theorem 8.5. Wang’s premium principle preserves stop-loss or-
der, i.e.

nglYng(X) SHQ(Y).
Moreover, it is additive in the class of comonotonic risks,

H, (X + Y) =H, (X) +H, (Y) for comonotonic risks X and Y.

It is important to precise that Wang’s premium principle is the only
way to get an additive premium principle preserving stop-loss order
for comonotonic risks. It is not possible to get these two properties
simultaneously from a premium principle outside from the class built
by Wang.



The Safest Dependence Structure Among Risks

This paper investigates the dependence in Frchet spaces containing
mutually exclusive risks. Some new concepts are grst presented, al-
lowing understanding and deepening the work that has been done on
the bounds. The goal of this paper is to bound the aggregate claims
of a portfolio, and then deduct from this work some results for the
stop-loss premiums. Since the upper bound is a subject already stud-
ied, the authors focus on the lower bound. They found that for general
risks (under certain conditions ensuring a proper cdf ), the lower bound
of the portfolio is given by mutually exclusive risks, which are associ-
ated with the lower Frchet bound, in the same way comonotonicity is
related to the upper Frchet bound.

9. Introduction

The total amount of claims of a portfolio during a given period is
the sum S of the risk amounts X7y, ..., X,

S = i X,',
i=1

for © = 1,...,m. A random variable modelling the total claim of a
policy during a period is called a risk and is non-negative with a gnite
expectation.

In actuarial literature, the stop-loss premium is a concept of interest
as it allows to quantify the risk related to a portfolio. In order to
determine it, two elements must be known: the marginal distributions
of each risk and the structure of dependence between them. Based on
a concern of simpligcation, a hypothesis of independence between the
risks is generally used, which allows modelling the stop-loss premiums
with the information on the marginals only. However, it is evident
that in the case where the risks are correlated, the stop-loss premium
is underestimated and this situation is rather dangerous for the insurer.

12
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The paper of Dhaene and Denuit (1999) is concerned with the safest
dependence structure among general risks, that is the structure of de-
pendence giving rise to the smallest stop-loss premium. It has been
already shown that the riskiest dependence structure, i.e. the one re-
sulting in the biggest stop-loss premium, is given by the upper Frchet
bound, or equivalently by comonotonic risks. However, this paper
shows that the safest dependence structure is given, under certain con-
ditions, by the lower Frchet bound. The goal of these conditions is
to ensure that the lower Frchet bound is really a proper cumulative
distribution function, because contrary to the upper bound, it is not
always the case. In order to compare the riskiness of insurance portfo-
lios, the concept used is that of stop-loss order, degned previously. We
now degne new concepts.

10. Frchet spaces and Frchet bounds

The Frchet space R, (Fx,, ..., Fix, ) consists of all the n-dimensional
random vectors X = (X, ..., X;,) having marginal distributions Fly,,
., Fx,. Note that Fx,,...,Fx, are univariate cumulative distribution
functions. For our purpose, we obviously work with risks, and then we
consider only non-negative random variables with gnite expectation.

We now extend the degnition of the bivariate Frchet bounds pre-
sented in the grst report to the multivariate Frchet bounds. For all X
in Ry, (Fx,, ..., Fx, ), the following inequality holds:

max{ Y Fx, () —n+1,0 3 < Fx (x) <min{Fx, (1), ..., Fx, ()},
=1

for all x = (1, ..., 2,) € R™.

It is interesting to notice that the upper bound can be reached. Such
random variables in the Frchet space having the upper bound as a mul-
tivariate cumulative distribution function are said to be comonotonic.
Comonotonic random variables may be expressed in function of inverse
marginal distributions, i.e. given a random variable U uniformly dis-
tributed on [0, 1], the upper bound is the cdf of

(Fgl (z1) ., Fx! (22)) € R (Fxyy o Fx,)

where the inverses of the Fx ‘s are degned previously.

Contrary to the upper bound, when n > 3, the lower Frchet bound
is not always a proper cdf and then the necessary and su(Ecient condi-
tion for the lower bound to be a cdf is given by the following theorem.
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Theorem 10.1. A necessary and su(Ecient condition for the lower
Frchet bound to be a cdf in R, (Fx,, ..., Fi,) is that either

1. Z?:lFXj (.’L']) <1 for all x € R* with 0 < FX]- (.’13]) <1, 7=

1,...,m; or
2. 30 Fx, (z;) > n—1for all x € R" with 0 < Fy, (2;) < 1,
i=1..n.

11. Stochastic Bounds on the Smallest and Largest Claims

It is possible to derive bounds for the distributions of smallest and
largest claims of a portfolio. In order to do that, we present a result
stating that when all the z; are equal, the lower Frchet bound is
attained.

Theorem 11.1. There exist X € R, (Fx,,..., F,) such that
Pr[max {Xi, ..., X;,} < x] = max ZFXi () =n+1,0,,
i=1

for any n € Ny and =z € R
The results for the bounds can now be expressed in a corollary.
Corollary 11.2. For any X € R, (Fx,,..., Fx,),

1 —min{Fy, (z),..., Fx, (z)} < Prmax{X, ..., X,} > z]

n

<min\ 1, Z (1-Fx, (z)) ¢,

i=1
for all £ € R, and

max {Fx, (z), ..., Fx, (£)} < Primin{X;,..., X,,} < 7]
< min 1,ZFXi (z) ¢,
i=1

for all z € R.

These bounds ¢gnd an utility in term of premiums. Since they limit
the range of possible values for the distributions of the smallest and
largest claims, they may have an impact on the determination of indi-
vidual premiums of some insurance contract and may be used in the
calculation of stop-loss premiums as well.
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12. Extremal Dependence Structures

Some studies have been carried out to determine the riskiest and
the safest dependence structure among risks. Some results have been
presented for the Frchet spaces R, (Fx,, ..., Fix,) of all n-dimensional
multivariate risks (X, ..., X;,) with each X; having a two-point distri-
bution. We consider the case where this distribution has a probability
mass at 0, and another one at a; > 0 only, and thus the probability
at any other value is 0. It has been investigated that the most dan-
gerous structure of dependence is given by the distributions achieving
the upper Frchet bound, and then gives rise to the highest stop-loss
premium. This result has also been extended to general risks and is
formalized in the following theorem.

Theorem 12.1. Let U be a random variable uniformly distributed
on [0,1]. Then,

ZXi <si ZF)}: ),
i=1 i=1

for any multivariate risk X in R, (Fx,, .-, Fx,) -

This means that any sum of the X;‘s is always smaller in stop-loss
order than in the case of comonotonic risks. We are also interested in
the safest dependence structure in the Frchet spaces R, (FXx,, ..., Fx, )-
It is normal to believe, by symmetry, that this result should be given
by the lower Frchet bound. Since this bound is not always a proper
cumulative distribution function, it is not possible to obtain a general
result. It is the reason why the study is restricted to a Frchet class
R, (Fx,, ..., Fx,) for which the condition

n
Y a<, (22)
=1

where ¢; =1 — Fx, (0), i = 1,...,n, is satisged. This condition ensures
that, except for the probability mass at 0, the probability mass of the
marginal distributions at the other values is at most 1. Then, from
Theorem 4.1(2), (22) is a su(Ecient condition for the lower Frchet
bound to be a proper cdf.

The lower bound for two-point distributions for the marginals F,, ...
, F'x, has already been studied, and the result is stated in the following
theorem.

Theorem 12.2. Consider a Frchet space R, (FXx,,..., Fx,) satis-
fying (22), such that for ¢ = 1,...,n, the Fy, are two-point distrib-
utions with probability masses in 0 and «; > 0. Consider the risk
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X e R, (Fx,,..., Fx,) with dependence structure given by
Pr [Xz = Cki,Xj = OZj] = 0,

for all ¢ # j. Then,

n n
ZXz' <s Z Y,

holds for any Y € R, (Fyy, ..., Fy,) .

This means that for two-point distributions with one of the masses
at 0, if there is at most one of the risks taking a value bigger than
0, then this distribution is smaller in stop-loss order than any other
distribution of the Frchet space.

In order to generalize this result to the case of general risks, the
notion of mutually exclusive risks is required.

Definition 12.1. The risks X1, ..., X, are said to be mutually ex-
clusive (or, equivalently, the multivariate risk X is said to possess this
property) when

PI'[XZ > O,Xj > 0] =0,
for all ¢ # j.

Dhaene and Denuit (1999) presents numerous examples of such
risks, from actuarial to ¢gnancial applications. We can state, for in-
stance, the case of an n-year endowment insurance split as an n-year
pure endowment and an 7i-year insurance issued on the same individ-
ual. We can also think of a travel insurance providing a sum in case
or disablement and a sum in case of death. Since it is impossible to
be both disabled and dead at the same time, these risks are mutually
exclusive.

We can now clarify the principal role of condition (22) in the theory
of mutually exclusive risks.

Theorem 12.3. A Frchet space R, (FXx,,..., Fx,) contains mutu-
ally exclusive risks if, and only if, it satisges (22).

Proof. See Dhaene and Denuit (1999). 1

We know that the concept of comonotonicity corresponds to the
upper Frchet bound. Similarly, it can be shown that the concept of
mutually exclusive risks corresponds to the lower Frchet bound, and
this is formalized in a theorem.
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Theorem 12.4. Consider a Frchet space R, (FXx,,..., Fx,) satis-
fying (22). The risk X € R, (Fx,, ..., Fx,) is said to be mutually ex-
clusive if, and only if,

Fx (x) :max{iFXi (x) —n—i—l,O},

for x € R".

Proof. See Dhaene and Denuit (1999). 1

Combining the two previous theorems yields that the condition (22)
is satisged if, and only if, the only possible cdf is given by the lower
Frchet bound of R, (Fx,,-.., Fx,)-

To summarize, we began by stating the condition to have a proper
cdf as a Frchet lower bound. We then a(Ermed that this condition
is a double implication of mutual exclusivity, which is itself a double
implication of the Frchet lower bound. If we can verify one of these
three cases, then the other two cases are also true, by Theorem 6.3 and
Theorem 6.4. We verify these relations with a very simple example.

Example 12.1. Three mutually exclusive risks have the following
discrete distribution:

o 1 2 3
X; 08 02 0 0
Xo 07 0 0 03°
X3 06 0 04 0

From (22), we ¢nd that ¢ =1 — 0.8 = 0.2, ¢o = 0.3, g3 = 0.4. The
condition is then satisged, since Z?Zl g; = 0.9 < 1. Since the risks are
mutually exclusive, we have

Fx (1) =Pr(X; =1)+Pr(X; =0, X, =0, X3 = 0)

3
=02+1-) ¢

i=1

=0.3.

If we compute this with the Frchet lower bound, we gnd

Fx (1) =max{Pr(X; <1)+Pr(Xy;<1)+Pr(X3<1)—3+1,0}
=max{1+0.74+0.6 - 3+1,0}
=0.3.
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We can verify another value, say 2

Fx(2) :PI'(Xl :1)+PI'(X3=2)+PI'(X1 :O,XQZO,XE;:O)
=024+04+1-09
=0.7.

With the Frchet lower bound, we get

Fx(?) :maX{Pr(X1 §2)+PT(X2 S 2)+PI‘(X3 S 2)—3+1,0}
=max{1+074+1-3+4+1,0}
=0.7.

If we repeat this procedure for the values 0 and 3, we ¢nd that Fx (0) =
0.1 and Fx (3) = 1.

We should notice that when (22) is not satisged, this procedure
makes no sense, since Pr(X; =0,..., X, =0) =1-)_"  ¢;is a negative
value.

We now bring our attention on the stop-loss premium. As a special
case of a theorem stating that the expected utility is additive for a sum
of mutually exclusive risks, it follows that

(iXi—d> ] :Xn:E(X,.—d)+

holds when X is mutually exclusive for any deductible d > 0.

E

Example 12.2. We consider the three risks of the previous exam-
ple and we assume a deductible d = 1. We then have

3 3
E (ZXi—l) ]:(1-1)1% Y Xxi=1
=1 + =1
3
+2-DPr| ) X;=2
=1
3
+B-DPr|) X;=3
=1



12. EXTREMAL DEPENDENCE STRUCTURES 19

and also
3

Y E(X;—1),=(1-1)Pr(X;=1)+(2-1)Pr(X; =2)+
- B-1)Pr(X;=3)+..+(3-1)Pr(X; =
=0(0.2) +1(0.4) +2(0.

This can be veriged for any deductible d > 0. Some values are presented
in the following table.

d B[(3,X-d),] S EX-d),

0 1.9 1.9
11 1
2 0.3 0.3
30 0

Theorem 6.2 can now be generalized.

Theorem 12.5. Consider a Frchet space R, (Fx,,..., Fx,) satis-
fying (22). Let X be a mutually exclusive risk in R, (Fx,..., Fx, ).
Then,

n n

N Xi<a ) Y

=1 =1
holds for any Y € R, (Fy;, ..., Fy,).

Proof. See Dhaene and Denuit (1999). 1

Hence, mutually exclusive risks correspond to the lower Frchet
bound, and lead to the safest dependence structure of a portfolio. This
means that this kind of dependency gives rise to the smallest stop-loss
premium of an insurance portfolio.



Does Positive Dependence Between Individual

Risks Increase Stop-Loss Premiums?

This paper is, in a sense, very close of the previous article presented in
this report. The authors are still concerned with the lower bound of
an aggregation of risks, but instead of considering general risks, they
now focus on positive cumulative dependent risks, a concept that will
be presented in a short time. They found that in this case, such a
portfolio is bounded below by the concept of independence between
the risks. We grst specify some necessary notation, and then pursue
with the main result.

13. Introduction

The risk X+ = ( n) represents the independent version
of the risk X = (X7, ) This means that for ¢ = 1,...,n, the
random variables X; and Xi have the same marginal distribution,
but their joint distribution is not the same. Since the random vari-

ables Xi,..., X

given by the product of the marginals. Furthermore, the risk XU =
(XIU,,Xg) represents the comonotonic version of X, which means

that XY = F;il (U), for i = 1,...,n. Note that U denotes a random

variable uniformly distributed on [0, 1] and F)?il is the quantile function
associated to the distribution function Fl, of Xj.

are mutually independent, their joint distribution is

14. Positive Cumulative Dependence

The concept of positive quadrant dependence (PQD) has already
been presented. The notion of positive cumulative dependence is now
considered. For Z C {1,...,n}, degne Sz as the sum of the X;s whose
index is in Z, i.e. Sz =) ,.7X;. Risks are said to be positive cumu-
lative dependent (PCD) if for any Z and j ¢ Z, Sz and X, are PQD.
This concept allows extending the concept of positive quadrant depen-
dence to arbitrary dimensions, while keeping the intuitive meaning of
this degnition. This means that the knowledge that one of the positive

20
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quadrant dependent random variables is large (XJ) increases the prob-
ability of the others (SI) to be large too. Thus, the probability of the
aggregate claim (excluding the known risk) is more likely to be large,
inFuencing the stop-loss premium in the same way.

15. Main Result
The main result of this paper is stated in the following theorem.

Theorem 15.1. Let us consider PCD risks X1,..., X;; with mar-
ginal distribution functions Fx,,..., Fx,. Then, we have

Xt o+ Xo < Xi+ o+ X <g XV + .+ XY,

Proof. This theorem is proved by induction, see Denuit et al.
(2001). 1

This theorem provides bounds for positive cumulative dependent
risks. Also, for PCD gxed marginals, the riskiest dependence structure
is given by comonotonic risks, as mentioned previously. However, for
the same marginals, the safest dependence structure is provided by
mutual independence. It follows that making the assumption of mutual
independence for PCD risks leads to an underestimation of the stop-
loss premiums. As we have seen in Dhaene and Denuit (1999), the
dependence does not always exist when the risks are not known to be
PCD.

An obvious application of this result follows for a given class of
premium principles. Let H() be a premium calculation principle as-
signing a premium amount H (X) to any risk X. We assume that the
distribution function of X completely determines the premium for X,
and also that the premium principle H() preserves stop-loss order

X<uY=HX)< H(®Y).

Hence, for PCD risks Xj,..., X, the stop-loss calculation premium
principle and the previous theorem (9.1) yield the relation

H jzlxj <H ilx <H anXiU

This inequality means that the stop-loss premium for PCD risks is
bounded by the comonotonic and the independent versions of the risks
for gxed marginal distributions.

Example 15.1. Consider these two independent random variables:

Pr(X; =0)=Pr(X; =1) = 1

. i=1,2.
2
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Then, the distribution of S; = X; + X, is

1 1

Pr($i=0)=Pr($i=2)=7 and Pr(Si=1)=g.

Now, consider two dependent random variables such that Y; = X
and

1 1
Pr(Y2:0):Pr(Y2:1):Z and Pr(YQ:Yi)za
The distribution of Sy = Y] + Y5 is given by
3 1
Pr(52=0)=Pr(Sz=2)=§ and Pr(52:1)=1.

Finally, consider two random variables such that Z; = X; and
Pr (Z2 = Zl) =1.

Since the distribution is reaching the upper Frchet bound for bivariate
risks, ie. Fyz z, (21,22) = min (Fy, (21), Fz, (22)), the random vari-
ables Z; and Z5 are comonotonic according to the degnition in Wang
and Dhaene (1998). The distribution of S5 = Z1 + Z5 is given by
Pr (S = 0) = Pr (S = 2) =% and  Pr(Ss=1)=0.

Moreover, it is important to precise that Xi, Y7, Z; have the same mar-
ginal distribution, while X5, Y5, Z5 also have an identical marginal. In
fact, they all have the same marginal distribution, but this is not re-
quired.

We can now calculate the stop-loss premiums for S;, i = 1,
We have to split the deductibles in two groups, that is 0 < d <
1<d<2 For 0<d<1, we gnd

2,3
1

and

1 1 3
E(Si~d), = (1-dg+@-d) =1-1d
1 3 5
B(S—d), = 1-d);+C-d;=1-1d
E(Sy—d), = (1—d)o+(2_d)%:1—1d

For 1 <d <2, we gnd

1 1 1
E(Si-d), = 2-d);=5-d

3 3 3
E(S;—d), = @-dg=7-gd

1 1
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Figure 4. Stop-loss premiums for independent, depen-
dent and comonotonic versions of a pair of risks.

By looking at these linear equations, this is evident that the result of
Theorem 9.1 is veriged. This is illustrated in Figure 1.

Consider now a premium principle 7 such that 7(S) = E(S) +
Var (S). We need to calculate the variances for S;, i =1,2,3:

Var (S)) = E(S?) - E(S)?
= 1.5-12=0.5.
For S5, we gnd
Var (Sy) = FE(S%) - E(Sy)?
= 1.75-12=0.75,
and g¢nally, we have for S3
Var (S;) = FE(S%) - E(S;)?
= 2-1’=1.

Since E(S;) = 1 for i = 1,2,3, it is evident that 7 (S7) < 7(S) <
71'(53) and the last relation mentioned is veriged. As stated previously,
this principle preserves stop-loss order and is additive for independent
risks. It follows that it is super-additive for the other two cases pre-
sented.



The Discrete-Time Risk Model with Correlated

Classes of Business

Cossette and Marceau (2000) examines the discrete-time risk model
with correlated classes of business. The authors treat two diccerent
ways to introduce dependence between the diccerent classes, and study
the impact of these relations on the gnite-time ruin probabilities.

We consider throughout the concept of book of business, which
is degned as the union of disjoint classes of business, each having an
aggregate distribution.

For a matter of simpligcation, classes of business in an insurance
book of business are traditionally assumed independent in risk theory.
This assumption, however, is not always realistic as in practice there
exist a lot of situations in which it is not veriged. For instance, in
the case of a natural disaster as a hurricane, the damages covered
by homeowner and private passenger automobile insurance cannot be
considered independent.

The probability of ruin in the discrete-time risk model studied in
this paper is presented in Bowers et al. (1997). A brief description of
the discrete-time model is introduced and the probability of ruin over
gnite and ingnite-time is degned. A Poisson common shock model and
a Negative Binomial (NB) component model are used to introduce a
relation of dependence between the diccerent classes of business, and
we aim to verify the impact discussed in the paper through simulation
methods.

16. Discrete-time model

Assume the discrete-time process {U,, n = 0,1,2,...} where U, is
the surplus for a book of business of an insurer at time n (n = 0,1,2,...),
which is degned as

U,=u+cn—_5,, (23)

where u is the initial surplus, ¢ the premium income received during
each period and S, the total claim amount over the grst n periods. It

24
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is also assumed that
Sn =W1+W2+...+Wn, (24)

where W, represents the total claim amounts for the book of business
in the period 4 and {W;, i =1,2,...} is a sequence of independent and
identically distributed (iid) random variables with E (W;) = uy < c.
The probability distribution and density function of W; (z = 1,2, ...)
are denoted by Fy and f, respectively.

Given (24), (23) can be written as

Up=u+(c=Wi)+ (c=Wy)+ ...+ (c = Wp,), (25)

that is in grouping inAows and outKows for each period, where u is
the initial surplus. The premium c is received at the beginning of the
period, while the claims are paid at the end of the period. The insurer
begins with an initial surplus % and then receive the premiums c. We
assume [y < ¢ and thus we degne the security loading 7, such that
c=(1 —|—77j)uw, where 7); is strictly positive. No interest income is
assumed. At the end of the period, he pays the claims incurred and
is left with a new surplus. If he does not have enough of the amount
U + ¢ to pay the claims, his new surplus is negative and ruin occurs.
If he has enough money to pay damages, he is left with a new positive
surplus U; that will be used, along with ¢, to pay the claims of the
second period, and so on.

When the surplus process goes under 0, that is when the cash in-
FEows of the insurer do not su(Ece to pay the claims, then ruin occurs.
Assume T is the time of ruin, degned as

T = inf (n, U, < 0),

assuming that T'=o00if U, > 0for all n =1,2,....
Let (u, l,n) be the gnite-time ruin probability over the periods 1
ton

¥ (u,1,n) = P(T <n),

that is the probability that ruin occurs before or at time n (during the
n grst periods). When n — 00 in % (u, 1,n), we have

¥ (u) = P(T < o0),

which represents the ingnite-time ruin probability. Conversely, the
ingnite and ¢gnite-time horizon non-ruin probabilities are degned as

dp(u)=1-¢ ), o¢(u,l,n)=1-19¢(u,l,n),
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respectively. Given (25), we can write this as a joint probability that
the surplus stays over 0 and we have

¢(u,1,n) = PU, >0,U;>0,..,U, >0)
= PWy<u+c, W)+ Wy <u+2c,
Wi+ W+ .+ W, <u+nc).

Let the non-ruin probability over the periods j to n be

¢(y,j,N) = P(ngy+C:Wj+Wj+1Sy+20a
Wi+ Wi+ o+ Wy <y+(n—1j)c),

where ¥ is the value of the surplus process at time j. It follows from
Wi, ..., W,, being iid that

¢(y727n):¢(y717n_1)7

that is for the same surplus ¥ at period 7, the non-ruin probability
over a gxed number of periods is the same for all j. It is then possi-
ble to express the non-ruin probabilities using a renewal equation (see
Cossette and Marceau (2000)). However, since exact calculations are
di(Ecult to carry on with this formulation, an algorithm approximating
gb(u,l,n) has been proposed, which requires the discretization of the
distribution function Fy. More details can be found in Cossette and
Marceau (2000).

It is important to mention that the ruin degned previously does not
correspond to the bankruptcy of the insurance company. It refers to
the insurance activities of a specigc portfolio of risks.

17. Aggregation of dependent classes of business

17.1. Introduction. It is assumed that the book of business of
the insurer is constituted of m dependent classes of business and that
the total claim amounts for the book of business in period % is given by

Wi=Wii+Wis+ ...+ Wi,

for 1 = 1,2,..., where W, ; represents the total claim amounts of the
period 7 for the jth class of business. For i # i’ (i.e. for two diceerent
periods), W; and W are supposed independent and identically distrib-
uted. The common probability distribution function of the random
variables W; (i =1,2,...) is denoted by Fj and we assume that W
is a random variable with this probability distribution function. For a
gxed period i (i =1,2,...), the diceerent classes of business are assumed
dependent.
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For the class of business j (j = 1,...,m) in the period i (1 = 1,2, ...),
Xk represents the kth individual claim, and N;; the number of
claims. Then,

Ni,j
Wi; = E X j-
k=1

For a given class of business (j gxed), Fyxu (with Fyau (0) = 0),
denotes the common distribution function of the iid random variables
Xijp(0=1,2,.5k=1,2,...,N; ;). Let X be a random variable with
this distribution function.

For j oxed, IV;; (1=1,2,...) are identically distributed random vari-
ables. Let N\ be a random variable with their common distribution
function. Similarly, the random variables W;; (i =1,2,...), are sup-
posed identically distributed. Let WU be a random variable with
their common distribution function. The usual assumption that X0
and N are independent is also made.

For the class of business j and for any period ¢ (i =1,2,...), the
premium income is

¢; = EWY)(1+mn,)
= E(XY)E(NYD) (1+0n,),

for j =1,...,m, where 7, is the positive risk margin for the jth class of
business. The premium income for the book of business in the period

i(i1=1,2,...)is c=¢1+ ... +Cm-

17.2. Poisson model with common shock. The common shock
model is presented in Wang (1998). Consider a book of business di-
vided in three (m = 3) dependent classes of business. Note that it is
easy to generalize this model to any number m of dependent classes of
business. It is assumed that a common shock amcects the three classes
of business and that another common shock has an impact on each
couple of classes.

Given the previous assumptions of identical distribution of the ran-
dom variables N;i,N;2 and N;3 for any gxed period ¢ (i =1,2,...),
NG) (1 =1,2,3) is degned as follows:

NO = NOD 4 §O2) 4 y(8) 4 A(123)
N@ = N@) 4 NO2 4 NyE3) 4 yU23)
NGO = NG 4 NO3) 4 N@3) 4 N(23)

where N ~ Poisson (Ayy) for u,v = 1,2, 3 and N2 ~Poisson (A123) -
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Since the distribution of the convolution of m independent Pois-
son random variables X; with parameter ); is Poisson with parameter
> % 1 Ai (distribution ingnitely divisible), then

N ~ Poisson (M),
for r =1,2,3, with
A= A+ A+ Az + s,
Ao Ag2 + A1z + Aoz + A3,
A3 = sz + A1z + Aoz + Aras.

Also,
Cov (N(“), N(”)) =Var (N(’“’)) + Var (N(123)) , (26)
for u # v, and then
Cov (N(l), N(Q)) = Ao+ A3,
Cov (N(l), N(S)) = A3+ Ai2s,
Cov (N(Z), N(3)) = Aoz + Aros.

17.2.1. Application and Simulation. Cossette and Marceau (2000)
studies the impact of the probability of ruin for a Poisson model with
common shock between two classes of business of an insurance book of
business. We verify the numerical results through a simulation study.
Consider the following example:

Book of business #1: X ~ Weibull (0.5,1/0.5625)
N ~ Poisson (4)

Book of business #2: N ~ Exponential (1.125)
N® ~ Poisson (4)

The moments of these random variables, as well as the moments
of the random variable W has been obtained through simulation and
appear in Table 1 for each book of business.

We present in Table 2 some correlation parameters for the cases
where the coe(E cient of correlation between N and N p (N(l), N(2)) ,
takes the values 0, 0.25, and 0.75. To obtain these values, we grst deter-
mine the value of Ajg. From (26), we know that A9 = Var (N(lz)) =
Cov (N(l),N(Q)). By the degnition of the covariance, we know that
Cov (N(l),N(2)) = p(N(l),N(Q)) ONWON@, and thus the parameter
)\12 is found to be )\12 = p(N(l),N(2)) OnMWOpn@). Then, with the
value of the coe(Ecient of correlation along with the moments found
previously, we can easily determine the value of Aj2. Note that when
p (N(l), N(Q)) = 0, we are in the case of uncorrelated numbers of claims.
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The third table contains the probability of ruin ¢ (u,1,20), that is
the probability that the ruin occurs within the grst 20 periods, for dif-
ferent degrees of dependence (given by p (N(l),N(2)) taking the values
0, 0.25, or 0.75). To simulate the probabilities of ruin, we grst simu-

late 20 numbers of claims for each of the variables Ni(u),Ni(ll),Ni(m)

(1=1,...,20), in order to determine the number of claims occurring

. 2
in each of the period considered. We then simulate Ni(l) and Ni()
claim amounts for each period (2 = 1,...,20), in order to determine the

total amount of claims for each variable N (j=1,2;i=1,..,20).

K3

Since we now have the total cash outFows Ni(l) +NZ-(2) for each period
(1=1,...,20), we can compare it with the surplus process, using cash

inFows for diccerent values of the surplus u, and with a relative security
margin of 15%. If there is at least one period where the outZows are
bigger than the surplus, then ruin occurs. If ruin does not occur, then

the surplus is always at least as big as the amount of cash outAows.
By repeating this procedure numerous times, we can determine the

proportion of times ruin occurs.

Note that we have experimented some problems in reproducing the
results of Cossette and Marceau (2000) by simulation, due to some
errors in the degnition of the distributions and also a lack of setting
parameters (as the margin security). In order to ¢x up these problems,
we have set our own parameters, and it is why some values may diceer
from the results of the paper. However, having the same expectation as
them, we are in general pretty close to the results they obtained. Also,
with the results obtained by simulation, we are pretty congdent that
our parameters are the same as the ones they used (or pretty close).

In general, we observe that the ruin probability increases with the
degree of dependence between the number of claims, and vanishes as
the initial surplus gets bigger.
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u

0
10
20
30
40
a0
60
70
80
90
100
110
120
130
140
150

Class (1)
1.12989
7.69551
3.99858
3.99132
4.51798

Var (W®) 30.7711
Table 1. Moments of X®, N®  gnd w®

p(NW, N®)

12
Cov (NW, N®@)

0
0.000000

Cov (WH, W®) 0.083057

p (W, W)

0.004726

Class (2)
1.12655
2.53913
3.99462
3.99023
4.50016
10.1428

0.25
1.000000

—0.000717 1.008920

1.310217
0.073979

Table 2. Correlation parameters

0.75

3.000000
3.022179
3.651093
0.210962

¥ (u,1,20,0) 9 (u,1,20,0.25) o (u, 1,20,0.75)

0.626
0.330
0.154
0.078
0.043
0.023
0.011
0.006
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.654
0.351
0.190
0.094
0.047
0.023
0.011
0.003
0.002
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.659
0.390
0.220
0.109
0.062
0.030
0.014
0.008
0.004
0.001
0.001
0.000
0.000
0.000
0.000
0.000

30

Table 3. Ruin probabilities ¢ (u,1,20) for the Poisson model
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17.3. Negative Binomial model with common component.

It is well known that for a Poisson random variable, the expectation
is equal to the variance. When modelling the number of claims /N in
practice, however, this is not always the case and sometimes, a distri-
bution with variance bigger than the expectation (Var(N) > E(N))
may be needed. In such situations, the Negative Binomial is often used
to model claim numbers since it has this property. The probability
function of a random variable /N having this distribution is

Pv=m= (""" () ()

for a, 3 > 0, n = 0,1,2,.... The mean is given by u = «f and the
variance is 02 = af (1 +8) = u(1+ B).

It is possible to adapt the construction of the common shock model

to a Negative Binomial (see Wang (1998)). We consider the special
case of a book of business subdivided in three dependent classes of
business. The number of claims in the jth (j =1,2,3) class of busi-
ness is assumed to be the sum of two random variables. The ¢grst
random variable, N(jj), is specigc for each class and is independent of
the specigc random variables of the other classes. The second random
variable, N9, (j =1,2,3), is assumed to be dependent on the second
random variable of the other classes. For (i =1,2,...), N¥) (j =1,2,3)
is degned as

NO) = NG 4 NGO)
where
NUD~ NB (4, 8;)

10
N(] ) ~ NB (ao,ﬁj)a
for 7=1,2,3.
Since the Negative Binomial is a distribution ingnitely divisible,
the sum of n independent Negative Binomial random variables X; with
parameters (o, 3)is Negative Binomial with parameters () ., a;, ).

Hence, the distribution of NU) becomes
NO ~ NB (a5,,).

for j =1,2,3, where a;; = aj+0g. For a gxed period ¢ (1 = 1,2,...), it is
assumed that the random variables NU/) (j = 1,2, 3) are independent.
However, a relation of dependence is introduced between the random
variables NU0) (j =1,2,3), as they are modeled by a common Poisson-
Gamma mixture:

1. NU9|© =6 ~ Poisson (68;) (j =1,2,3)
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2. © ~ Gamma(apg, 1)

3. NU9|© =0 are independent (5 =1,2,3)

It is possible to develop an expression for the covariance of the
random variables NU) (1=1,2,3):

Cov (NW NW) = Cov (N 4 N@O N 4 N0
= Cov (N(“O), N(”O)) ,

since the other random variables of this expression are independent.
By conditioning on O, we get

Cov (N NWOY = Cov (E (N™|0),E (N |0))
+E (Cov (N®), N |@))
= Cov(08,,08,),
since NUO|©@ =0 (j =1,2,3) are independent. We then obtain
Cov (N NOOY = 8 8 Var(©)
= fyBy- (27)

17.3.1. Application and Simulation. Cossette and Marceau (2000)
studies the impact of the probability of ruin for a Negative Binomial
model with common component between two classes of business of an
insurance book of business. We verify the numerical results through a
simulation study. Consider the following example:

Book of business #1: X ~ Weibull (0.5,1/0.5625)
NY ~ NB(1,4)

(1)

(1)
Book of business #2: (1) ~ Exponential (1.125)
(2)

The moments of these random variables, as well as the moments
of the random variable W has been obtained through simulation and
appear in Table 4 for each book of business.

We present in Table 5 some correlation parameters for the cases
where the coe(E cient of correlation between N and N®) p (N(l), N(2)) ,
takes the values 0, 0.25, and 0.75. To obtain these values, we grst deter-
mine the value of ag. From (27), we know that agf3,8, = Cov (N(l),N(Z)) )
By the degnition of the covariance, we know that Cov (N(l),N(2)) =
p (N(l),N(Q)) ON1)ON@), and thus the parameter o is found to be

P (N(l), N(Q)) ONMWO N @)
518, .

Qg =
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Then, with the value of the coe(Ecient of correlation along with the
moments found previously, we can determine easily the value of .
Note that when p(N(l),N(2)) = (), we are in the case of uncorrelated
numbers of claims.

Due to the impossibility of the package SPLUS to simulate Negative
Binomial distributions with a non-integer value for the parameter «,
we had to use the fact that a Negative Binomial is a Poisson-Gamma
mixture. We simulate a value of a Gamma with the appropriate pa-
rameters, which will determine the parameter of the Poisson we have
to simulate. However, this double simulation brings a little bit more
variance in our correlation parameters. We also used this method to
determine the probabilities of ruin, but the impact of the double sim-
ulation is practically unobservable for this case.

The sixth table contains the probability of ruin % (u, 1,20), that is
the probability that the ruin occurs within the grst 20 periods, for dif-
ferent degrees of dependence (given by p (N(l),N(Q)) taking the values
0, 0.25, or 0.75). To simulate the probabilities of ruin, we ¢grst sim-

ulate 20 numbers of claims for each of the variables Ni(o),Ni(n),Ni(ﬂ)
(1=1,...,20), through the Poisson-Gamma mixture, to determine the
number of claims occurring in each of the period considered. We then
simulate a number Ni(J) (j=1,2;4=1,...,20) of claims amounts for
each variable and each period, in order to determine the total amount
of claims for each variable NZ-(J) (j=1,2;4=1,...,20) . Since we now

have the total cash outEows Ni(l) +Ni(2) for each period (i =1,...,20),
we can compare it with the surplus process, using cash inFEows for dif-
ferent values of the surplus %, and with a relative security margin of
15%. If there is at least one period where the outEows are bigger than
the surplus, then ruin occurs. If ruin does not occur, the surplus is al-
ways at least as big as the amount of cash outZEows. By repeating this
procedure numerous times, we can determine the proportion of times
ruin occurs.

Note that we have experimented some problems in reproducing the
results of Cossette and Marceau (2000) by simulation, due to some
errors in the degnition of the distributions and also a lack of setting
parameters (as the margin security). In order to ¢x up these problems,
we have set our own parameters, and it is why some values may diceer
from the results of the paper. However, having the same expectation
as them, we are in general pretty close to what they obtained. Also,
with the results obtained by simulation, we are pretty congdent that
our parameters are the same as the ones they used (or pretty close).
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In general, we observe that the ruin probability increases with the
degree of dependence between the number of claims, and vanishes as
the initial surplus gets bigger. We should also notice that the ruin
probabilities and the correlation parameters are higher for the Negative
Binomial case, compared to the Poisson case.
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Class (1) Class (2)
X® 1.12450  1.12410
X®2) 769298  2.52608
N®)  4.03035  4.00423
ar (N®) 20.1298  19.9685
E(W®) 453212  4.50117
Var (W®) 51.3633  30.2877

Table 4. Moments of X®, N@  qnd w®

p (NW, N®) 0 0.25 0.75

o 0 0.3125  0.9375
Cov N<1>,N<2>2 —0.096754 5.348388 15.77930
Cov (WO, W®@) 0.037190  5.627755 19.97331
p (WL, W®)  0.000922  0.139748 0.520756

Table 5. Correlation parameters

w9 (u,1,20,0) 9 (u,1,20,0.25) ¥ (u,1,20,0.75)

0 0.690 0.694 0.696
10 0.460 0.492 0.529
20 0.322 0.347 0.402
30 0.213 0.234 0.293
40 0.163 0.169 0.209
50 0.079 0.116 0.139
60 0.044 0.080 0.105
70 0.019 0.055 0.074
80 0.010 0.031 0.057
90 0.006 0.015 0.043
100 0.005 0.008 0.028
110 0.002 0.005 0.020
120 0.001 0.004 0.012
130 0.001 0.002 0.006
140 0.000 0.002 0.002
150 0.000 0.001 0.001

Table 6. Ruin probabilities v (u,1,20) for the NB model



Conclusion

We have presented a set of tools for studying the properties of correlated
risks. Among other things, we introduced the concept of stop-loss order
and studied many notions and results related to that. We presented
bounds for dependent risks, found from the concept of Frchet bounds.
These inequalities gnd useful applications for the concept of stop-loss
premiums in risk theory, which is an important concept in insurance.
We gnally introduced the ruin theory and presented the model for
classes of business. We simulated some results of the discrete-time
version of ruin theory based on an example presenting two ways to
introduce dependence in a model.
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SPLUS Functions

18. Poisson model with common shock

18.1. Moments. function(part = jAj, S = 20000, wel = 0.5, we2
= 0.5625, pol = 4, ex = 1/1.125, po2 = 4, rho = 0.25)

if(part == jAj) -

X1 <- rweibull(S, wel, we2)

EX1 <- mean(X1)

EX12 <- mean(X1"2)

N1 <- rpois(S, pol)

EN1 <- mean(N1)

VN1 <- var(N1)

EW1 <- EX1 * EN1

VW1 <- EX12 * EN1

X2 <- rexp(S, ex)

EX2 <- mean(X2)

EX22 <- mean(X2"2)

N2 <- rpois(S, po2)

EN2 <- mean(N2)

VN2 <- var(N2)

EW2 <- EX2 * EN2

VW2 <- EX22 * EN2

resul <- matrix(c(EX1, EX12, EN1, VN1, EW1, VW1, EX2, EX22,
EN2, VN2, EW2, VW2), 6, 2)

return(resul)

if(part == ;Bj) -

NO <-0

if(rho = 0) -

NO <- rpois(S, rho * pol)

N11 <- rpois(S, (1 - rho) * pol)
N22 <- rpois(S, (1 - rho) * po2)

38



18. POISSON MODEL WITH COMMON SHOCK 39

N1 <- N0 4+ N11

N2 <- N0 + N22

CN12 <- var(matrix(c(N1, N2), S, 2))

W1 <-¢()

W2 <-¢()

for(i in 1:S) -

W1 <- ¢(W1, sum(rweibull(N1[i], wel, we2)))
W2 <- ¢(W2, sum (rexp(N2[i], ex)))

CW12 <- var(matrix(c(W1, W2), S, 2))
COW12 <- cor(matrix(c(W1, W2), S, 2))
return(CN12[1, 2], CW12[1, 2], COW12][1, 2])

N2 <- NO + N22

CN12 <- var(matrix(c(N1, N2), S, 2))

W1 <-¢()

W2 <-¢()

for(i in 1:S) -

W1 <- ¢(W1, sum(rweibull(N1[i], wel, we2)))
W2 <- ¢(W2, sum (rexp(N2Ji], ex)))

CW12 <- var(matrix(c(W1, W2), S, 2))
COW12 <- cor(matrix(c(W1l, W2), S, 2))
return(CN12[1, 2], CW12[1, 2], COW 12[1, 2])

CW12 <- var(matrix(c(W1, W2), S, 2))
COW12 <- cor(matrix(c(W1, W2), S, 2))
return(CN12[1, 2], CW12[1, 2], COW12][1, 2])

18.2. Ruin. function(part = jAj, S = 1000, wel = 0.5, we2 =
0.5625, pol = 4, ex = 1/1.125, po2 = 4, rho = 0.25, u = ¢(0, 10, 30,
90), theta = 0.15)

if(part == jAj) -

NO <-0

if(rho = 0) -

NO <- rpois(20 * S, rho * pol)
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N1 <- NO + rpois(20 * S, (1 - rho) * pol)

N2 <- NO + rpois(20 * S, (1 - rho) * po2)
W1 <-¢()

W2 <-¢()

for(i in 1:(20 * S)) -

W1 <- ¢(W1, sum(rweibull(N1[i], wel, we2)))
W2 <- ¢(W2, sum (rexp(N2[i], ex)))

S1 <- apply(matrix(W1, S, 20, T), 1, cumsum)

S2 <- apply(matrix(W2, S, 20, T), 1, cumsum) #

u <- ¢(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
150)

PB <- ¢()

for(i in l:length(u)) -

IN <- u[i] + matrix(rep((1:20) * (1/ex) * 2 * pol * (1 + theta),
each = S), S, 20)

PBS <- apply((IN > t(S1) + t(S2)) * 1, 1, prod)
PB <- ¢(PB, 1 - mean(PBS))

return(cbind (u, PB))

19. Negative Binomial model with common component

19.1. Moments. function(part = jAj, S = 1000, wel = 0.5, we2
= 0.5625, nbl = 1, nb2 = 4, ex = 1/1.125, tho = 0.25)

if(part == jAj) -

X1 <- rweibull(S, wel, we2)

EX1 <- mean(X1)

EX12 < mean(X1°2)

VX1 <- var(X1)

N1 <- rnbinom(S, nbl, 1/(1 + nb2))

EN1 <- mean(N1)

VN1 <- var(N1)

EW1 <- EX1 * EN1

VW1 <- EX1°2 * VN1 + VX1 * EN1

X2 <- rexp(S, ex)

EX2 <- mean(X2)

EX22 <- mean(X2"2)

VX2 <- var(X2)

N2 <- rnbinom (S, nbl, 1/(1 + nb2))
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EN2 <- mean(N2)

VN2 <- var(N2)

EW2 <- EX2 * EN2

VW2 <- EX2"2 * VN2 + VX2 * EN2

resul <- matrix(c(EX1, EX12, EN1, VN1, EW1, VW 1, EX2, EX22,
EN2, VN2, EW2, VW2), 6, 2)

return(resul)

if(part == jBj) —

W1 <-¢()

W2 <-¢()

a0 <- (rtho * nbl * nb2 * (1 + nb2))/nb2"2
Gl <- rgamma(S, nbl - a0, 1)

G2 <-rgamma(S, nbl - a0, 1)

NO <-0

if(rho = 0) —

GO <- rgamma(S, a0, 1)

NO <- rpois(S, GO * nb2)

N1 <- rpois(S, G1 * nb2) + NO

N2 <- rpois(S, G2 * nb2) + NO # pet <- mean((N1 - mean(N1)) *
(N2 - mean(N2)))

for(i in 1:S) -

W1 <- ¢(W1, sum(rweibull(N1[i], wel, we2)))

W2 <- ¢(W2, sum (rexp(N2Ji], ex)))

CN12 <- var(cbind(N1, N2))

CW12 <- var(cbind(W1, W2))

COW12 <- cor(cbind(W1, W2))
return(c(CN12[1, 2], CW12[1, 2], COW12[1, 2]))

19.2. Ruin. function(S = 1000, wel = 0.5, we2 = 0.5625, nbl =
1, ex = 1/1.125, nb2 = 4, rho = 0.25, u = ¢(0, 30, 90), theta = 0.15)

NO <-0

a0 <- (tho * nbl * nb2 * (1 + nb2))/nb2"2
if(rho = 0) —

GO <- rgamma(20 * S, a0, 1)

NO <- rpois(20 * S, GO * nb2)
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G1 <- rgamma(20 * S, nbl - a0, 1)

G2 <- rgamma(20 * S, nbl - a0, 1)

N1 <-rpois(20 * S, G1 * nb2) + NO

N2 <-rpois(20 * S, G2 * nb2) + NO

W1 <-¢()

W2 <-¢()

for(i in 1:(20 * S)) —

W1 <- ¢(W1, sum(rweibull(N1[i], wel, we2)))
W2 <- ¢(W2, sum (rexp(N2[i], ex)))

S1 <- apply(matrix(W1, S, 20, T), 1, cumsum)

S2 <- apply(matrix(W2, S, 20, T), 1, cumsum) #

u <- ¢(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
150)

PB <- ¢()

for(i in l:length(u)) —

IN <- ufi] + matrix(rep((1:20) * (1/ex) * 2 * nbl * nb2 * (1 +
theta), each = S), S, 20)

PBS <- apply((IN > t(S1) + t(S2)) * 1, 1, prod)

PB <- ¢(PB, 1 - mean(PBS))

return(cbind (u, PB))






Introduction

The paper of Hu and Wu (1999) treats the notion of multivariate de-
pendence between individuals and its eccect on the related stop-loss
premiums. It focuses on the case of a portfolio of m life insurance
policies, each having a positive face amount during a certain reference
period. The grst type of dependence considered is the dependence
giving rise to the safest aggregate claims, and we saw in the previ-
ous report that this type of dependence is given by the lower Frchet

bound or, equivalently, by mutually exclusive risks. Then, the notion
of superadditive dependence ordering is applied to these results. This
paper concludes with a numerical example, from which we reproduce
the results.

We grst present the two-point distributions of mutually exclusive
risks presented by the authors. In the second section, we present some
results relating the distributions introduced with the concept of stop-
loss order. We then introduce the notion of superadditive dependence,
and its link with stop-loss order as well as with the distributions pre-
sented in the grst section. We g¢gnally reproduce the results of the
numerical example presented in Hu and Wu (1999), illustrating the
ecects of dependence on stop-loss premiums.



Particular Types of Dependence

This section aims to present some distributions of mutually exclusive
risks that will be analyzed in the next sections. The marginals con-
sidered are two-point distributions. We grst present two distributions
of nonexchangeable risks, and then one distribution of exchangeable
risks. For the non-exchangeable risks, we present the distributions of
the aggregate claims, and we verify that they really are lower Frchet
bounds. In the case of the exchangeable risks, we only state the joint
distribution.

Let (X1, X2, ..., X;n) be a portfolio consisting of m risks X1, Xo, ..., Xpp
with X, having a two-point distribution in 0 and «; > 0, that is

Pr(X; =0) = p; and Pr(Xi=a;)=1-p;i =g, (28)

for 1 =1,2,...,m.
The cumulative distribution function (cdf) of X;, ¢ =1,2,....m is
thus

0 z;<0
Fi(z;)=Pr(X;<z;))=<¢ pi 0<u <o
1 20

Let H (F1, Fy, ..., F,) denote the set of all m-dimensional random
vectors with marginal distributions Fi, F5, ..., F},. For the present case,
let

H(Qrs ey G Q1y ey ) = Hiy

denote the class of random vectors (Xi, X, ..., X;;,), where each of the
X;‘s is distributed as (28). For a matter of convenience, we also assume
that the risks X, Xo, ..., X, are classiged so that the face amounts are
in a nondecreasing order, that is

ar < g < ... < Oyp-

The authors also precise that when oy, o, ..., &, have ties, all the com-
ing results are valid under minor modigcations.

2



20. NONEXCHANGEABLE RISKS 3

20. Nonexchangeable Risks

We assume that random variables are exchangeable if any permu-
tation of those has the same distribution. Nonexchangeable risks are
then risks that are not exchangeable. Since we are working with dis-
tributions varying in the face amount (Ozz) and also in the probability
of this face amount (Qi), it is easy to see that risks having distribution
(28) are nonexchangeable.

We now consider the safest dependence structure in the case where
the marginal distributions of the risks X;’s are given by (28), given as
known by the lower Frchet bound. We mentioned in the last report
that the lower Frchet bound is equivalent to mutually exclusive risks
in the same way that the upper Frchet bound is related to the concept
of comonotonicity. We also saw that for the lower Frchet bound to be
a proper cdf, some conditions have to be satisged and these are stated
in Theorem 4.1 of the second report. We thus consider two cases, one
for each of the equivalent conditions required to have a proper cdf, that

is Z;n:lpizm—land Z;’ilpiﬁl.

20.1. First Case. We grst consider the case where the condition
Zyil p; > m—1is satisped. Let the distribution of the individual risks
be given by

PI' (Xz = OZZ',X]' = O[j) = 0, \V/Z 7é j, (29)

Xj:ozj,Xi:(], _ _ .
Pr(i:l,...,j—l,j+1,...,m = 1=pjp Vi=1.,m(0)

Pr(X;=0X,=0,..,X,=0) = ) p—(m—1). (31
=1

We grst derive the distribution of the aggregate claims, and then
we verify that it is lower Frchet bound. We denote the distribution of
the aggregate claims under this smallest dependence structure by S, :

=1

Since each of the risks is a two-point distribution and since the risks
are mutually exclusive, then the range of the possible outcomes for
S, is limited and is given by {0,0zl,ag,...,am}. We then have for the
probability function of S,:

PI'(S* :O) = PI‘(Xl :O,XQ :O,,Xm:O)

= Zpi—(m—l),
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and

Pr(S,=«q;) = Pr(
= {j,

X1 = 0, ...,Xj,1 = O,Xj = (l/j,
Xj+1 - 0, ,Xm =0

for j=1,...,m.

It is now possible to gnd the cdf of S,. We denote the distribution
of S, by H, and we consider three cases. For 0 < s < ay, H, (s) is just
the probability of getting 0 for each risk:

H,(s) = Pr(S.,=0)
= Pr (Xl = O,XQ = O, ;Xm = 0)

= Zpi—(m—l).

For aj 1 < s < ¢y, j=2,..,m, H,(s) is the probability of getting an
aggregate claim amount in {0,04,...,05 1} :
H,(s) = Pr(S.<s)
Pr (S* S aj—l)
= Pr(S,=0)+Pr(S.=aq)+ ... +Pr(S. =0;_1),

which gives

HG) = Yp—n-1+Ya

= Y n-m-1+Y (-

= Yp-m-D+G-1-2n

=1
m
= ) pi—(m—j).
i=j

Finally, when s > «,, H, (S) is obviously a certain event and it then
follows that

s)

H,(s) = Pr(S.
Pr (S, < am)

(

VANVAN

1.
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From the previous results, the distribution of S, is then given by
Yoipi—(m—1), for 0<s<ay,
m . .
H,(s)=13 >ie;pi—(m—j), for aj 1 <s<aqj,j=2,..,m,
1, for s > Q.
(32)

As stated previously, H, given by (32) is the lower Frchet bound
of H,, when Z:il p; > m — 1. As proved in the previous report, the
lower Frchet bound of multivariate distributions of random vectors in

H(Fl,FQ,...,Fm) is
Fy, (21, .., tn) = max { 0, Y F; (z;) — (m — 1)
i=1

We verify that we really have the same distribution using the lower
Frchet bound. For the grst case, 0 < s < a1, H, (s) is equivalent to
FL (0, ceey 0) :
H,(s) = H.(0)
= FL (O, ceey 0)

= mnax O,sz—(m_].) ’
i=1

and since Z;ilpi > m — 1, we can get rid of the maximum function
and write

H*(s):Zpi—(m—l).

For the second case, aj_1 < s < j, j = 2,...,m, H, (s) is equivalent to
Fp, (a1, ...,aj_1,0,...,0), which can be decomposed in numerous sums.
The risks being mutually exclusive, the probability of getting the ma-
jority of these individual sums is equal to 0. In fact, since we cannot
have more than one claim in the same period, we are left only with the
terms having only one claim in the reference period, that is

FL (011, ...,a/j_l,O, ,0) = Pr (X1 == 0, ,Xm == 0)
+ Pr (Xl = al,Xg = 0, ,Xm = 0)
+PI‘ (X1 == O,XQ == 042,X3 == 0, ,Xm == 0) + ...

X1 = 0, veey Xj_g = O,Xj_l = 01,
+Pr< X]: ,---,Xm:()

= H,(s).
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Since I} (o) = Pr(X; <o) =1,i=1,...,m, we have
H* (S) = FL (al, -y Q1 0, ceny 0)

-1 m
= max{(],]z:l—i-Zpi—(m—l)}.
i=1 i=j

Again, we can take oce the maximum function because of the condition
m
> i=j Di >m — 1, and get

Hoo) = (G=1+Yp—(m=1)

= Zpi_(m_j)'

For the last case when § > quy, H, (s) is equivalent to Ff (ay, ..., ) ,
by applying the same reasoning as for the second case. Similarly, we
then have

H,(s) = Fp(og,...,op)

= maX{O,il—(m—l)}
— max {0,m — (m—1)}
1.

We then veriged that (32) is a lower Frchet bound.

20.2. Second Case. We now consider the case where the condi-
tion Z:’ll pi < 1is satisged. Let the distribution of the individual risks
be given by

X]:()’XZ:aZ: _ ) .
Pr ( i=1,.j—1,j+1,...,m ) = pj, Vi=1..m@34)

Pr (Xl :al,XQ:ozg,...,Xm :am) = ]_—Zpl (35)
i=1

Again, we derive the distribution of the aggregate claims and verify
that it is lower Frchet bound. We still denote the distribution of the
aggregate claims under this smallest dependence structure by Sy :

1=1
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Since each of the risks is a two-point distribution and since the risks
are mutually exclusive (now in terms of 0), then the range of the possi-
ble outcomes for S, is limited and is given by {Oz — Olypyy eeey O — 041,04},
where o = Z:’il «;. Note that the risks are now mutually exclusive in
the sense that we cannot have more than one risk that has no claim
during a given reference period. We then have, for the probability
function of S,:

Pr(S.=a) = Pr(Xj=01,Xo=09,...., X;n = )
i=1

and

Pr(S,=a—q;) = Pr(
= Pj

Xl = Oy, ---;Xj—l = -1,
Xj - 0,Xj_|_1 = Qj11, ,Xm = Qyp,

for 7 =1,...,m.

We denote the cdf of S, by H, and we consider three cases. For
0<s<a-a, H, (S) can be interpreted as the probability that at
least two risks do not get a claim in a given reference period, since the
smallest amount of aggregate claims when there is only one risk that
do not get a claim is & — @, (i.e. when X,, = 0). The probability that
at least two risks do not get a claim being 0, we then have

H, (s) =0.

For a—a; < s < a—aj_1,j =1,...,m, (with ap = 0) H, (s) is the prob-
ability of getting an aggregate claim amount in {a — Ol oeey O — (l/j} :

H.(s) = Pr(S.<ys)
Pr (S, < a—«j)
= Pr(Si=a—anp)+..+Pr (S =a—-q),

which gives
H, (S) = Pm+Pm-1+ ... +pj

m
= Zpi-
i=j
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Finally, when s > «, H, (8) is obviously a certain event, and it then
follows that

H.(s) = Pr(S.<s)

= Pr(S, <a)
= 1.
From the preceding results, the distribution of S, is then given by
0, for 0 <s<a—ap,
H,(s)=14 >i;pi, fora—a;<s<a—aj1,j=1,...,m, (36)
1, for s > «,

with ag = 0.

As stated previously, H, given by (36) is the lower Frchet bound
of H,, when Z;llpi < 1. The lower Frchet bound of multivariate
distributions of random vectors in H (Fy, Fy, ..., Fp,) is

FL (xla"'a‘TM) = max O:ZE(xz) - (m_ 1)
i=1

Again, we verify that the distribution of S, really is a lower Frchet
bound. For the grst case, 0 < s < o — quy, H, (8) is equivalent to
F;, (0, ...,0) since
H.(s) = H,(0)
= FL (0, ceey 0)

= max O,Zpi—(m—l) ,
=1

and since Z?iﬂ’i < 1, the expression Z?iﬂ’i — (m — 1) is negative, so

we can get rid of the maximum function and write
H, (s) =0.
For the second case, @ —a; < s < @ —aj_1, J = 1,...,m, H,(s)
is equivalent to a sum of Fp’s, which in turn can be decomposed in
numerous sums:
H.(s) = Fp(ag,..,05-1,0, 041 ..., Q)
+F (o, .., 0,0, jta, .oy Q)
+.oo+ Fp (g, ooy -1, 0)
SN

The risks being mutually exclusive, the majority of the individual sums

of each Fp is equal to 0. In fact, since we cannot have more than two
risks that do not have a claim in the same period, we are left only with
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one term for each FJ, the term where only one risk do not have any

claim in the reference period, that is

D

J

Since F; (

= Pr(Xi=ay,.. X1 = a1, X; =0, X1 = ajq,
+Pr (X1 =a, .., Xj = a;, Xj11 =0, X0 = a9,
“+... 4+ Pr (X1 =, ---;Xm—l = Ofm_l,Xm = O)

= H,(s)

()

. (s).
OZZ')ZPI”
H,

(Xi<a;))=1,i=1,...,m, we then have

:Ej

= imax 0, i 14+p,—(m—1)
pa

i=1,i#k

= ZmaX{O, (m—=1)+pr — (m—1)}

= Z max {0, px},

k=j

oo Xom
oo Xom

)
«

and since pg > 0, we can get rid of the maximum function and write

For the last case when s > «, H, (s) is equivalent to Fp, (v, ...

and

we then have

H, (s) = sz

H,(s) = Fp(og,...,on)

= max O,Zl—(m—l)
i=1

= max{0,m— (m—1)}
1.

We then veriged that (36) is a lower Frchet bound.

21. Exchangeable Risks

, )

We now present a distribution in the family of multivariate ex-

changeable Bernoulli distributions with marginal probability 7. Some

results in the next sections are related with this distribution. We now
assume that oy = ... =a,;;, =1 and ¢4 = ... = ¢, = 7. Since the ;’s
and the 7;’s take the same values for ¢ = 1,...,m, then it is easy to
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see that they are exchangeable risks. Let the m-variate exchangeable
Bernoulli risks (X7, Xa,..., X;) have the following distribution:

(r+1—mm)(7), if >0, 6=r,
Pr(X; =01,..., X =0p) =< (mm—7) (1‘7—:1)’ if Yo 8 =r+1,
0, otherwise,

37)

where 7 is an integer such that r < mm < r + 1, and 0y, ..., 0, take
values 0 and 1.

Since this function does not respect the condition of discrete pdf’s
stating that the sum of the probabilities should be 1, then there is
obviously a mistake in the formula. However, since we did not point
out exactly what it is, then we do not develop much about that.



The Safest Aggregate Claims

In the second report, we treated the riskiest and the safest dependence
structures among risks. We concluded that the riskiest dependence
structure in the sense that it leads to the largest stop-loss premiums
is given by the upper Frchet bound or, equivalently, by comonotonic
risks. Similarly, the safest dependence structure, that is the dependence
structure leading to the smallest stop-loss premiums is given by the
lower Frchet bound under certain conditions to ensure that it is really
a proper cdf. As we have seen, this is equivalent to the concept mutually
exclusive risks. The results presented in this section rely the concept
of stop-loss order with the distributions presented before.

The following theorem states that the aggregate claims S, for the
two cases of nonexchangeable risks presented in the previous section
give rise to the minimal stop-loss premiums.

Theorem 21.1. Let X € H,, with the distribution given by (29)-
(31) or (33)-(35). Then, for any Y € H,,, we have

S Zsl S*,
where S, =Y ", X;and S=) 1 Y.
Proof. See Hu and Wu (1999). 1

It is straight-forward to verify that this is true for m = 1. We then
have S, = X; and S = Y. For this case, note that both conditions for
the lower Frchet bound to be a proper cdf are satisged

m
m-1<Y p<1,
=1

which implies that
0<p <1

Since the aggregate claims consist in fact in just one risk, we cannot
consider any dependence relation between risks, and then the stop-loss

11
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premiums have to be the same for any retention level d, since X; and
Y] have the same marginal distribution. We then have
E(S,—d), = E(Xi—d),
= q(on—d), +p (0-d),

Q1(041—d)+7
and
E(S-d), = F(i—d),
= q(on—d), +p (0-d),
= q(—d),.

We can then say that S >, S,.
We now present a result similar to that of Theorem 2.1, but now
for the multivariate Bernoulli distribution (37) of exchangeable risks.

Theorem 21.2. Let X and Y be two elements of H (7,...,m;1,...,1),
and let the distribution of X be given by (37). Then S >, S,, where
S, = Z:’;l X, and S = ZZZIYZ

Proof. See Hu and Wu (1999). 1

This means that the distribution for exchangeable risks presented
in Section 1.2 is the safest distribution among those having the same

marginal distributions. In other words, any other jcombinationj in
terms of joint distribution is riskier than that we presented.



Superadditive Dependence Ordering and Stop-loss
Order

In the second report, we presented the notion of correlation ordering
between bivariate random vectors and we related this concept to that
of stop-loss order. We now present the relations between the superad-
ditive dependence ordering and the stop-loss ordering for multivariate
risks, and then we specify these general results for the distributions of
the grst section.

We grst degne the concordance ordering. We should notice that the
correlation ordering is in fact the concordance ordering for the bivari-
ate case. However, although the correlation order between some risks
implies the stop-loss order between their sums, the same implication
does not hold for multivariate risks.

Definition 21.1.  Let X and Y belong to H (Fi, Fs, ..., Fp). Y is
said to be more concordant than X (denoted by Y >.X) if, for any
X = (L1, 0y Tm)

Pr(V;<uzji=1,...m)>Pr(X;<uz5i=1,..,m),
and
Pr(Y;>z;,i=1,...,m)>Pr(X; >z,i=1,...,m).

The following example (developed from Hu and Wu (1999)) illus-
trates that concordance ordering does not necessarily implies stop-loss
ordering.

Example 21.1. Let X and Y be four-dimensional risk vectors with
support on {0,1}4. Let fi, fo be their probability mass functions and
let d = fo — fi. Let € be a small positive constant and let d be de-
gned by d (i1,19,13,14) = € if there are an even number of zeros among
i1,19, 13,14, and d (i1, 192,1%3,%4) = —¢ if there are an odd number of zeros
among 11,%2,%3,%4. Assume that fi, fo are nonzero where necessary in
order for d to be well-degned. Denote piji = fi1 (4,7, k,1) for all 4,7, k, L.

13
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Then,

4
E (Z Xy — 2) = 2p1111 + Z Dijki,
u=1 +

i+j+k-+1=3

and

E (Z Y, — 2) = 2(puu +e)+ Z (Pijrs — €)

4 it+j+k+1=3
4
= 2pun +2+ | Z Dijkl — (3)5
i+j+k+1=3
= 2pun +2+ Z Dijkl — 4€
it+j+k+1=3
= 2(pun—¢)+ Z Dijkis
itj+k+1=3

where 1, 7, k,l take the values 0 or 1. We then necessarily know that X
is not smaller in stop-loss order than Y, since the stop-loss premium
with a retention level d = 2 is bigger for X. On the other hand, we
can see with the following relations that X is smaller in concordance
order than Y, that is X <. Y. To see it is really true, we verify the
two conditions stated in the degnition of the concordance order for each
possible case X = (xl,xg,xg, x4).

For x = (0,0,0,0), we have

Pr (X < x) = poooo < Poooo +¢ =Pr(X <y),
for the ¢rst condition, and

Pr(X >x)=pi1 <pun+e=Pr(X>y),
for the second one. For x = (1,0,0,0), we get

Pr(X <x) = piooo + Poooo
< (p1000 — €) + (Poooo + €)
P1o00 + Poooo
Pr(X <y),
and also

Pr(X>x)=0<0=Pr(X>y),

since the probability of taking a value strictly bigger than 1 is 0 for any
variable. We should note that every case symmetric to this one, that is
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x = (0,1,0,0), x =

(0,0,1,0), and x = (0,0,0,1), leads to the same

result. For the third case, i.e. x =(1,1,0,0), we have

Pr(X < x)

<

P1100 + P1ooo + Po1oo + Poooo
(P1100 + €) + (Pro0o — €) + (Po10o — €) + (Poooo + €)

P1100 + P1ooo + Po1oo + Poooo
Pr(Y <x),

and for the same reasons as before, we get for the second condition

Again, the other 5 symmetric cases lead to the same result. The fourth

PriX>x)=0<0=Pr(X>y).

case, x = (1,1,1,0), implies that

Pr(X <x) = pii10 + P1100 + P1o10 + Poi1o

+P1000 + Po1oo + Pooio + Poooo

< (P10 — €) + (1100 +€) + (Pro10 +€)
+ (po110 + €) + (Prooo — €) + (Po100 — €)
+ (Pooro — €) + (Poooo + €)

= Pi110 * P11oo + Pioio + Poiio

+P1000 + Po1oo + Pooio + Poooo
= Pr(Y <x),

and again the other condition brings that

There are three other cases that are symmetric to this one, with the

Pr(X>x)=0<0=Pr(X>y).

same results. Finally, the last case x = (1,1,1,0) gives

Pr (X < x)

IN

Di111 + Pi11o + Piio1 + Pioi1 + Poiin

“+P1100 + P1o10 + P1oo1 + Poi1o + Poio1 + Pooir

“+P1000 + Po10o + Pooio + Pooot + Poooo

(Pr111 +€) + (Pr110 — €) + (Prior — €) + (Pro11 — €)
+ (Po111 — €) + (P1100 + €) + (Pr010 + €) + (P1001 + €)
+ (Po110 + €) + (Poro1 + €) + (Poo11 + €) + (Pro00 — €)
+ (Po100 — €) + (Poo1o — €) + (Pooor — €) + (Poooo + €)
Pi111 + Pi110 + Piio1 + Pio11 + Poiin

+P1100 + Pio10 + P1oo1 + Poiio + Poio1 + Pooit

+P1000 + Po1oo + Pooto + Pooor + Poooo
Pr(Y <x).

N~—
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Obviously, the second condition for this last case is as the previous
ones:

Pr(X>x)=0<0=Pr(X>y).

Since all the possible combinations for X always respect both condi-
tions of the concordance order, then we can a(Erm that X is smaller in
concordance order than Y. It then follows that concordance order does
not imply stop-loss order.

Before introducing the main result, we should introduce the degn-
ition of superadditive functions and also the concept of superadditive
dependence ordering.

Definition 21.2. A real-valued function ¢ degned on R™ is said
to be superadditive if

p(xVy)+o(xAy)>o(x)+d(y),  Vx,y eR™

Here, V and A denote, respectively, the componentwise maximum
and the componentwise minimum. Also, a function gzﬁ(xl, ,a:m) is su-
peradditive if, and only if, g/)(..,aci, vy Ty ) is superadditive in (x,-,xj)
for any 7 # j with the other variables gxed. If ¢ has continuous second
partial derivatives, then the notion of superadditivity is equivalent to

2
0°¢ >0
axi&rj -

for all ¢ # j. We can now introduce the superadditive dependence

ordering.

Definition 21.3.  Let X and Y belong to H (Fi, Fy, ..., Fp,). Y is
said to be more superadditively dependent than X (denoted by Y >,,X)
if £(¢(Y))> E(¢(X)) for all superadditive functions ¢ for which the
expectations exist.

Now that we know these degnitions, we can present the following
result.

Theorem 21.3. Let m-dimensional random vectors X and Y be
degned as

X = (91 (Ula ‘/17 W) » 92 (UZ: ‘/2: W) 3+ 9m (Uma Vm; W)) )
and
Y = (gl (Ula V17 W) y g2 (U2a Vla W) y s Im (Uma Vvla W)) 3

where {U;,i=1,...,m} and {V;,i=1,...,m} are, respectively, identi-
cally distributed, and {W,U;,V;,i = 1,...,m} are independent. If g; (u, v, w),
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i =1,...,m, are all increasing or all decreasing in v for every (u,w),
then Y >, X.

Proof. See Hu and Wu (1999). 1

With this last result, we can now present a special case making a
link between the superadditive dependence ordering and the stop-loss
order. The following theorem follows from the fact that U >4 V if,
and only if, E(h(U)) > E (h(V)) for all increasing convex functions
h(x). Since the function ¢ (x) = (21 + 22 + ... + a:m)+ is superadditive
(it is easily seen from the second partial derivatives condition), the next
result directly follows.

Theorem 21.4. Let X, Y € H (F1, Fy, ..., Fy). 'Y >4 X, then
22’;1 Yi 2q Z;L Xi.
Proof. See Hu and Wu (1999). 1

From Theorem 2.3, we can strengthen Theorem 2.1, which provided
a lower bound in stop-loss order for the marginal distributions given
by (28). If we consider a special case of Theorem 2.3, that is the case
where ¢; (u,v,w) depends only on v, then we have

X = (h'l (‘/1) ah’2 (‘/2) 3 ey hm (Vm)) )
X = (hl (‘/1) 7h2 (Vl) 3ty hm (‘/1)) :

We know from Theorem 2.3 that if h; (v),7 = 1,...,m, are all increasing
or all decreasing in v, then X* >, X. 1f X €M (F, Fy, ..., F},), then we
know that every function is non-decreasing, and then it is easy to see
that X* represents the comonotonic version of the risks (upper Frchet
bound distribution). Since the stop-loss premium is a superadditive
function, then Zﬁl X! >a 2211 X;. This then introduces an upper
bound for stop-loss ordering (and thus also for our previous distrib-
utions). Stop-loss orders are thus bounded both over and below by
comonotonic risks and mutually exclusive risks, respectively. This is
what Theorem 2.4 tells us.

We now present a last result, relating the superadditive ordering
and stop-loss ordering for mutually exclusive risks.

Theorem 21.5. Let X and Y be two elements of H,, with 2211 Di >
m—1or 2111 pi < 1, and let the distribution of X be given by (29)-(31)
or (33)-(35). Then, Y >,, X.

Proof. See Hu and Wu (1999). 1

This theorem is saying that the distributions of mutually exclusive
risks presented previously are smaller in superadditive dependence than
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any other distribution with the same marginals, but with a diccerent
joint distribution. The least superadditive dependence is thus given
by the lower Frchet bound, as for the stop-loss order. For the case

where the marginal distributions of the risks are given by (28), the
least superadditively dependent distributions (and also the smaller in
stop-loss order) are the distributions (29)-(31) or (33)-(35), depending
on which condition is satisged.



A Numerical Example

We now illustrate the eccect of introducing negative and positive depen-
dence between risks in an insurance portfolio by a numerical example.
In fact, we reproduce the results obtained in Hu and Wu (1999). We
use the life insurance portfolio consisting of 31 risks presented in Table
1. We should notice that Z:’il ¢; < 1. Each risk has a two-point dis-
tribution with a mass at 0, that is each risk either produces no claim
or a gxed positive claim amount (amount at risk) during a reference
period. The claim probability is the probability that the risk produces
a claim during the reference period. We should notice that the risks
are assigned by column, i.e. the grst column (amount at risk 1) has
only two risks, called X; and Xy, the second column (amount at risk

2) has 8 risks, called X3, ..., X19, and so forth.

Claim probability Amount at risk

1 2 3 4 5
0.01 2 3 1 2 -
0.02 - 1 2 2 1
0.03 - 2 4 2 2
0.04 - 2 2 2 1

Table 1. Number of policies with given amount

at risk and claim probability

The joint distribution of most negatively and positively dependent
risks are the lower and upper Frchet bounds, respectively. Let S, and
S* denote the aggregate claims of the portfolio consisting of 31 mutually
exclusive risks and comonotonic risks respectively. We develop the
distribution for both cases.

We grst consider the distribution for mutually exclusive risks. Since
Z?il q; <1, then we are in case 2, i.e. in the same case as Section 2.2.
Extending the theory from that section to this particular example, we

19



We also have

Pr(S,=1)

10
= Z qi
i=3

A NUMERICAL EXAMPLE 20

Pr (X1 = 0, ...,X31 = 0)

1- Z qi
1~ (8.(0.01) + 6 (0.02) + 10 (0.03) + 7 (0.04))
0.22.

Pr(X;=1,X,=0,..., X3 = 0)

FPr(X, =0,X,=1,X;=0,..., Xa1 = 0)
g1+ g2

0.01 4+ 0.01

0.02,

3(0.01) +1(0.02) + 2 (0.03) 4 2(0.04)
0.19,

19
= Z(]i

=11
1(0.01) +2(0.02) + 4 (0.03) + 2 (0.04)
0.25,

27
= ZQi

=20

= 2(0.01) +2(0.02) + 2 (0.03) + 2(0.04)

0.20,

31
= Z%‘

1=28

= 0(0.01) 4 1(0.02) + 2 (0.03) + 1 (0.04)

0.12.
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It then follows that the distribution of S, is given by

(0.22, for k=0,

0.02, for k=1,

0.19, for k =2,

Pr(Se=k)=19 095 for k=3,
0.20, for k =4,

L 0.12, for k =5.

We now consider the distribution for comonotonic risks, i.e. risks
given by the upper Frchet bound:

Fy (x1, .., Tp) = min (Fy (1), .oy By (T1)) -

The easiest way to get what we want is grst, to ¢nd the cdf of these
comonotonic risks, and then deduce the probability function. The way
it works is that when a claim having probability 0.04 occurs, then all
claims with probability 0.04 occur, since they are comonotonic and
we suppose they all depend on the same variable. Also, if a claim
having probability 0.03 occurs, then all other claims with probability
0.03 occur, but also all claims with probability 0.04, since these events
are more likely to happen, and so on. There are then only a few total
amount of claims possible, that is {0,23,57,78,97}. We grst consider
the probability that the aggregate claims are 0 < s < 23, in other
words the probability that none of the claims occurs:

Pr($*<0) = Fy(0,...,0)
= min (0.96,0.97,0.98,0.99)
0.96,

since among the whole bunch of variables, there are only four diceerent
probabilities. For 23 < s < 57, the event S* < s is realized if some
or all of the claims with probability 0.04 arise. Since the risks are
comonotonic, either the event with probability 0.04 occurs, and every
risk with this probability has a claim, or none of them arises. It is thus
impossible, in fact, to obtain a realization of S* between 23 and 57.
The amount will be either 23 or 57. This is traduced by an event with
probability

Pr(S* <s) = min(1,0.97,0.98,0.99)
0.97,
since the marginals are 1 for the risks occurring, and are 1 — ¢; = p;
for the risks that do not arise. For 57 < s < 78, the event S* < s is

realized if all of the claims with probability 0.03 arise, and this implies
of course that all the claims with probability 0.04 also occur. The
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possible realization for S* is then 57, and this is traduced by an event
with probability
Pr(S*<s) = min(1,1,0.98,0.99)
= 0.98.
For 78 < s < 97, the event S* < s is realized if all of the claims with
probability 0.04, 0.03 and 0.02 arise. The amount of claim 78 is again
the only possible value for S* in this case. This is traduced by an event
with probability
Pr(S*<s) = min(1,1,1,0.99)
= 0.99.

Finally, for s > 97, the event S* < s is realized if every single claim
occurs. This is traduced by an event with probability

Pr(S*<97) = min(1,1,1,1)
1.
It then follows that the cdf of S*is given by

0.96, for 0 < s < 23,
0.97, for 23 < s < 57,

Pr(S*<s)=4 0.98, for 57 < s < 78,
0.99, for 78 < s <97,
1, for s > 97,

and thus, the probability distribution of S* is
« gy ) 096, for k=0,
Pr(S*=k) = { 0.01, for k = 23,57,78,97.

From the distributions we found, it is now easy to calculate the
stop-loss premiums for many retention levels d. For instance, we have
for a retention level of 2 for mutually exclusive risks

E (S. —2)+ = (0—2)+0.22—|—(1 —2)+0.02+(2—2)+0.19
+(3—2)+0.25+ (4—2)+0.20+ (5—2)+0.12
= 0.25+2(0.20) + 3(0.12)
1.01,
and for a retention level of 10, we get for comonotonic risks
E(S* - 1())+ = (0- 10)+ 0.96 + (23 — 10)+ 0.01 + (57 — 10)+ 0.01
+ (78 — 10)+ 0.01 + (97 — 10)+ 0.01
= 13(0.01) 4+ 47(0.01) 4+ 68 (0.01) + 87 (0.01)
2.15.
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The results for retention levels d = 0,...,11 for both extremal depen-
dence structures are presented in Table 2. Results for the independence
case are also presented. Since those are rather tedious to do by hand,
we implemented a function in SPLUS using the Fast Fourier Transform
(FFT) to convolve the risks and then get the stop-loss premiums for
diccerent retention levels. These results are also included in Table 2 and
the SPLUS function is presented in the appendix. It is easily noticed
that the stop-loss premiums increase in going from the most negative
dependence structure to the most positive dependence structure. Also,
this diccerence is more important as the retention level d gets farther
from 0.

Retention d Mutua‘lly Independent Comonotonic
Exclusive
0 2.55 2.55 2.55
1 1.77 2.00 2.591
2 1.01 1.47 2.47
3 0.44 1.02 2.43
4 0.12 0.69 2.39
5 0 0.46 2.35
6 0 0.31 2.31
7 0 0.20 2.27
8 0 0.12 2.23
9 0 0.08 2.19
10 0 0.05 2.15
11 0 0.03 2.11

Table 2. Stop-loss premiums for the portfolio in Tablel.



Appendix

22. Stop-loss premium function (independence)

convol <- function(d = 0, data = tabl, repartition = repar)-—

# Mylne Bdard

# 20/02/2002

# This function returns the stop-loss premium for a retention level
d and

# discrete distributions given by the matrix data (one distribution

by row),
# and the number of individuals for each distribution given by
repartition.
long <- 2712

zeros <- matrix(0, nrow(data), long - ncol(data))
datal <- cbind(data, zeros)

Mx <- apply(datal, 1, cet)

Mx2 <- Mx“matrix(repartition, long, nrow(data), byrow = T)
Ms <- apply(Mx2, 1, prod)

fs <- Re(cet(Ms, inverse = T))[1:long]

fs <- (fs >= 0) * fs

fs <- fs/sum (fs)

amount <- (0:(long - 1)) - d

ES <- sum((amount >= 0) * amount * fs)
return (ES)

24






Introduction

The paper of Cossette et al. (2000) treats of the impact of dependence
among multiple claims in a single event (loss). In casualty insurance,
policies often involve correlated random wvariables. For instance, an
insurance company issuing a jstandardj travel insurance contract has

to consider a certain amount of correlation, either positively or nega-
tively, between claims under the dicerent coverages oxered. One can
observe that medical costs and disablement payments are positively as-
sociated, while some claims in a loss can even be mutually exclusive, as
disablement and death payments. The authors aim to derive bounds
on the cumulative distribution function (cdf) of the aggregate claim
S in order to quantify the impact of correlation among the multiple
claims related to a single event. The proposed methods allow devel-
oping bounds when the marginal distributions of the claim amounts
are speciged or when only partial information is available (e.g. orst
moments of the distributions).

In the grst section, we shall set some notation, to make the further
developments clearer. In the second and third sections, we present the
results for the bounds of a single loss when the marginal are known,
and when only the grst moments are known, respectively. With these
results, we can then develop the bounds for the aggregate claims, that
is the total amount of loss, depending on the amount of information
we have about the distributions. We gnally present a numerical illus-
tration (reproduced from Cossette et al. (2000)), which leads to the
development of the bounds for given distributions when full or partial
information is available.



Notation

For a given insurance portfolio, degne S to be the aggregate claim
amount during a gxed period of time

N
S=Y X, (38)
i=1

where N represents the number of accidents and X;, 7 = 1,2, ..., the ith
loss amount. We suppose that the random variable NN is independent
of the X;’s. Each X;,7 =1,2,..., is the aggregation of the claims under
a gxed number of diccerent coverages. Since each loss consists in a gxed
number m of claims (one from each of the individual coverages), then
X, can be decomposed as
X, =XxP 4+ xP 4+ x™, (39)

for 1 =1,2,..., where XZ-(]) is the jth claim on the 7th loss, and XZ-(]) =0
means that there is no claim. Although the random wvariables Xi(]),
J = 1,2,...,m, are clearly dependent for a ¢xed ¢ since they result
from a same event, their correlation structure is generally not entirely
known. _

We denote the cdf of Xi(]) as Fxy, 7 = 1,2,...,m, 1 = 1,2,....

The random vectors (XZ-(I),Xi(Z),...,X-(m)) ,1=1,2,..., are formed of

3
the claim amounts arising from each coverage in a single loss, and are
assumed independent and identically distributed (iid) with unknown
common joint cdf FX(I),X(Z)’___’X(m). This assumption of homogeneity is
realist since insurers generally tend to group similar risks in a same
portfolio. Finally, the X;’s degned in (39) have the common cdf Flx.

A simple way to view this model is to notice that it consists in the
classical risk model, but where each one of the N independent random
losses is decomposed as a gxed sum of M dependent components.

The following sections present methods from Cossette et al. (2000)
to derive bounds of the cdf of S, Fs. These methods allow to handle two
kinds of situations: the case where the marginal distributions Fx¢), j =
1,2,...,m, are speciged, and the case where the marginal distributions

2



NOTATION 3

Fyiy, j = 1,2,...,m, are unknown but their grst few moments are
given. Note that some variations of the method with the moments exist,
depending on the number of moments available and on the presence of
an upper bound for this distribution. The authors mention that the
bounds on S derived in their paper are the best-possible bounds in the
classical sense of stochastic dominance.



Stochastic Bounds on a Single Loss: Known

Marginals

We now present a method to obtain bounds on F'x when the marginal
distributions are speciged, in order to be able to further derive bounds
on Fg. We grst consider the case where the type of dependence existing
among the random variables is unknown, and we then present the case
where we have some information about this correlation.

23. Unknown Dependence Structure

When no assumption is made in regard to the correlation structure
1 2 .
between Xz( ),Xi( ), ...,X(m), 1=1,2,..., then for all s > 0, there exist

2

Flin and Fihax such that

Finin (8) < Fx (8) < Frax (5) . (40)
where
Froin (8) = sup max 4 Y Pr (Xi(j) < x]-> —(m=1),0p,
(T1,X2yeesm ) EX(S) =1
Fiax (s) = inf min Fyigy(x;),1 5,
( ) (z'l,a:Q,___,zm)EE(s) ; X(J)( ])
and

Y(s) ={(z1, 29, .cc,Tm) ER™ |21+ 20+ ... + Ty, = 5} .

As stated previously, these bounds are the best-possible bounds on
Fx in the full information case. From their general form, we should
notice the similarity between these bounds and the Frchet bounds.
The provenance of this result can be found in Denuit et al. (1999).
For some distributions as the uniform, the normal, the Cauchy and
the exponential family, it is possible to ¢nd explicit expressions for
Fiin and F,«. Otherwise, they have to be approximated numerically.
When we have to gnd these bounds, the case where m = 2 is the most

4
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simple. After having expressed Zo as § — 1, we can ¢gnd the supremum
(ingmum) for each $ by maximizing (minimizing) the given functions.
For F'y(; being the cdf of Xi(J) (as speciged in the grst section), this is

written as

Foin (s) = sup max{ X(l)( )-I—F o (@ )—1,0}
(z1,22)€EX(s)

= Sue%max{ X(l)( )+F(2)( 1)_1a0}a
T1

and

Frax (8) = inf  min{Fxu (1) + Fxe (22),1}
(z1,22)€X(s)

= inf min{Fyq (z1) + Fxe (s —21),1}.

z1€R
Note that F'_ X0 (s) is the left limit of the distribution, and is equivalent
to Pr (Xi(]) < S). When m > 3, we have to use a recursive method in

order to gnd these bounds. For instance, when m = 3, we grst ¢nd

Frax@) (s — 1) = inf  min{Fyxe (z2) + Fxe (23),1},

T2+T3=s—T1

and then we can use this to compute

Foa.x (8) = inf min {FX(l) (.’L‘l) + FX(z) (.’L‘g) + Fx(s) (xg) , 1}
(z1,72,23)€X(s)
= ugg min {FX@) (1) + Frax(2) (s 1}

We proceed in a similar way for the lower bound, as well as for an other
value of m. '

In the case where the Xi(J)’
Exponential or Pareto), we get fairly simple expressions for the bounds

s have an identical distribution (Uniform,

Fin and Fp.c. We now develop the bounds for each of these three
cases. In order to simplify the expressions, we let $; =1 + ... + x;, for

1=1,....m

23.1. Uniform Distribution on (a,b). Suppose Xi(j),j =1,...,m,
has a Uniform (a, b) distribution

.’L'j —a
b—a’
23.1.1. Upper Bound. First, we develop the upper bound Fiax :

FX(j) (.’E]) = a S X S b.

Frax(s) = inf  min{Fxqw (1) + ... + Fxm) (Tm),1}.

Z1+...+Tm=s
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We use the recursive method presented previously. We grst gnd

Fmax(2) (8 - 3m—2)
= inf min {Fym-1) (Tm_1) + Fxm) (Tm), 1}

Tm—1+tTm=8—Sm—2

= inf IRmin {Fxtm-1 (Tm-1) + Fxtm (s — Sm—1) , 1}

Tm—1€
) . [T —a  S—Sm_1—a
= inf min{ =2~ + m-1 ,1
Tm-1€R b—a b—a
. . [ 5—8m—2—2a
= inf mln{L,l}. (41)
Tm—1E€ER b_a

Since (41) does not depend on Z,,_; anymore, then we do not have to
diceerentiate the function to gnd the ingmum. We then have

— Sy — 2
Frax@) (5 — Sm—2) = min {%, 1}

. {s—xl—...—xmg—Qa }
= min ;1.
b—a

Note that we cannot get rid of the minimum, since for @ < Ty—1, Ty <

b,

S—T1— .. — Ty — 204  Typ—1 + Ty — 20
b—a b—a ’

is not necessarily smaller than 1. The next step is then to gnd

Fmax(3) (5 - Sm—3)

. . . Fym-2 (xm_z) + Fx(m-1) (:vm_l)
o $m—2+$m—ir‘|l‘£m:5_5m—3 i { +FX(m) (xm) ’ 1

= infeR min {FX(m—z) (acm_g) + Fmax(2) (S — Sm,Q) , 1}
Tm—2

g — — Sm_9 — 2
= inf min M+min M,l ;1.
Tm—2€R b—a b—a
Since we have in general
min {Fx + min {Fy,1},1} = min {Fx + Fy,1},

we can write

Tmeo— Q@ S— Spm_o — 20 1
b—a b—a ’

. . S_Sm73_3a/
= inf min{—— 1%.

Tm—2€ER b —a

Frax@3) (8 — Sm—3) = inf min {

Tm—2€R
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Again, we can get rid of the ingmum, but not of the minimum

) S — Sm—3 — 3a
Frnax — Sm-3) = —) 1
@) (5 = Sm—3) min { P }

. {s—xl—...—xm3—3a }
= min ,1 5.
b—a

By applying this method recursively, we ¢nd

s —(m—1
Fmax(m—l)(s_sl) = min{s Slb_(n; )a,l}
_ min{s_xl_(m_l)a,l},
b—a

and gnally get

Frax(m) () = inf  min{Fxq (z1) + ... + Fxem (Tm),1}

T1+...+Tm=s

= i%%min {FX(U (1) + Fmax(m—l) (s — 1), 1}
)

- — 2 — -1
= inf min L + s o = (m )a,l
z1€R b—a b—a

= inf min{m,l}.
z1€R b—a

Again, we drop the ingmum function, and get as gnal expression

Frax (5) = Frax(m) (s) = min {% 1} :

23.1.2. Lower Bound. We now want to gnd the lower bound, Fiy,.

Since the uniform function is continuous, then Fl¢) = F);(j), and
Fuin (s) = sup  max{Fyw (1) + ... + Fxm) () — (m —1),0}.

ZT1+---FTm=s
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We use the same recursive method as that for the upper bound. We
grst gnd

Fmin(2) (5 - 8m—2)
= sup max {Fxm-1) (Tm_1) + Fxm) (zm) — (2—1),0}

Tm—1+TTm=8—Sm—2

=  sup max{Fyxm-n (Tm-1)+ Fxwm (8 — Sm-1) — 1,0}

Tm—1ER
Tpel — @ 8§ — Sp_1 — @
= sup max{ m-1 + m-1 —1,0}
Tm—1€ER b_a, b_a
S — Spm_2 — 2a
= sup maX{L—l,O}. (42)
Tm—1€ER b_a/

Since (42) does not depend on Z,,—1 anymore, then we do not have to
diceerentiate the function to ¢nd the supremum:

— Syg — 2
Fmin(2) (3 - 5m—2) = max {# — 1,0}

_ max{s—xl—...—xm_2—2a_1,0}.
b—a

However, since a < Z,_1, Lm < b, then

s—xl—...—xm,Q—Qa_l_xm,1+3:m—(a—|—b)
b—a b—a ’

may be negative, and we have to keep the maximum function. The
next step is then to gnd

Fmin(3) (S - 3m—3)

Fxm-2 (Tm-2) + Fxtm-1 (Tm-1) }
= su maXx
mm_g—}-mm_l—l—lx)m:s—sm_g { +FX(m) (xm) - (3 - 1) 50

= sup max {Fx(m72) (Tm—2) + Fmin2) (5 — 8m—2) — 1, 0}

Tym—2€ER
9 — — Syp_o — 2
= sup max{M—i—max{M—l,O}—l,O}.
Zm_2€R b—a b—a

We know that in general
max { Fx + max {Fy — 1,0} — 1,0} = max{Fx + Fy — 2,0},

because if Fy — 1 is positive, then there is no problem, and if Fy — 1 is
negative, the expression is not disturbed since F'x — 1 will be negative
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anyway and the whole expression ends up to be 0. We then write

Tmo— Q@ S— Spm_o— 20
Fmin - — = - 270
3) (8 — Sm—3) $:1121)EIR<max{ - + T }

S — Spm_3 — 3a

= sup max{m— — 2,0} .
Tm—2€R b —a

Again, we can get rid of the supremum, but we have to keep the max-

imum

§ — Sp—_3 — 3G
Fiin = Sm-3) = — = 2,0
@) (8 — Sm—3) max { r—a }

_ max{s—xl—...—xm3—3a_2’0}.
b—a

By applying this method recursively, we gnd

—s—(m—1

b—a
s—x1—(m—-1)a
= — -9
max{ b—a (m ),O}a

and gnally get

Fmin(m) (8)
= sup max{Fxw (z1) + ... + Fxm) (Tm) — (m —1),0}

T1+...+Tm=s

= sup max {FX(I) (21) + Fnax(m-1) (s = 21) — 1, 0}

T1ER
- —z—(m—1
= supmax{x1 a+$ = (m )a—(m—l),O}
T1ER b—a b—a
s —ma
= supmax{i—(m—l),O}.
r1€ER b_a'

Again, we drop the supremum and we get as gnal expression
S —ma

Frin (5) = Frin(m) (s) = max {ﬁ —(m—-1) ,0} .

23.2. Exponential Distribution. Suppose that the random vari-

ables Xi(j)’s have an Exponential()) distribution. For j = 1,...,m, we
have

FX(j) (.CE]) =1- G_ij.
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23.2.1. Upper Bound. First, we develop the upper bound, Fp,x. We
have

Frax (s) = inf  min{Fym (z1) + ... + Fxm) (Tm),1}.

Z1+-.-F+Tm=s

We use the recursive method presented previously. We grst gnd

Fmax(2) (S - 8m72)
= inf min {Fx(m—l) ('/le—l) + Fx(m) (Z‘m) , 1}

Tm—11TTm=8—8$m—2

= inf min {FX(m—l) (:cm_l) + FX(m) (8 - Sm—l) y 1}

Tm—1€R

= inf min {1 — ef)‘wm—l +1— e*/\(sfsm—l), 1}
Tm—-1€ER

= inf ind{2 — ¢ Aom—-1 _ ~A(5—8m—1) 1% 43
,nf min {2 ¢ e 1} (43)

Since (43) is still function of Z,,—1, we have to diceerentiate to gnd the
ingmum. We set the derivative with respect to Z,,,_1 equal to 0, and
we gnd \e Am—1 — \e A(S~%1—~Tm-1) — (). Then, we isolate Z;,_1 and
get

1
Tm1 = 5 (s =21 — . — Tpy—2)
1
= § (5 - 5m72) . (44)

Replacing (44) in Fax(2) yields

Fmax(Z) (S - 3m—2)

A
— min {2 — e 3(smsm=2), 1} .
The next step is then to gnd

Fmax(3) (S - Sm—S)
. . Fyn-2 (:C _2) + Fym-1 (a: _1)
— f X m X m
Im72+l'mfir'fl'mm:5_5m73 — { +Fx(m) (xm) , 1

= 1nf min {FX(mfz) (.Tm_g) + Fmax(g) (S —_ Sm_z) s 1}

Tm—2€R

= inf min {1 — e =2 L pin {2 — 26_%(5_87“_2), 1} , 1} .

Tm—2€ER
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We can simplify the minimum functions as before, and write

Fmax(3) (5 - 5m—3)

= inf min {1 —eMm-2 4 9 26_%(5*57"*2), 1}
zm72ER

. . _ _ (s
= inf m1n{3—e ATm-z _ 9e=3(s Sm’2),1}.
Tm—2€ER
Again, we have to diceerentiate to get the ingmum. We set the deriva-
A
tive with respect to Z;,_o equal to 0 and gnd Ae Am—2— e~ 2(s—F1——Tm—2) —
0. Then, we isolate Z,, 9 to get the minimum:

1
Tm-z = 3 (s =21 — . — Tpy_3)
(s~ ss) (43)
= — (85— 8m,_3).
3 3

Replacing (45) in Fmax(3) yields
Fma.x(3) (S - 5m73)

= min 3 — 6_%(3_5"”_3) — 26_%(5_57%—3_%(5—87%_3)) 1}

— min {3 e 36mima) _ 9e-3omsmoa) 1}
= min {3 — 3¢ 3(s—sm=3) 1} .
By applying this method recursively, we gnd
Frax(m-1) (s —51) = min {(m —1)—(m—1) e—ﬁ(s—sl)’ 1}
= min {(m —1)—(m—1) 6—ﬁ(s—x1), 1} ,
and gnally get
Frnax(m) (5)

= inf min {FX(l) (3:1) + oo + Fxm) (xm) , 1}

T1+...+Tm=s

= inf min {FX(U (21) + Frnax(m-1) (s — 21) , 1}

T1ER

= inf min {1 —e  (m—1) = (m—1)e (), 1}
z1€ER

= inf min {m s (m—1) e*ﬁ(kh)) 1} ‘
Tz1€ER

We diceerentiate with respect to X1, set the derivative equal to 0 and

A _
get Ae M1 — e D 2) — 0. We then isolate T1 to get the ingmum,



23. UNKNOWN DEPENDENCE STRUCTURE 12

and gnd 1 = 2>. The upper bound is thus

Fmax (5) = Fmax(m) (S)

. Y
= mln{m—me m,l}

- min{m (1—6—%) ,1}.

23.2.2. Lower Bound. We now want to gnd the lower bound, Fuyin.
Again, the Exponential distribution is continuous, so there is no need
to specify the left limit of the distribution :

Fuin ()= sup  max{Fxq (1) + ... + Fxm) (x) — (m —1),0}.

1+t Tm=s

We use the same recursive method as that for the upper bound. We
grst gnd

Fmin(?) (S - 5m72)
= sup max {Fym-1) (Tm_1) + Fxm (zm) — (2—1),0}

Tm—1+tTm=8—Sm—2

= sup max{Fxm-1) (Tm-1)+ Fxm (8 — Sm-1) — 1,0}

Tm—1€ER

= sup max {1 —eMm1 4] e ATIme) 0}
Tm—1€ER

= sup max {2 — e Mm-1 _ g7 Asmsmo1) O} . (46)
Tm—1€ER

Since (46) is the same expression as for the upper bound (except for an
additional constant), the derivative with respect to T,,_1 is the same
and leads to the same result:

1
Tm-1 = 5 (s—21 — . — Tpp2).

If we replace this expression in Fpin2), we get

Frnln (2) (S_Sm 2)

2 e 2(8 Sm—2) __ e—/\(s—smfz—%(s—smfz)) - 1’ 0}

= Imax
= Imnax

9 _ e 3ssmo2) _ o= 3(smsm—) _ 1,0}

= Imax

—_— A A

2 - 2¢7307n2) — 1,0}
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The next step is then to gnd

Fmin(3) (S - Sm—3)
Fxtm-2 (Tm—2) + Fxtm-1) (Tm-_1) }
= Ssu maXx
wm_2+wm_1+lszm:sfsm_3 { +FX(m) (Zm) - (3 - 1) ’0

= sup max {FX<m_2) (Tm—2) + Fin() (5 = Sm—2) — 1, ()}

Tm—2€R
— —ATm—2 —X(s—sm_2)
= sup max{l—e +max{2—2@ 2 —1,0}—1,0}.

ZTm—2€R

By simplifying the maximum functions, we have

Fmin(3) (3 - 5m73)

= sup max {1 e Mem-2 19 9 3(ssm-2) 1, 0}
Tm—2€ER

= sup max {3 e Mem-2 9 3(smsmz) 2, 0} .
Tm—2€ER

Again we diccerentiate with respect to Z,, o and set the derivative equal
to 0. This leads to the same result as for the upper bound:

1
Lo = g(s—xl — e = Tpp3) - (47)

Replacing (47) in Fiy(3) yields

len (3) (S_Sm 3)

= maX{B — e 36mns) _ 9= 3(smsmoa—g(s—sm-s) _ 2,0}
= max{3 —3(s=sm-3) _ 9=3(s—sm-3) _ 2,0}
= max {3 -3¢ Hem e g o).

By applying this method recursively, we gnd

Fringm1) (5 — 1) = max { (m — 1) = (m = 1) @0~ — (m — 9) 0},
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and gnally get

Fmin(m) (3)
= sup max{Fym (x1) + ... + Fx(m () — (m—1),0}

T1+...+Tm=s

= sup max {Fx(l) (21) + Fmax(m—1) (s —21) — 1, 0}

1 ER
—A o (s—a)
= supmax{l_e "4+ (m—1)—(m—1)e D" }
z1€R —(m—-2)—1,0
= sup max {m —e — (m—1) e~ T (=) _ (m—1) ,O} :
z1€ER

We diceerentiate with respect to x1, and set the derivative equal to

___A _
0 to gnd Ae™® — \e @D ) = (. We then isolate T1 to get the
supremum, located at 1 = % The lower bound is thus

Fmin (5) = Fmin(m) (8)

= max{m—me_% —(m - 1),0}
= max{l —me_%,(]}.

23.3. Pareto Distribution. Suppose Xi(j), 7 =1,...,m, have a
Pareto(a, \) distribution

A «a
Fyo (z;)=1—- .
X()(x]) </\+£EJ>

23.3.1. Upper Bound. We grst develop the upper bound, Fi .. We
have

Frax(s) = inf  min{Fxw (1) + ... + Fxm) (Tm),1}.

Z1+...+Tm=s

We use the recursive method presented previously. We grst gnd

Fmax(2) (S - Sm—Z)
= inf min {FX(m—l) (xm_l) + Fxm) ($m) , 1}

Tm—1+Tm=8—Sm—2

= inf Rmin {FX(m—l) (.Tm_l) + FX(m) (8 - Sm—l) y 1}

Tm-1€

A “ A *
= inf min{1-(—2— 1— 1
a:mlfl1Elen{ ()\ + xm_1> + <)\ + (S — Sm_1)> ’ }
A “ A “
= inf in<2—(—— | — 15.(4
acmlfl1€len{ <)\+$m1) (/\+(S—Sm1)) ’ } (48)

Since (48) is still function of Z,,,—1, we have to diceerentiate to gnd the

ingmum. We set the derivative with respect to Z,,,_1 equal to 0, and
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al® _ al®
(@m—14N)*T ((s=sm—1)+N)*T!
get, as for the Exponential case

we ¢gnd = 0. Then, we isolate Z,,—1 and

1
Tm-1 = 5 (s =21 — . — Tpy_o)
1
= 5 (8 - 5m72) : (49)

Replacing (49) in Fnax(2) yields

Fmax(?) (3 — 5m72)
«
2
. 2- (m)
= min A )& 1

A (s—sm—2)—3(s—Sm—2) ) ’

_ min{2— (2“(821 SM))Q_ <2H(3i Sm_2)>a’1}

_ min{2—2 (2A+ (:i sm_g))a’l}'

The next step is then to gnd

Fmax(3) (3 - Sm—S)

_ . . Fx(m—2) (-/I/Im_Q) + FX(mfl) (./Em_l)
= inf min { o (@), 1

= inf min {FX(m—2) (xm_Q) + Fmax(2) (S — Sm_g) , 1}

Tm—2+Tm—1+Tm=8—8m—3

Tm—2€R
. . . /\+37m—2
= inf min @
-2 €l +min{2—2(ﬁﬁ_2)> ’1}’1

We simplify the minimum functions to get

Fmax(3) (5 - 5m—3)

A “ 2\ “
= inf inql— —— 2-2 1
wml?QER i { (/\ + $m_2) * (2/\ + (8 — Sm_g)) ’ }

= inf min<3— # a—2 2 al
N J»‘ml—zeR ' ATy o 2) + (8 — Sm,Q) ’ ’

Again, we have to dicerentiate to get the ingmum. We set the deriva-

tive with respect to Z,;,_2 equal to 0, and ¢nd
aX® 2 (20)* .
(Zmo + N (5= 21 — oo — o) + 20)*T




23. UNKNOWN DEPENDENCE STRUCTURE 16

Then, we isolate Z,,_2 to get the minimum:

1

Tmz = 3 (s =21 — . — Tpy_3)
_ ! ( ) 50
= 3 (5= 5m-a). (50)

Replacing (50) in Fmax(3) leads to

Fmax(3) (S - Sm—S)

= min {3— <3A+(83i sm3)>i—2 (2A+§(QSA_ Sm3)2“’1}
= min {3— <3A+(83’1 sm_3)> -2 <3/\+(3i Sm_3)> ,1}

= min {3_3 (3/\+ (:i sm—3)>a’1}'

By applying this method recursively, we ¢gnd

Fmax(m—l) (5 - 51)

- min{(m— 1) = (m—1) <(m_(§;j)(j_sl)>a,1},

and we gnally get

Fmax(m) (8)
= inf  min{Fxw (z1) + ... + Fxtm (Tm),1}

T1+...+Tm=s

= inf min {Fxa) (z1) + Fumaxm-1) (s — 1) , 1}

z1€ER
A o
. . 1_<)\+z1) +(m_1)
= inf min

P (1) [m=0x
eR (m 1) ((mf(l)/\-i—()sfm)) 1

- Jiﬁ«mm{m‘(Afm)a‘(m‘”<<m—(17;;j)(3—x1>>a’1}'

We diceerentiate with respect to x1, set the derivative equal to 0 and
gnd

a)\* B (m—1)a((m—1)\)" _
(@ + ) (s —2) + (m = 1) A)*
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Isolating x; yields z; = %, and we then have for the upper bound
Frax (S) = Fmax(m) (8)

ol ()
-l ()}

23.3.2. Lower Bound. We now ¢gnd the lower bound
Fuin (8) = sup  max{Fyw (1) + ... + Fxm) (Tm) — (m —1),0}.

T1+---FTm=s

We use the same recursive method as for the upper bound. We grst
¢nd
Fmin(Z) (S - Sm—2)
= sup max { Fxm-1) (Tm-1) + Fxtm) (Tm) — (2—1),0}

Tm—11TTm=8—Sm—2

=  sup max{Fym-1 (Tm_1)+ Fxm (8 — $m_1) — 1,0}

Tm-1€ER

A @ A @
= 1—(— 1-— —-1,0
z:ulpeRmaX{ <)‘ + xml) * (/\ + (s — Sml)) ’ }

A @ A @
= Q- — — — 1,07 (51
w:gpeﬂ%max{ (A+xm_1) (A + (s — Sm—l)) ’ }( )

Since (51) is the same expression as for the upper bound (except for an

additional constant), the derivative with respect to Z,,_1 is the same
and leads to the same result:

1

Tm1 = 5 (s—21— .. — Tpy_2)
- ) 59
= 5(s—=sm2). (52)

Replacing (52) in Fin(2) leads to
IIllIl — Sm— 2)
o
o 2
J— 2A+(3_5m—2))
o

A
)\—I—(s Sm— 2)—1(5 Sm—2) - 1’0

m; e
= max {2 o) LY
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The next step is then to gnd

Fmin(3) (8 - Smf?))

Fxm-2 (Tm—2) + Fxm-1 (Tm-1) }
= su max
mm_g—i—mm_l—l—la):m:s—sm_g { +FX(m) (.Tm) - (3 - 1) aO

= Sup Inax {FX(m*2) (xm—Q) + Fmin(2) (8 - 3m—2) - 1, 0}

Tm—2€ER
87
A
1 B <A+$m—2>
= Sup max a
Tm—2€R +max{2—2(ﬁ’\sm_2)) —1,0}—1,0

By simplifying the maximum functions, we get

Fmin(3) (S - 3m—3)

o
A
1 - (/\"‘mm—Z) + 2
= Sup max ox o
Tm—2€R -2 (m) —1- ]., 0

A @ 2 @
_ ——2 ) 9 -2 )
z:ipeRmaX {3 <)‘ + xm—Q) (2)‘ + (s — Sm—Q)) ’0}

Again we dicerentiate with respect to Z,,_2 and set the derivative equal
to 0. This leads to the same result as for the upper bound:

1
T = 3 (s =21 — . — Tpy—3)
_ ! ( ) 53
= 3 (5= sm-a). (53)

Replacing (53) in Fin3) yields

Fmin(3) (S - 3m—3)

- m“{3(a»+£Asma>22(z»+§ét&n@2a10}
}3(ZA+<§A;ma>)a2(3}+<3Asm@> "ZO}
— max{3—3 3A+(53_8m3) —2,0}.

By applying this method recursively, we ¢gnd

Fmin(m—l) (3 - 81)

= max{(m—1) -1 (VA N9 ol
{ (i >

m—1)A+(s— s
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and gnally get

Fmin(m) (8)
= sup max{Fyq (1) + ... + Fxm) (xm) — (m —1),0}

T1+...+Tm=s

= Sup max {FX(l) (xl) + Fmax(m—l) (5 - -’171) - 17 0}

1_<)\—:\z> (m—l)

= sup max i 1) a
z1€R —(m—l)(m AT (e xl) 2)—-1,0
[0
= sup max i <)‘+w1>
= ) o
T1€ER _(m_1)<m(1m)\+s z‘1> :0

We diceerentiate with respect to xj, set the derivative equal to 0 and
gnd
aX® (m—1)a((m—1)X)"

(1 + 0 ((s—z1) + (m—1)A)*

Isolating x1 leads to 1 = %, and we then have for the lower bound

Finax (8) = Fiax(m) (8) )
o () )

= min{l—m(LA) ,1}.
mA+ s

24. Partial Knowledge of Dependence

We now consider the case where we have some knowledge about the

correlation structure between the Xi(])’s for a gxed ¢. Suppose that we
are aware of the existence of a multivariate cdf H satisfying

H (21,22, ..., Tm) < Fxw x,.. xm) (@1, %2, -, Tm) (54)
for all £1,Z9,...,Ty € R and a joint decumulative distribution function
G such that

Pr (Xfl) > xl,Xl(Q) > o, ...,X( m s :rm) > G (1, T2, T) 5, (55)
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for all xq,%o,...,%,;, € R. When (54) and (55) hold, then Denuit et al.
(1999) showed that

sup H(xlax% "'7xm) < FX (8)
(ml,w2,...,wm)62(s)

< 1- sup G (T1,T2, ey Tm)
(z1,22,....Zm ) EX(S)
for all s € R
In the special case where

H (iEl,.Tg, 7xm) = HFX(j) (xj)v (56)
j=1

for all 1,23, ..., T;m € R, then the vectors (Xi(l),Xi(Z), ...,X.(m)) are said

3

to be positively lower orthant dependent. If

G (@1,02, 0 2m) = [ [ (1 = Fxo) (25)), (57)
j=1

for all x1,22,...,T; € R then the vectors (Xi(l),Xi(Z), ...,Xi(m)) are said
to be positively upper orthant dependent. When both (54) and (55)
are fulglled with (56) and (57) respectively, the (Xi(l),Xi(z),...,X.(m))

3
are said to be positively orthant dependent (POD).

In the second report, we quoted the degnition of positive quadrant
dependence, who is valid in the bivariate case. We can see that the
concept of positively lower and upper orthant dependence is just the
multivariate extension of the positive quadrant dependence. However,
in this multivariate extension, (56) and (57) are not equivalent, by
opposition to the bivariate case. Intuitively, (56) and (57) mean that
the risks are more likely simultaneously to have small values and large
ones, respectively, compared with a vector of independent risks with
the same marginal distributions.



Stochastic Bounds on a Single Loss: Unknown

Marginals

We now present bounds on Fx when only the support and the grst
few moments of the marginals Fx¢), 7 =1,2,...,m, are known. Again,

we present the bounds for the Xz-(J)’s and from them it is possible to
determine the bounds of Fly.

25. General Case: Risk Y

We grst consider the general case with a non-negative random vari-
able Y for which we know only the mean p and the standard deviation
0. Then for all § > 0, there exist two cdf’s, M9 and W) such
that

M#9) (5) < Fy (s) < WH) (s). (58)

We can ¢nd explicit expressions for these extremal distributions in
Table 1, where dy stands for F (Y?), the second moment of Y.

Value of s M®9) (5)  WE) (5) — M®) (5) Wk (s)

_ >
pees l; ) (s—u)’+0? (s—n)*+o2
s—p ©
pn<s< ﬁ s 5
d2 (s—u) a?
§2 oy wr R PR L Ew 1

Table 1. Extremal distributions in (58), two moments known,
ingnite spectrum
Obviously, the lower bound 0, and the two upper bounds 1 are just the

natural bounds for a cdf. Also, since the random variable considered is
non-negative, we can use the generalization of Markov’s inequality:

Pr(g(X) > a) < LU0 X)

— I

for all @ > 0. We then have

Pr(Y >s) < Egy) :g

Y

21
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implying that

Pr(Y <s) = 1-Pr(Y >5s)
> 1-£
s
_ ST HK
= —

We then found the lower bound when py < s < % At pu, Pr(Y <s) >
EZE — (, and since it is just the natural bound for a cdf, the lower
bound for § < W is just 0. However, it is possible to use the fact
that we know F (Y?) for the case where s > %

generalized Markov’s inequality to get

Again, we use the

E((Y -1t)?
(s— 1)
E(Y?-2Yt+1?)
(s—t)°
E(Y?) —2E(Y)t+t?
(s —1)°
8y — 2ut + 12

A o9

Pr((Y-t?>(s-1)?% <

Now, if we minimize this function with respect to ¢, the inequality will
still be true. We then ¢nd the derivative and set it equal to 0

2(t—p) (s — )2 +2 (0 — 2ut +12) (s — t)

"o -1
_ 2(t—u)+2(52—2ut+t2)
(s —1)° (s—0°

If we solve for t, we get

0 = (s—1t)(t—p)+ (6 — 2ut +1*)
= st —sp—t2+tp+ 6y — 2ut + t*
= st— us— ut+ g,
and thus

po B8 =02 (60)
s —pu
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Replacing (60) in (59) yields
8y — 2p (“;:32) + (“::52)2
(s- (%))
0y (s = 1)* = 2 (ps — 62) (s — ) + (us — 85)°
(s (s — p) — (us — 62))°
5952 — 1%s% 4+ 21%s — Gop® — 21504 + 63
(52 — 25+ 65)°
0252 +2u3s — Syp? — 2us (0 + p?) + &5
(s2 — 251+ 6,)°
0%s? + §y0% — 20%us
(s2 — 25 + 65)°

By expressing 0y as 02 + p?, it follows that
E((Y -t)?) 02 (8% + (02 + p?) — 2us)
(s —1)* (s2 = 2sp+ (0% + p2))°
o2 ((s — w)? + o?)
2
(s~ + )

0.2

(s—p)’+02)

We then have
Pr(Y >s) = Pr((Y- t)? > (s — t)z)

0.2

: ((s— )’ +02)

By looking at the expression we obtain for ¢ at the minimum, we can

5—2, the value of ¢ being
I

see that this inequality is valid only for s >
either null or negative otherwise. It then follows

Pr(Y<s) = 1-Pr(Y >5s)
= 1-Pr((Y =t)>> (s —t)%)

0.2

((s = w)* +0?)
(s=m"
((s—p)*+0?)

> 1-
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When we also are aware that Y is subject to an upper bound b, i.e.
Pr(Y <b) =1, it is possible to reformulate the extremal distributions
in (58) as

(o) (s) < Fy (s) < W (1:0,) (s), s>0. (61)

The explicit expressions for this case arise from a slight modigcation
of the results in Table 1, and are presented in Cossette et al. (2000).

When the skewness yof Y is known, besides of pt and o, then tighter
bounds M7 and W) can be derived such that

M (o) (s) < Fy (s) < W (s057) (s), s>0. (62)

We can ¢nd explicit expressions for these extremal distributions in Ta-
ble 2, where 03 stands for E (Y3), the third moment of Y. The following
expressions are also used:

v+ 30% + pd — sdy

/81 (S) = 52—S,Lt ’
0o —
/82 (8) = %a

and

5y — 16y + \/ (85 — 16s)> — do? (uds — 62)

At = 202
(o) W o) (s)
Value of s M2 (s) —M®o) (s)
0<s<a_ 0 %

82 o2+ (p—s)(u—P1(s)) >+ (u—By(s))u
Lk et
Ja u—s —By(s
W SISO o8 e )1 (5) 24 (us) s, )

a?+(u—s)(u—B4(s o2+ (p—s)p o2 +(u—B(s))u
§> oy 51 (5) MRCAOEDAD) 5(s—B1(5))

Table 2. Extremal distributions in (62), three moments known,
ingnite spectrum
As in (61), when Y is known to be bounded above, then we can

improve the extremal distributions by gnding M) and W (Hob)
such that

M(Nao—z’hb) (8) S FY (8) S W([L,O’,’)’,b) (8) y S Z 0 (63)

The explicit expressions for this case arise from a slight modigcation
of the results in Table 2, and are presented in Cossette et al. (2000).
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26. Losses X;

Now, let /L(j),a(j) and ’y(j) be the mean, the standard deviation and
the skewness corresponding to Fiy¢), j =1,2,...,m. With Tables 1 and
2, we can ¢nd the best bounds on Fxy), j =1,2,...,m:

M; (s) < Fyo) (s) < Wj (s), (64)
where M, (s) stands for either MED0@) (@ 0@ D) depending

if the skewness is known or not. Similar notation is used for Wj (s).
From these results, we can now say that

Foin (8) < Fx (8) < Fruax (s), >0, (65)
where
~ LN 1
Frin (8) = sup max lim M; (xj - —) —(m-1),0,,
(zlaz2=---=zm)ez(s) j=1 nreo n
and

m
F, s) = inf min Wi(x;),1 5.
ma.X( ) (21,22,,2m) EX(S) {; .7( ]): }

If the (Xi(l), i(2),...,Xi(m))’s are POD, then (65) still works, but
we the improved bounds:

Fmin (8) - sup ( )H Mj (‘TJ) )
7j=1

(mlaz25---azm)ez s)

and

ﬁmax(s) =1- sup (1_Wj (.T]))
(1‘17$27-"7$m)62(8) ]:1

If an upper bound bj is also available such that i.e. Pr (Xi(j) < bj) =

1, 7 =1,...,m, then it is easy to adjust the previous developments to
handle this supplementary information.



Stochastic Bounds on the Total Amount of Loss

When N is independent of the X;’s, it is possible to use the convolution
formula to determine the cdf of the aggregate claim S degned in (38):

Fs(s)=Y Pr(N=n)F5"(s), s >0, (66)
n=0

where F¥"(s) is the n-fold convolution of Fyx. The random variable
N is discrete and has often either a Poisson or a Negative Binomial
distribution. The choice of this discrete distribution may be based
on the relation between the variance and the expectation. When the
variance is rather close from the expectation a Poisson distribution may
be appropriate, while if the variance is bigger than the expectation, the
Negative Binomial distribution may be a better choice.

From (66), and from (40), it is easy to constrain Fg in the case
where the marginals are known:

Fsin () < Fs(s) < Fppy (5), 820,
where
Foo (5) = 3 Pr(N = n) B (5).
n=0
and
Fop ()= S Pr(N = n) F2I (5).
n=0

Usually, we use the Fast Fourier Transform (FFT) to approximate nu-
merically the cdf of S. As usual, FFT can be used to approximate

numerically Fs . and Fg__ .

min

When only the grst moments (the mean, the variance and the skew-
ness) are known, we can use (66) and (62) to derive bounds on Fg:

FSmin (S) S FS (S) S ﬁSmax (S) I &) Z 0’

26



STOCHASTIC BOUNDS ON THE TOTAL AMOUNT OF LOSS

where
Fop (5) = 3 Pr(N = n) B2 (s).
and "~
Fopp ()= Pr(N =n)F (s).
n=0

27

Note that the results presented for the extremal distributions of Fyg are

easily regned to the POD cases (from the marginals or the moments).



Numerical Illustration

This example reproduces the illustration from Cossette et al. (2000).

)

distributed according to the Exponential distribution with mean 1 and

. . 1
In order to illustrate the results presented, we consider m = 2, Xl(

2 . . .
Xl( ) according to a Pareto with parameters 4 and 3, i.e.

4
Pr(Xl‘Z)gx):1—< 5 ),xZO.
3+=x

In Figure 1, we plotted the cdf of Xl(l)

moment and three-moment approximations M; and W;. We divided

, together with its two-

the support in three and four parts respectively, as in Tables 1 and
2, used p =1,6%Y =1 and ¥(Y) = 2 and computed the extremal
distributions presented in the tables. We should notice that the authors
specify that the skewness is 3, but in fact it is really 2. The graph we
obtain is identical to their when ’)/(1) = 2 is used.

The skewness is degned to be

- E (X -p’)
_ E(X;‘)—3E(X2)u+2u3.

For an Exponential(1), we know that E (X?) =6 and E (X?) =2, so

o 6-3(2+2(1)
o 2-12)2

We repeated the same operations for Figure 2, which is similar to Figure
1, except that we now consider X§2), (,u(Q) =1,0%0 =2,~+® = 2%),

which has a Pareto distribution instead of an Exponential. The graph
we obtain presents some diccerences with that in the paper. This is due,
again, to the skewness. The authors state that ’7(2) = 23. They assumed

that E (X?%) = 2 in their calculations, while it really is F (X?) = 3.
28
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Since E (X?) = 27, we have

o _2T-3(3)+2(1) _ 20
(3 _ 12)3/2 23/2'

In spite of this diccerence, both ggures lead to the same conclusion: the
knowledge of three moments gives tightest bounds.

Figure 3 presents the bounds for Fl, in particular the upper and
lower bounds for the case where the marginals are known, and also the
bounds for the three-moment case. We did not get a step function as
the authors, and our jformat) for the graphs is not the same, because
we did not use the same method to compute the bounds. For each s
between 0 and 50, we determined Fp, (S) and Fiax (S) for numerous
values of & and then chose the maximum and the minimum values
within the vectors obtained. We used the same method to add the
three-moment bounds. Figure 4 is similar to Figure 3, except that
we added the lower POD bounds for the case where the marginals
are known are for the three-moment case. We should precise that the
method used reproduces the results obtained by the authors with a
certain level of ¢delity. However, it would probably be possible to
increase the speed of the programs by using the built-in function nlmin
in SPLUS, to get the ingmums and the supremums needed. Since this
function was unknown for us at the moment of writing the programs, we
just overcame the problem of minimizing and maximizing by another
method.

Finally, Figures 5 and 6 show the bounds on Fg (with and without
the POD assumption). The random variable N is assumed to be dis-
tributed as a Poisson with mean 1. We then convolved the Fln (8),
Foax (5) , Funin (5) and Fiax (s) and then multiplied them with the prob-
ability function of the Poisson to get these bounds. We should note
that there is now a probability mass at 0 of e~ = 0.368, because
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Figure 5. Graph of F'y(1) together with Ml(l’l), Ml(l’l’Q),

WY, and W,

Figure 6. Graph of Fy@) together with M2(1’2),
1,2,-29 1,2,-20
M( 23/2) (172) and W( 23/2).

2 ) 2 ) 2
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Figure 3. Bounds on Flx.

Figure 4. Bounds on Fx in case of POD.
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Figure 5. Bounds on Fj.

Figure 6. Bound on Fjg in case of POD.
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Conclusion

We presented some results for the upper and lower bounds of Fx. We
derived the expression for the common uniform, exponential and Pareto
cases, and we also implemented some SPLUS functions that allow the
calculations for more complicated cases. We also presented how to
derive bounds on Fg. These method have been tested in the numerical
example reproduces from Cossette et al. (2000).

33
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Appendix

26.1. Function e3m. This function calculates the necessary ex-

pressions to get the two-moment and the three-moment approxima-

tions.

e3m <- function(s, cond = jAj, mu = 1, sig = 1, skew = 2)

e2 <-sig + mu~2

e3 <- skew * (sqrt(sig))"3 + 3 *e2 * mu - 2 * mu"3

x <- (0:(s * 1000)) * 0.001

ap <- ((e3 - mu * e2) + sqrt((e3 - mu * e2)"2 - 4 * sig * (mu
*e3 -e272)))/(2 * sig)

am <- ((e3 - mu * e2) - sqrt((e3 - mu * €2)"2 - 4 * sig * (mu
*e3 -e272)))/(2 * sig)

xa <- x[l:sum(x < mu)]

xb <- x[sum (x <= mu):sum(x < e2/mu)]

xc <- x[sum(x <= e2/mu):length(x)]

M2 <-¢(0 * xa, ((xb - mu)/xb), ((x¢ - mu)"2/((xc - mu)"2 +
sig)))[1:length(x)]

W2 <- c¢((sig/((xa - mu)"2 + sig)), rep(1, length(xb) +
length(xc)))[1:length(x)]

x1 <- x[l:sum(x < am)]

x2 <- x[sum(x <= am):sum(x < e2/mu)]

x3 <- x[sum (x <= e2/mu):sum(x < ap)]

x4 <- x[sum (x <= ap):length(x)]

b12 <- (skew + 3 * sig + mu”3 - x2 * e2)/(e2 - x2 * mu)

bl4 <- (skew + 3 * sig + mu"3 - x4 * e2)/(e2 - x4 * mu)

b21 <- (e2 - mu * x1)/(mu - x1)

b23 <- (e2 - mu * x3)/(mu - x3)

M3 <-¢(0 * x1, (sig + (mu - x2) * (mu - b12))/(x2 * bl2),
(mu - x3)/(b23 - x3), (((sig + (mu - x4) * (mu - bl4))
/(x4 * bl4)) + (sig + (mu - x4) * mu)/((b14 - x4) *
b14)))[1l:length(x)]

W3 <- M3 + ¢((mu - b21)/(x1 - b21), (sig + (mu - b12) * mu)
/(x2 * (x2 - bl2)), (mu - b23)/(x3 - b23), (sig +
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(mu - bl4) * mu)/(x4 * (x4 - bl4)))[1l:length(x)]

if(cond == jA))
return(M3)
if(cond == Bj)
return(W 3)
if(cond == jCj)
return(M2)

)

)

return(W 2

26.2. Function expo2. This function calculates the two-moment
and the three-moment approximations. It returns either the plot of the
exponential or that of the Pareto.

expo2 <- function(s = 30, cond = jPj, mu = 1, sig = 2,

skew = 20/27(3/2))

x <- (0:(s * 1000)) * 0.001

if(cond == jEj)
ex <- pexp(x, 1/mu)
if(cond == jPy)

ex <-1-3/(3 + x))"4

M2 <- e3m(s, jCj, mu, sig, skew)
M3 <- e3m(s, jJAj, mu, sig, skew)
W2 <- e3m(s, jDj, mu, sig, skew)
W3 <- e3m (s, jBj, mu, sig, skew)
plot(x, ex, type = jlj, ylab = jFx1j)

lines(x, M2, Ity = 2)
lines(x, W2, Ity = 3)
lines(x, M3, Ity = 4)

lines(x, W3, Ity = 5)

legend (5, 0.5, legend = c(jFx1j, jlower 2-moment approxj,
Jupper 2-moment approxj, jlower 3-moment
approxj, jupper 3-moment approx)), lty = 1:5)

26.3. Function bds. This function calculates the two-moment
and the three-moment approximations for X. It returns either the plot
(with or without POD) or the numerical values of the desired bound.

bds <- function(cond = j;Aj)

Fmin <- ¢()
Fmax <- ¢()
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F3min <- ¢()
F3max <- ¢()
Hx <-¢()
H3x <- ¢()
for(s in 0:50) —
x <- (0:(s * 1000)) * 0.001
M1 <-e3m(s, jA3, 1, 1, 2)
M2 <- e3m (s, JAj, 1, 2, 20/2°(3/2))
W1 <-e3m(s, jBj, 1, 1, 2)
W2 <-e3m(s, jBy, 1, 2, 20/2°(3/2))
Fmin <- ¢(Fmin, max(c(0, 1 - exp( - x) - 3/(3 + s -
%))"4)))
Fmax <- ¢(Fmax, min(c(2 - exp( - x) - (3/(3 + s -
%)"4, 1))
F3min <- ¢(F3min, max(c(0, M1 + M2[length(M2):1] -
1))
F3max <- ¢(F3max, min(c(W1 + W2[length(W2):1],
1))
Hx <-c¢(Hx, max((1 -exp(-x)) *(1-3/(3 +s-x))"4)))
H3x <- ¢(H3x, max(M1 * M2[length(M2):1]))

S
S

if(cond == jAj) -

plot(0:50, Fmin, type = jlj, xlab = jsj, ylab = jFx))

lines(0:50, Fmax, lty = 2)

lines(0:50, F3min, Ity = 3)

lines(0:50, F3max, lty = 4)

legend (10, 0.4, legend = c(jlower bd on Fxj, jupper bd
on Fxj, jlower bd on Fx (3-moment approx)j,
jupper bd on Fx (3-moment approx)j),
Ity = 1:4)

if(cond == )Bj) -

plot(0:50, Fmin, type = jlj, xlab = jsj, ylab = jFx))

lines(0:50, Fmax, lty = 2)

lines(0:50, F3min, Ity = 3)

lines(0:50, F3max, lty = 4)

lines(0:50, Hx, Ity = 5)

lines(0:50, H3x, lty = 6)

legend (10, 0.4, legend = c(jlower bd on Fxj, jupper bd
on Fxj, jlower bd on Fx (3-moment approx)j,
jupper bd on Fx (3-moment approx)j, jlower bd
on Fx with PODj, jlower bd on Fx with POD
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(3-moment approx)j), lty = 1:6

if(cond == jCj)
return(Fmin)
if(cond == jDj)
return(Fmax)
if(cond == jEj)
return(F3min)
if(cond == jFj)
return(F3max)
if(cond == jGj))
return(Hx)
if(cond == jH))
return(H3x)

26.4. Function foutr. This function convolves a distribution with

the number of claims distributed as a Poisson with parameter 1.
foutr <- function(cdf)

long <- 2712

fx <- c(dice(cdf), rep(0, long - length(cdf) + 1))

mx <- cet(fx)

len <- length(mx)

mx2 <- matrix(mx, 11, len, byrow = T) "matrix(rep(0:10, each
= len), 11, len, byrow = T)

pn <- matrix(rep(dpois(0:10, 1), each = len), 11, len, byrow
= T)

mx3 <- mx2 * pn

ms <- apply(mx3, 2, sum)

fs <- Re(cet(ms, inverse = T))[l:long]

fs <- (fs >=0) * fs

fs <- fs/sum (fs)

Fs <- cumsum (fs)

return(Fs)

26.5. Function Fs2. This function calculates the bounds of Fs
and plots them (either with or without POD).
Fs2 <- function(cond = jAj)

Fmin <- bds(3Cj)
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Fmax <- bds(jDj)
F3min <- bds(JEj)
F3max <- bds(jF;)
Hx <- bds(3Gy)
H3x <- bds(3Hj)
Fsmin <- foutr(Fmin)
Fsmax <- foutr(Fmax)
Fs3min <- foutr(F3min)
Fs3max <- foutr(F3max)
Hs <- foutr(Hx)
H3s <- foutr(H3x)
if(cond == jAj) -
plot(0:80, Fsmin[1:81], type = jlj, xlab = jsj,
ylab = jFsj)
lines(0:80, Fsmax[1:81], Ity = 2)
lines(0:80, Fs3min[1:81], lty = 3)
lines(0:80, Fs3max[1:81], lty = 4)
legend (15, 0.6, legend = c(jlower bd on Fsj, jupper bd
on Fsj, jlower bd on Fs (3-moment approx)j,
jupper bd on Fs (3-moment approx)j),

Ity = 1:4)
if(cond == jBj) —
plot(0:80, Fsmin[1:81], type = jlj, xlab = Jsj,
ylab = jFsj)

lines(0:80, Fsmax[1:81], Ity = 2)

lines(0:80, Fs3min[1:81], lty = 3)

lines(0:80, Fs3max[1:81], lty = 4)

lines(0:80, Hs[1:81], lty = 5)

lines(0:80, H3s[1:81], lty = 6)

legend (15, 0.6, legend = c(jlower bd on Fsj, jupper bd
on Fsj, jlower bd on Fs (3-moment approx)j,
Jjupper bd on Fs (3-moment approx)j, jlower
bd on Fs with PODj, jlower bd on Fs with
POD (3-moment approx)j), lty = 1:6)






Introduction

This report aims to complete what have been done about stochastic
orders and ruin probabilities in the previous report. We grst treat
some properties of stop-loss order that are very useful in risk theory.
Then, in the second section, we discuss ruin probabilities: we present a
method to compute them theoretically, and we also discuss ordering in
ruin probabilities. We close this section by reproducing the numerical
example of Cossette and Marceau (2000). We gnally include in the
appendix the proofs of some results quoted in the previous report,
along with an example treating of bounds for PCD risks. The SPLUS
programs used in the numerical example of the ruin probabilities are
also presented in this appendix.



More on Stop-Loss Order

We presented previously the concept of stop-loss order, and its relation
with other concepts, as the correlation order and the Frchet bounds.
However, this notion also has pleasant invariance properties, which
may be particularly useful in risk theory. This means that there exist
many operations that we can perform on two ordered risks such that
the result remains ordered in the same way. Among these operations,
we ¢gnd the convolution, the compounding and the mixing. The rest of
this section aims to present some of those.

27. Invariance Properties of Stop-Loss Order

We grst present a result stating that stop-loss order is maintained
under convolution of two random variables.

Theorem 27.1. Let Z be a risk independent of risks X and Y.
Then

X<gY=2X+4+72<43Y+7

Proof. We consider conditional stop-loss premiums given the re-
alization of the random variable Z, i.e. given Z = z. For all d, we
have

E(X+Z-d), = Ez( (X+Z-4d),|2))

(X+2z-4d),|Z=2)dF;(2)
—(d=2)),|Z=2)dF;(2)

T BE(Y - (d— 2)), dFz (2) .

I
Nﬁ:\
Dj

By doing the same development for Y + Z, we gnd that
E(Y+2Z—-d), :/ E(Y = (d—2), dFy (2).
0

2
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For X <4 Y, we have by degnition that for all retention level d,
E(X—-d) <E(Y-d),,

and it directly follows that

/OOOE(X— (d—2)), dFy () < /OOOE(Y— (d—2)), dF; (2).
This then implies that
E(X+Z-d), <E(Y+Z-d),,
which means that X + 7 <, Y 4+ Z, and the result is veriged. 1
We present a simple example that veriges this theorem.

Example 27.1. Let the random variables X and Y be exponen-
tially distributed with parameter A\; = 2 and Ay = 1, respectively. For
the general case where the parameter is A > 0, the stop-loss premium
for a retention level d > 0 is

E(S—d)+:/0055(s)ds

o0
= / e Mds
d

_ 00
e)\s

A d
efAd

A

We can then say that E (S —d), increases (decreases) as \ decreases

(increases), since the derivative of £ (S —d), with respect to Ais neg-
ative:
dE (S —d), _ —dle — e
dX A2
—e M (1 +d))
= 3z ,
which is necessarily negative since d,A > 0. We now have for X and
Y that

6_2d

E(X—d)+:TS€_d:E(Y_d)+a

so X <4Y.
Now, we consider a random variable Z independent of X and Y,
and having an Exponential distribution with parameter A3 = 0.5. This
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is a well-known result that a sum of n independent Exponential distri-
butions with parameter )\; is distributed as a Gamma with parameters
a=mnand A=), A\. We then know that the sum X+Z is distributed
as a Gamma(a =2,A =2+ 0.5 =2.5), and similarly, the sum Y + Z
has a Gamma distribution with parameters & = 2 and A = 14+0.5 = 1.5.
For the general case, the survival distribution of a Gamma distrib-

ution with parameters @ =2 and A\ is

Ss (s) = b fs(2)dz

= / A2ze Mdz

S

= —dze M —¢
=e M (1+M\s),

for s > 0, and the stop-loss premium for a level of retention of d > 0

E(S—d), = /dOOSS(s)ds
= /00 (1+Xs)e Mds

d

—As
_ 2e _ gehs

A d

= (; + d) e M,

Again, E (S —d), is decreasing in the parameter A :

dE (S —d), —2xde™™ — 2¢7

o

o d2 —Ad
a\ A2 ¢
_ —2e~M (21 +Ad) e
)

which is necessarily negative since d, A > 0.

For X + 7 and Y + Z, we then have

2
E(X+Z-d), = <2—5+d) e~ 254

2 —1.5d
< (T5+d>e =E(Y+Z-d),,

so X +7<4Y + Z, which veriges Theorem 1.1.
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We now present a generalization of the previous theorem, valid for
a convolution of 1 independent risks.

Theorem 27.2. If Xi,..., X, and Y7,..., Y, are sequences of inde-
pendent risks, then

X <a Y Vi= Xn:Xi <a iYi-

=1 i=1
Proof. We apply Theorem 1.1 with X = X;, Y =Y] and Z =
Xo+ ...+ X,,. We then get
Xi+Xo+..+X, <gV1+Xo+ ...+ X,. (67)

If we apply Theorem 1.1 again, but with X = X5, Y =Y, and Z =
Yi+ X35+ ...+ X,, we get

Yi+Xo+ Xg+.. .+ X, g1+ Yo+ X5+ ..+ X,,.
From (67), we can then write
Xi+Xo+ Xs+ ...+ X, <gV1+ Yo+ Xg+ ...+ X,.

If we continue to apply this method until every X;, 2 = 1,..,n is
replaced in the right-hand side, then the theorem is proved. |

We now discuss the case where a risk is produced by one of n
sources. The index ¢ for which I; = 1 indicates which source produces
the risk, and the other I; are necessarily 0. This is called a mixed
distribution, and its invariance property in stop-loss order is presented
in the next result.

Theorem 27.3. Let Xi,...,X, and Yi,...,Y, be two sequences of
risks with X; <g Y}, for all e =1,....,n. If I1,...,I, have a joint distri-
bution such that I1 + ...+ I, = 1 and, marginally, P([; =1) = p; =
1 — P (I; =0), such that » p; =1, then stop-loss order is retained for
the mixed random variables:

i L;X; <q i LY;. (68)
i—1 i—1

Let F; and (G be the distribution functions of X; and Y;. Then for the
cdf’s of the mixed random variables in (68) we have

n n
ZpiFi <si ZpiGi-
i=1 i=1
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Proof. Since there is only one source at a time that can produce
the risks, we have by conditioning on the I;’s:

E (Z LX; — d) = E(LXi+ ..+ ,X,—d),
i=1 +

+E (LX) + o+ [, X, —d|I, = 1), Pr (I, = 1)
= pEXi—d), + ..+ pu B (X, — d)

i=1

+

and similarly

E (ZIY - d) =S B Y- d),
=1 + i=1

Since X; <4 Y, for all 2 = 1,...,n, it immediately follows from Theorem
1.2 that

i=1 + =1
< ZpE (Yi—d), =E (ZIY - d) ,
i=1 i=1 +

and hence by degnition

i L;X; <q i LY;.
i—1 i—1

We present an example illustrating this result.

Example 27.2. Suppose that X;, X5, and X3 have Exponential
distributions with parameter Ay = 1, A9 = 4, and A3 = 6 respectively.
Similarly, Y7,Y5, and Y3 have Exponential distributions with parameter
A =5,), =5, and A\ = 8. The probabilities that the risk arises from
the 4th distribution are p; = 0.1, po = 0.5, and p3 = 0.4, and the I;,
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1 =1,2,3, are of course mutually exclusive. We then have

3 3
E\Y LX;—d| = Y pE(X;—d),
i=1 + i=1
—4d —6d
— 0.1e¢+05 (eT) +0.4 (%) ,

3

3
E|) LY;-d| = ) pEYi—d),
=1

+ =1

675d 6_5d 6_8d
= 01— 05| — 041 ——).
( 5 >+ ( 5 )+ ( 8 )

From Example 1.1, we know that X; <g Y}, 2 =1,2,3. It then follows
from Theorem 1.2 that a weighted sum of these X;’s is automatically

and

smaller in stop-loss order than a weighted sum of these Yj’s, provided
that the weights are the same. The invariance property for mixed ran-
dom variables is then veriged.

A very popular type of model in risk theory is the compound distri-
bution. This model assumes that the total claim of a portfolio is a sum
of a random number N of independent and identically distributed (iid)
claims X;. We present a result stating that if either X; or IV is replaced
by a riskier variable, then the resulting compound distribution is also
riskier.

Theorem 27.4. Let X, Xs,... and Y7, Y5, ... be sequences of iid
risks. Let IN and M be counting variables independent of X; and Y. If
X; <gY; for all 7, and N <4 M, we have

N N
Y Xi<a ) Y,

as well as

N M
Z Xi <g Z X;.
i=1 =1

Proof. Let S, =Xi+...+X,,n=1,2,...and Sg = 0. If F and
(G are the distribution functions of the risks X; and Y}, then the n-fold
convolution of F' with itself, written F*", is the distribution function
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of S,.We can then write

ﬁ)&gx §:P n) F** (z).

By Theorem 1.2, we know that Zi:lXi < Zi:l Y;, and thus that
" <4 G*.From Theorem 1.3 for mixed distributions, we then obtain

The grst part of the theorem is proved. The second part follows im-
mediately from the fact that for a retention level d > 0, E (S, — d),
n = 0,1,2,... is a non-decreasing convex function. For more details,
see Kaas et al. (1994). 1

The last invariance property we present is the conditional com-
pound Poisson distribution.

Theorem 27.5. Let Aj be a non-negative structure variable, and
Nj be an integer valued non-negative random variable. The joint dis-
tribution of (A;, N;) is such that given A; = A, N; is Poisson ()
distributed, 7 = 1,2. Let Xi, Xy, ... be a sequence of iid risks, and let

Nj
=1

Then, A1 <4 Ay implies S; <4 Sa.
Proof. See Kaas et al. (1994). 1

It immediately follows from this theorem that a Poisson(J\;) is
smaller in stop-loss order than a Poisson(A2) when A < Ag. We also
present in an example a result that will be useful thereafter in our
numerical example of ruin probabilities. We want to show that the
Negative Binomial distribution is riskier than the Poisson distribution
when the means are equal.

Example 27.3. Consider a Poisson () and a Negative Binomial(r, p)
distributions with equal means, so

rp

1—

and then p = 7”/ (,u—i—T). Since a Negative Binomial is just a mixture

W=, T M P =TP = =TDd D,

of Poisson distributions with a Gamma used as mixing distribution, we
can express both distributions in this example as a mixture of Poisson
distributions. By Theorem 1.5, all we have to show is that the mixing
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distribution used for the Negative Binomial is riskier than that for the
Poisson.

Let A; have a degenerate distribution such that Pr (A1 :u) =1,
and let Ay have a Gamma(r, () distribution with 8 = p/(1—p) =
r/u. Note that we used the well-known result of a mixture Poisson-
Gamma resulting in a Negative Binomial, and ¢xed the parameters
of the Gamma so that the Negative Binomial has parameters 7 and
p=r/(r+u). Ay then has a Gamma distribution, My|As = A has a
Poisson distribution, and the unconditional distribution of M is Neg-
ative Binomial.

To show that A; <, A, we have to consider the stop-loss premiums
of these random variables. For Ay, we have

E (A —d), =max (0, —d),
where d > 0 is the retention level. For Ay, we have to use the relation

E(As) — E (As A d)

By —d) = Pr(Ay >d) '

where F (A3 Ad) is the expectation of Ag limited at d. From Klugman
et al. (1998), we have for Ay ~ Gamma(r, ﬁ)

E(A2A4)=r(§)r( +1;%>+d(1—r(r;%>),

where

! J o~ (@r/m)
P(AQSx):F<r;ﬂ>=1— (W/").,@ . (69)
7 g !

is the cdf of Ay for an integer 7. Note that when 7 is not an integer,
r (7‘;%) is given by the incomplete gamma function. We then have
that




27. INVARIANCE PROPERTIES OF STOP-LOSS ORDER 10

and hence

u(l—r(rﬂ;%)) )
1—F<r;%> -

From (69), we know that for 7 being an integer,

P(r;ﬁ) 2F<r+1;ﬁ):>1—F<r;ﬂ> §1—F<r+1;ﬁ).
M M M H

Note that the same relation holds when 7 is not an integer, see Klugman
et al (1998) p.570. From this inequality, we can a(Erm that

1-T (r+1;2)
1—F(r;‘i—’">
and then
E(A —d), = max(0,u—d)
u(l—F(r—i—l;%))_d _ B (M- d)
1—F(r;%)
so Ay <g As.

Now, since M, j = 1,2, are such that M;|A; = A has a Poisson
(\) distribution, we have by Theorem 1.5 that M; <z My, and then the
Negative Binomial is riskier than the Poisson.

E(As — d)

4 =max | 0,

> 1,

< max | 0, 4



Ruin Probabilities

We presented previously the basics of ruin theory, and simulated the
numerical example presented in Cossette and Marceau (2000). We now
deepen this subject in some way, as we discuss the numerical methods
to approximate ruin probabilities. We also present a ruin order valid in
specigc situations and quote its relation with stop-loss order. We close
this section by reproducing the numerical results obtained in Cossette
and Marceau (2000), but this time in a theoretical way rather than
using simulation.

28. Evaluation of Ruin Probabilities

In the previous report, we presented the discrete-ruin model, but
we only went over the degnitions of the ruin and non-ruin probabilities,
without discussing the way of computing these probabilities in practice.
The following theorem presents a recursive method allowing to compute
the non-ruin probabilities over the periods 1 to n.

Theorem 28.1. Let {W;,i=1,2,...} be a sequence of iid random
variables and ¢ the annual premium income constant over each period.
Then,

u+c
(b(u,l,n):/ d(u+c—w,1,n—1)dFy (w). (70)
0
Proof. See Cossette and Marceau (2000). &

Unfortunately, the calculation of exact values of ¢ (u,1,n) from (70)
is rarely possible. However, there exists an algorithm approximating
(b(u,l,n), but this algorithm requires the discretization of the distri-
bution function Fjy. We assume that FW is the discrete distribution

obtained after the process of discretization, and W the corresponding
discrete random variable. If

P(’W:k):fk,

11
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for k=0,1,..., M, then
k
Fp (k) = P(W <k) =
§=0

where f; are the mass probabilities. We suppose that the premium
income is a constant integer p and that the surplus process takes only
integer values. We denote by ¢k,1,n and ¢k,1,n the gnite-time ruin and
non-ruin probabilities calculated with FW over the periods 1 to . with
an initial surplus kK (an integer).

Theorem 28.2. Let k,p,J be integers. Then,
min(k+p,M)

d)k,l,n = Z ¢k+pfj,1,nflfj: (71)
j=1

for n = 2,3,..., where
min(k+p,M)
Srin = Frinteipany = Y, i (72)
=0

Proof. See Cossette and Marceau (2000). 1

From this theorem, we can get directly the ruin probability wk,l,n?
since it is the complement of @y, , :

¢k,1,n =1- ¢k,1,n-

29. Computing the Discrete Distribution Fjy

Obtaining the distribution function of Fyy is not always evident. A
popular method is to use the Fast Fourier Transform (FFT) to get the
characteristic functions ¢. For a book of business, the grst step con-
sists in discretizing the severity distributions of each class of business,
Fxiy, 7 = 1,...,m, and take their Fourier transform. From the ob-
tained @g()’s, we then calculate the characteristic function of W, qﬁw.
We invert the function QSW with the FFT method, and this produces
the vector of mass probabilities degning the probability distribution
function [, from which it is easy to get Fj;. We can see that Fyy is
not directly discretized, but it is rather the distribution of the X U)g
that are discretized in order to determine FW.We can ¢nally use this
approximation of Fiy and insert it in (71) and (72) to evaluate ¢ ;-

We now present the relation between ¢y and the ¢x()’s in order
to determine the characteristic function of W. Note that we can also
apply this relation to the discrete versions of W and XU, j=1,...m,
that is W and XU, j=1,...,m:
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ow (1) = dwo wewe (t11)

= Pyoyone (dxw (), dxo (1), dxe (1),

where Py (t) is the probability generating function (pgf) of .

It is now possible to obtain explicit expressions of ¢y, (t) for the
Poisson model with common shock and for the Negative Binomial with
common component. We consider the case with three classes of busi-
ness in a book of business, but this can be easily generalized to higher
dimensions. For the Poisson model with common shock, we get

dw (t) = ¢W(1),W(2>,W(3) (t,t,t)

= exp (A(¢x (1) — 1)), (73)
where
A= A1+ Age + Azz + Ao + A1z 4+ Aoz + Aios,
and
A A A
ox (t) = %ﬁbx(l) (t) + %(ﬁxm (t) + %(bx(s) (t)
A A
+%¢X(U+X(2) (t) + $¢X(1)+X(3) (?)
A2s

A
+T¢X(2)+X(3) (t) + %¢X(1)+X(2)+X(3) ().

Note that the characteristic function of the convolution of two inde-
pendent random variables, say X and Y, is just the product of their
respective characteristic function:

¢X+Y (t) = (bx (t) ¢Y (t) .

For the Negative Binomial model with common component, we use

dw (t) = dwowewe (t,1,1)
= AxB, (74)

where
3

A= H [1 - Bj (¢X(j) (t) - 1)]7%]' )

i=1

and

B=[1-08,(dxa) (t) = 1) = By (dx> (t) — 1) — B3 (dxe (t) — 1)]7*°.

For more details on how these distributions are found, refer to Cossette
and Marceau (2000).
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30. Order in Ruin

We now discuss the inFEuence of increasing risk on ruin probabilities.
It is sensed to think that for risks with equal means, the least variable
risk in that class is the safer risk, that is the risk having minimum
ruin probability. Also, it is possible to show that in general, when
a risk has uniformly smallest stop-loss premiums, then this risk has
uniformly smallest ruin probabilities. From this a(Ermation, we then
quote a theorem presenting a link between stop-loss order and ruin
probabilities.

Theorem 30.1. Consider two compound Poisson risk processes with
equal premium per unit time and also equal Poisson parameter, but with
diceerent individual claims X and Y, and ruin probabilities ¢y (u) and
¥y (u), respectively. Then,

X <gY=>¢y(u) <ty (u) Yu>D0.
Proof. See Kaas et al. (1994). 1

We should notice that stop-loss order implies ordered ruin probabil-
ities, but the converse is not necessarily true. Also, if we consider the
variability order (see Kaas et al. (1994)), then we can say that stop-
loss order implies variability order, which in turn implies ordered ruin
probabilities. So, in many circumstances, we can identify the element
of a class of risks providing the largest ruin probability, just by gnding
the most variable element in the class. Note that we do not present the
degnition of variability order, since it refers to some degnitions we did
not present in this report. For more details about this notion, refer to
Kaas et al. (1994).

We now consider the example presented in Cossette and Marceau
(2000), the same example that we simulated in the previous report.
We noticed through these simulations that for the same severity distri-
butions, the Negative Binomial model with common component gives
uniformly bigger ruin probabilities than the Poisson model with com-
mon shock. It would then be interesting to determine if there exists a
stop-loss order between these two models.

When the coe(Bcient of correlation is 0, i.e. when there are no
possibility of common shock (independent case), this is easily seen
from Example 1.3 and from Theorem 1.5 that the Negative Binomial
model is riskier than the Poisson model, since the mean of a Negative
Binomial with parameters & = 1, 8 = 4 is equal to that of a Poisson(4).

However, when the coe(Ecient of correlation is non-zero, we cannot
make the same a(Ermation even if we are tempted to, according to the
results of the simulation. From Theorem 1.5, we know that a random
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variable X distributed as a Poisson (A7) is smaller in stop-loss order than
a random variable Y having a Poisson(\g) distribution, for A; < Ag.
Also, we know that for a Poisson and a Negative Binomial with the
same mean, the Negative Binomial is riskier. This then implies that
a Poisson with a smaller mean than a Negative Binomial is smaller in
stop-loss order. However, the problem comes from the fact that we
cannot conclude anything for the case where the mean of the Poisson
is bigger than that of the Negative Binomial. For the same mean,
the Negative Binomial is riskier, but if it has a smaller mean, is the
diceerence big enough to make the Poisson riskier, or does the Negative
Binomial keep its title? We are left with this interrogation and thus,
we cannot make any conclusion for the Poisson model with common
shock versus the Negative Binomial with common component.

To make this more clear, we consider the case where a book of
business consists in two classes of business. Either for the Negative
Binomial with common component or for the Poisson model with com-
mon shock, we have:

N1 N(11)+N(12)

1 1

wh = ZXi()+ Z Xi(),
1=1 i=N11) 41
N(22) N(22)+N(12)

2 2

w® = Y xP+ Y xP
=1 i=N(22) 41

The reason why we cannot make any conclusion comes from the fact
that for the same coe(Ecient of correlation p (N(l),N(Q)) , the Negative
Binomial and the Poisson models do not have the same mean for the
random variable of the number of common shocks, N2, Hence, when
E(N(m)) for the Poisson is smaller than E(N(12)) for the Negative
Binomial, then F (N(ll)) and F (N(22)) are bigger for the Poisson than
for the Negative Binomial, and vice versa. This thus means that there
is always a term of the aggregate claim for which we cannot conclude
anything for the stop-loss order.

As an example, consider the numerical example of Cossette and
Marceau (2000). For p(N(l),N(2)) = 0.25, we have to compare two
sums of risks where the number or risks is distributed as a Poisson(3)
and one sum having a Poisson(l) distribution, with two sums of risks
where the number of risks is distributed as a Negative Binomial(0.6875,4)
and one sum having a Negative Binomial(0.3125,4) . Since the Poisson(1)
has mean 1 and the Negative Binomial(0.3125,4) has mean 1.25, then it
follows from Example 1.3 and Theorem 1.5 that the Negative Binomial
is riskier than the Poisson. However, since the Poisson(3) has mean 3
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and the Negative Binomial(0.6875,4)has mean 2.75, then we are not
allowed to conclude that one sum of risks is riskier than the other, and
then we cannot generalize the previous result for this dependent case.
Note that we have only to consider the discrete distributions of the
number of claims, since the severity distributions are the same in both
cases.

According to the results obtained in the example of Cossette and
Marceau (2000), it is evident that the Negative Binomial generates a
riskier portfolio, but we did not gnd any generalization of this result
in terms of stop-loss order. However, we believe that with a little
work, it is probably possible to show this result for isolate cases. For
the moment, we can only explain this phenomenon by the fact that
the Negative Binomial model produces a bigger correlation coe(E cient
p(W(l),W(2)) than the Poisson model for the same p(N(l),N(Q)).

We are now interested in the biggest stop-loss premiums possible
for the Poisson and the Negative Binomial models, for given marginals
and for a given retention level d > 0. We saw in the previous report
that every sum of risks is smaller in stop-loss order than the sum of
the comonotonic version of these risks. Since stop-loss order is directly
related to stop-loss premiums, then we know that the biggest stop-loss
premium for a given retention level will arise for comonotonic risks.
In a Poisson model with common shock and a Negative Binomial with
common component, we know that the severity distributions are inde-
pendent, and that the relation of dependence is between the random
variables for the number of claims. Hence, we expect (even if we do
not know how to prove it) that a comonotonic version of these ran-
dom variables would generate the biggest stop-loss premiums. If the
counting variables are comonotonic, this means that all the claims are
common to all the classes of business. In other words, the only random
variable generating the number of claims would be the same for every
class (i.e. the variable of the common shock).

For both models in the example of Cossette and Marceau (2000),
we computed the stop-loss premiums for many values of A9 and «y, for
a retention level of d = 10. These values appear in Table 1 and 2, and
as expected, the biggest stop-loss premium is when the parameter for
the counting distribution of the common shock is maximum. Also, all
the values obtained for the Negative Binomial model are bigger than
the values for the Poisson model.
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Az 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
SsLp 1.83 1.85 1.87 1.89 1.91 193 1.94 1.96 1.98
A 2.25 250 2.75 3.00 3.25 3.50 3.75 4.00
SLP 2.00 2.02 2.03 2.05 2.07 2.09 2.10 2.12

Table 1. Stop-loss premiums for the Poisson common shock

model (deductible of 10)

oy 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
SLP 2.78 2.82 285 288 291 294 297 3.00 3.04 3.07 3.10
oy 055 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
SLP 3.13 3.16 3.20 3.23 3.26 3.29 3.32 3.35 3.39 3.42

Table 2. Stop-loss premiums for the NB common component

model (deductible of 10)

31. Numerical Illustration

After having simulated the results of Cossette and Marceau (2000),
we now reproduce the results using the theoretical methods presented
above. We grst discretize the severity distributions using the method
of rounding (mass dispersal) presented in Klugman et al. (1998), with
intervals of length 1. With the FFT function, we gnd the characteristic
functions of @y and @y (2),and using (73) and (74), we then compute
the characteristic functions QSW. We invert them with the inverse FFT
function to ¢nd the discrete distribution of W, F’W.We gnally use the
recursive method given in Theorem 2.2 in order to ¢nd the ruin proba-
bilities for given initial surplus. The SPLUS function used to perform
these operations is presented in appendix.

We present in Table 3 the ruin probabilities over periods 1 to 20
for many values of the initial surplus u, that is % (u,1,20), for the
Poisson model with common shock. The grst column presents the in-
dependent case, while the second and third columns present the case
where p(N(l),N(2))is equal to 0.25 and 0.75, respectively. The re-
sults obtained diceer a little from the results obtained by the authors.
This diceerence does not seem too big, either over the diceerent initial
surplus or the diccerent correlation structures, and this might be due
to the method and the length of the intervals used to discretize the
distribution functions of X and X®.

Similarly, we present in Table 4 the ruin probabilities over periods
1 to 20 for many values of the initial surplus u, that is ® (u, 1, 20), for
the Negative Binomial model with common component. The grst col-
umn presents the independent case, while the second and third columns
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present the case where p(N(l),N(Q)) is equal to 0.25 and 0.75, respec-
tively. Again, the results obtained diccer a little from the results ob-
tained by the authors. This diceerence does not seem too big, either
over the diceerent initial surplus or the diceerent correlation structures,
and this might be due to the method and the length of the intervals
used to discretize the distribution functions of X and X,
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w  (u,1,20,0) ¥ (u,1,20,0.25) o (u,1,20,0.75)

0 0.6213 0.6286 0.6418
10 0.3431 0.3564 0.3806
20 0.1782 0.1894 0.2105
30 0.0918 0.0995 0.1147
40  0.0466 0.0515 0.0614
50 0.0234 0.0262 0.0323
60 0.0116 0.0132 0.0167
70 0.0057 0.0066 0.0085
80  0.0028 0.0033 0.0043
90 0.0014 0.0016 0.0022
100 0.0007 0.0008 0.0011
110 0.0003 0.0004 0.0005
120 0.0002 0.0002 0.0003
130 0.0001 0.0001 0.0001
140  0.0000 0.0001 0.0001
150 0.0000 0.0000 0.0000

Table 8. Ruin probabilities v (u,1,20) for the Poisson model

v ¥(u,1,20,0) ¥ (u,1,20,0.25) 2 (u,1,20,0.75)

0 0.6787 0.6821 0.6905
10 0.4764 0.4944 0.5263
20 0.3159 0.3417 0.3856
30 0.2059 0.2329 0.2790
40 0.1318 0.1564 0.1993
a0 0.0829 0.1034 0.1406
60 0.0513 0.0674 0.0979
70 0.0312 0.0433 0.0674
80 0.0187 0.0275 0.0459
90 0.0110 0.0172 0.0309
100 0.0064 0.0106 0.0206
110 0.0037 0.0065 0.0136
120 0.0021 0.0039 0.0088
130 0.0012 0.0024 0.0057
140 0.0007 0.0014 0.0037
150 0.0004 0.0008 0.0023

Table 4. Ruin probabilities v (u,1,20) for the NB model



Conclusion

We have presented a set of invariance properties for stop-loss order that
reveal to be very useful in risk theory. We also discussed a method for
computing ruin probabilities, by another way than simulation. We
talked about the link between stop-loss order and ruin probabilities,
but we did not ¢nd any stop-loss order between the Poisson model
with common shock and the Negative Binomial model with common
component for another case than independence (i.e. when there is
no common shock!). However, spending more time on this problem
may bring us to gnd what are the necessary conditions to get a stop-
loss order between these models, and then justify why we obtained
uniformly bigger ruin probabilities for the Negative Binomial model in
the numerical example considered. This could be a good subject for
ending the term in case we have some time left. Finally, after having
simulated the ruin probabilities of the example of Cossette and Marceau
(2000), we computed them using the approximation method presented.

20
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Appendix

32. Proofs and Exercises

We provide in this section the proofs of some results presented in
the second report. In a concern of clarity, we inserted the majority
of the results for which we present the proofs. However, these results
are only quoted and for more details about the notation and the terms
used, please refer to the previous report.

Note that Ra (Fx, Fy) refers to the set of all possible marginal
distributions for (X,Y’),and similarly, we use R, (Fy,, ..., Fx, ) to refer
to the set of all possible marginal distributions for (X7, ..., X},).

32.1. Correlation Order.

Definition 32.1. Let (X1,Y7), (Xa,Y5) be two elements of Ry (Fx, Fy).
We say that (X7,Y7) is less correlated than (Xo,Y3), written (X1,Y7) <copr
(X2,Y3), if either of the following equivalent conditions holds:

1. For all non-decreasing functions f and ¢ for which the covari-
ances exist,

Cov (f (X1),9(M1)) < Cov (f (X2),9(Y2)).

2. For all x,y > 0,the following inequality holds:

FX1,Y1 (CU, y) < FX2,Y2 (CU, y) :

Proof. We want to prove that 1 < 2. We grst consider 1 = 2,
and then 2 = 1.

We assume that (1) holds. Let f be the following indicator function

0, <2

fo=1@>a)={ ] 250

b

and similarly, let the function g be

0, y<y
g(y)=1(y>y1)={ LS
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Then, by applying the degnition of the covariance, we gnd that
E(I(X1>21,Y1> ) - E(I(Xy > 2)) E(I (Y1 > 1))

Since the pairs (X, X3) and (Y7,Y3) are identically distributed, the
similar terms cancel out, giving

E(I(Xl >$1,Y1 >y1)) SE(I(XQ >I1,}/2 >y1))

Note that this last term does not cancel out, even if (Xi,X3) and
(Yl,Yz) have respectively the same marginals, because their relation of
dependence is not necessarily the same.
It is well-known that the expectation of indicator functions can be
expressed in terms of probabilities:
E(f(X)) = E(I(X>m))
= 0Pr(X <uz;)+1Pr(X > ;)
= Pr(X >u).

We can then write, equivalently,
Pr(X;>z,Y1>91) <Pr(Xe>21,Y2 > 1),
or

SXl,Yl ('fl, yl) S SXz,YQ (331, yl) .

From the fact that Sxy (z,y) =1 — Fx (z) — Fy (y) + Fx,y (z,y), we
gnd

1 — Fx, (71) — Fy, (1) + Fx, vi (21, 91)
< 1= Fx, (1) = Fy, (1) + Fxo v, (21, 91),

and since the marginals are the same for Xy, X5 and for Y7, Y5, then it
reduces to

Fx,vi (z1,11) < Fx, v, (2,9) .

Since this relation is veriged for the indicator functions, it then follows
that it is true for any non-decreasing functions f and g for which the
covariances exist. This is explained by the fact that all the functions
f and ¢ can be approximated by indicator functions.

We now suppose that (2) holds. It necessarily follows that for non-
decreasing functions f and g,

Pr(f(X1) <z,9(Y1) <wy1) <Pr(f(Xa) <z1,0(Y2) <),
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for all x1,y; > 0, since we have the same functions f and ¢ applied
respectively to the random variables with the same marginal distribu-
tions on both sides of the inequality, which let the relation unchanged
(this is an one-to-one transformation).

From Dhaene and Goovaerts (1996), we have the following result:

Cov (X,Y) = /0 h /0 " (P (u,0) — Fx (u) Fy (v)) dudv,

for any (X,Y) € Ry (Fx, Fy). We then have
Pr (f (Xl) < xlag(Yi) < yl) —Pr (f (Xl) < l‘l) Pr (9 (Yl) < yl)
< Pr(f(Xp) <mp,9(Y2) <yi) —Pr(f(X2) <a1)Pr(g(Y2) <wi),

and if we take the double integral on both sides, we get
Cov (f ,9 (Y1)
= / / (Pr(f (X1) <z1,9(M1) < 1)
—Pr(f(X1) <z1)Pr(g (Y1) <) dzidy;

/ / (Pr(f(X2) <z1,9(Y2) < 1)
—Pr(f (X2) <z1)Pr(g(Y2) <wy1)dzidy;
= Cov(f(X2),9(Y2)),

which proves that

Cov (f (X1),9(M1)) < Cov(f (X2),9(Y2)).

IN

32.2. Link Between Stop-Loss Order and Correlation Or-
der.

Theorem 32.1. Let (Xi,Y]) and (Xp, Y3) be elements of Ry (Fix, Fy).
If

(X1, Y1) <corr (X2, Y2),
then
X1+Y <4 Xo+ Yo
Proof. We know that X;+Y] smaller in stop-loss order than Xo+
Y, means that for all d > 0,
EXi1+Y—d), <EXy+Y,—d), .
We have that
E(X+Y —d),=FEX)+E({Y)—-d+E(d-X-Y)_, (75)
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since when E(X)+ E(Y)—d > 0, then E(d— X —Y) < 0, lead-
ing to E(d—X—Y)+ = 0 and when E(X)+ E(Y)—-d = —a <
0, then E(d—X—Y)+ = a > 0, resulting in E(X)+ E(Y)—d+
E(d-X-Y), =0.

For non-negative real numbers £ and ¥y, we can express (d - — y)+
as

d
(d—x—y)+:/I(xgu,ygd—u)du. (76)
0
For instance, if we have d =6, x = 2, y = 1, then

6
6-2-1), = /I(lgu,2§6—u)du
0

1 4 6
= /Odu—i-/ du+/ Odu
0 1 4

= 3

= max (0,6 —2—1).

From (76) we have
d
E(d—X—Y)+:/ E(I(X <u,Y <d-—u))du.
0

Since the expectation of the indicator function of an event is equivalent
to the probability of this event, we then have

d
Ed-X-Y), = /Pr(XSu,YSd—u)du
0
d
= /FX’y(u,d—u)du,
0
leading to
d
E(X+Y—d)+:E(X)+E(Y)—d+/ Fxy (u,d —u)du. (77)
0

From Degnition 5.1, we know that (Xj,Y]) being less correlated
than (Xo,Y5) is equivalent to say that Fx, v, (z,y) < Fx,v, (¢,y). The
following relation is then veriged

d d
/ Fx,y; (z,d — z)dz < / Fx,y, (x,d — ) dz,
0 0
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and adding some terms on both sides of the inequality leads to

d
E(X)+E (V) —d+/ Fyoy, (2,d — 2) do
0

d
< E(Xg)—i-E(YQ)—d—i—/ Fx,v, (z,d —x)dz.
0

Since X; and X3 have the same marginals, as Y7 and Y3, then E (X7)+
E(Y)) —d=FE (X)) + E(Y2) —d, and from (77), it follows that

EXi+Yi—d), <EX;+Yy—d),,

which means, by degnition, that the sum X; +Y] is smaller in stop-loss
order than the sum X, + Y5. &

32.3. Related Results. Note that the proof of Theorem 1.2 from
the previous report directly follows from Theorem 5.1, along with the
notion of Frchet bounds. It is a fact that risks attaining the upper
Frchet bound are comonotonic, and by the degnition of comonotonic-
ity, a pair of this kind of risks can be written as (F);1 (U), Fy! (U)),
where U is uniformly distributed on (0,1).Tt is also a fact that we can
express a pair of mutually exclusive risks, i.e. risks attaining the lower
Frchet bound, as (F);l (U),Fy (11— U)) . From Degnition 5.1, saying
that

F)?L,i" (x,y) < FX,Y (-T,y) < F)c(,Y (xay)a

where F%y and FY'5 stand for the comonotonic and the mutually
exclusive versions of FX’Y respectively, is equivalent to say that

(F'(U), Bt (1 =U)) <corr (X,Y) <eorr (Fx(U), Fy (U)),
which in turn, is equivalent by Theorem 5.1 to
FX'(U)+ B (1=-U)<g X4+Y <, F' (U)+ F, 1 (D).

This thus proves Theorem 1.2 from previous report.

Theorem 2.1 from previous report is also pretty straight-forward to
prove. We know that 7 is a premium principle that preserves stop-
loss order, and we also know that (X1,Y)) <copr (X2,Y2). Then, by
Theorem 5.1, we have that X; + Y] <4 X9+ Y5, which is by degnition

E(X1+}/1_d)+ SE(X2+16_d)+7
for all d > 0, and since 7 preserves stop-loss order, then the relation
T(Xi+Y) <71 (Xo+Ys),

has to be true, which proves Theorem 2.1 of the previous report.
Corollary 2.2 from the previous report is found by simply inserting
the result of Theorem 1.2 from the previous report, i.e. the special
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cases for Frchet bounds, into Theorem 2.1 from the previous report.
This is exactly the same reasoning than for the proof of Theorem 2.1
from the previous report, but in considering comonotonic and mutually
exclusive risks instead of general risks.

32.4. Wang’s Premium Principle.

Theorem 32.2. Wang’s premium principle preserves stop-loss or-
der, i.e.

X<qgY=H,(X)<H,Y).
Moreover, it is additive in the class of comonotonic risks,
Hy(X+Y)=H,(X)+H,(Y),
for comonotonic risks X and Y.
Proof. By degnition, X <, Y means
E(X—-d) <E(Y-d),,

for all d > 0. We can express this as
E(X —d), :/ Sy (z) dz g/ Sy (y)dy=E(Y —d), .
d d

If we consider a non-decreasing and concave function g with ¢ (0) =0
and g (1) =1, then we can apply the function g to Sx and Sy without
altering the relation, because of the non-decreasing property of g (this
is an one-to-one transformation). We get

E(H,(X)-d), = / " 9(Sx (@) da

< /dmg(sy@»dy:E(Hg(Y)—d>+,

which proves the grst part of the theorem.
For the second part, we need the following relation to gnd an ex-
pectation

B (X) :/OOOSX (z) dz.

We should recall that the expectation is the area under the curve of
Sx. The previous formula has been determined by jslicing verticallyj,
i.e. by adding all the vertical slices of width dx under the curve Sx.
However, it is possible to modify this formula by considering the quan-
tile axis instead of the x-axis, i.e. by jslicing horizontallyj. We can
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see this as adding all the horizontal slices for each diceerential dq under
the curve Sy'. We then have

B = [ 'S (@) da. 9)

For a non-decreasing function g with g (0) = 0 and g (1) = 1, it then
follows that

[e9) 1
A= [ o@x@)de= [ 7 @do(o).
0 0
This comes from the fact that

9(Sx (x)) =9g(q) =4, (79)

where ¢ represents the quantile of the function Sx () and ¢’ represents
the quantile of the function g (Sx (z)). Note that the range of this last
function goes from 0 to 1. Since the survival function takes values
between 0 and 1, and since ¢ is non-decreasing with g(()) = 0 and
g (1) = 1, then this function cannot take values outside from (0,1).
We can transform (79) to obtain

and by isolating x, we have

z=5% (97" ().

From (78), we then have

and since we know from (79) that g(¢) =¢ = ¢ = g! (¢'), it follows
that

H, (X) = / S (g) dg (q)

Wang (1996) presents a result stating that for two comonotonic
risks X and Y, the following relation holds:

Sx' (@) + Sy (@) = Sxiy (@),
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for 0 < g < 1. Tt thus directly follows that
1
H(+Y) = [ 83 @dlo
0

1
— [ (55 @+ @) do (o
0
= HQ(X)+H9(Y):
proving the second part of the theorem. i

32.5. Generalized Frchet Bounds. We now prove the result
of generalized Frchet bounds, that is the Frchet bounds for a multi-
variate joint distribution. From this result, the joint distribution of X
is subject to the following bounds:

max ZFXk (zg) —(n—1),0p < Fx(x)

< min{Fy, (z1), ..., Fx, (z,)} .

Proof. To prove this result, we will use the set theory. For in-
stance, we consider the marginal cdf FXk (:Ek) as the probability of the
event By = {X; < zx}.In asimilar reasoning, Fx (x) is the probability
of an intersection of m events, E1MN...N E,.

We grst prove the right-hand side of the inequality. The probability
of an intersection of events being always smaller than or equal to the
probability of each of the individual events, we have

for k = 1,2,...,n. The probability of the intersection must then be
smaller than or equal to the smallest probability among the individual
events. It then follows that

Fx (X) = PI‘(ElﬂﬂEn)
< min (Pr(Ey),...,Pr(E,)) = min{Fx, (z1),...., Fx, (zn)},
and the result for the upper bound is veriged.

We now consider the left-hand side of the inequality. Using the
DeMorgan’s law of sets, the events

(EiN..NE,) =E{fU..UES,

are equivalent, where the superscript ¢ denotes the complement of the
event. Thus, we see that

Pr(E1N..NE,) = 1—-Pr(E;N..NE,)°
= 1—-Pr(EfU..UE}),
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and since the sum of the probabilities of individual events has a prob-
ability at least as big as the probability of the union of these events,
we can write

1-Pr(EfU..UE) > 1-) Pr(E)
k=1

n

= 1-) (1—Pr(E))

k=1
n
= l—n-f—ZPr(Ek).
k=1
We then have

Fx(x) = Pr(EiNn..NE,)
> 1-n+)» Pr(E) =) Fx (z)— (n-1),

and because probabilities have to be non-negative, we have

Fx (x) > max ZFXk (xg) —(n—1),0 7. (80)
k=1

32.6. Cdf for Lower Frchet Bound.

Theorem 32.3. A necessary and su(Ecient condition for the lower
Frchet bound to be a cdf in R, (Fx,, ..., Fx,) is that either

1. Z?:lFXj (.Z']) <1 for all x € R* with 0 < FX], (ij) < 1,57 =

1,...,n; or
2. Z?:lFXj (.’L']) >n—1for all x € R* with 0 < FXj (.’L'J) < 1,] =
1,...,n.

Proof. We want to prove that condition (1) and (2) are su(Ecient
conditions for the lower Frchet bound to be a proper multivariate cdf.
However, the conditions that a function must satisfy in order to be
a multivariate cdf diceer from the univariate case. According to Joe
(1997), we can prove the su(BEcient condition by verifying the rectangle
inequality, i.e. for all (G1,...,0m), (b1, ..., bp) with a; < b;, i =1,...,m,

2 2
Z Z (_1)i1+...+im F (xlila ---:xmim) 2 Oa (81)

i1=1 im=1

where Tj1 = aj and Tjo = bj.
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Let x;1 < Zj2, Pj1 = F($j1), and Pjo = F(xjg), 7 =1,...,m. Let
(y)+ = maX{O,y}, as usual. The rectangle condition for the lower
Frchet bound leads to

2 2

LD (DN Tpy = (m=1)| > 0. (82)
j=1

11=1 tm=1

This equation means that we add the term =+ [Z;-n:lpjij —(m—1)

for all possible combinations of the pj; and pjo, j = 1,...,m, the sign
of each term being positive when the number of pj;; in it is even, and
negative when the number of pj; is odd.

To prove the grst case, assume that (:En, ...,:Eml) satisges condition
(1). If a term contains two probabilities that are less than one together,
then this term takes the value 0. For instance, consider the case of m
components in a term and two of these components are less than 1
together. Since the sum of the M —2 remaining terms is at most m — 2,
then the sum of all M components cannot be greater than m — 1, and

then the term Z;n:lpjij - (m— 1)] is 0. This means that the only

non-zero terms contain at most one of the p;i’s, j =1,...,m. Then, by
eliminating the zero terms in (82), we get:

(P12 + D22+ oo + P2 — (m — 1)),

— (P11 + P22+ o + P2 — (m— 1))

— (P12 + P + P32+ . +Pm2 — (M — 1)),

—o— (P2t P2+ . +Pmag+pm—(m—1)),. (83)

If p1o = Pog = ... = Ppa = 1, then (83) becomes 1—pi11—pPo1 —-.. — Pt >
0, since Z;-n:lpjl <1LIpo=..=pj12=DpPjy12= ... =Pm2 =1, and
pjo < 1, then (83) becomes pjo — pj1 > 0, since Z;-n:lpjl < 1. Finally,
if at least two of the m probability in a term are less than one, then
(83) is 0. The rectangle inequality is thus satisged and condition (1) is
su(E cient to have a proper cdf.

We now assume that (Z19, ..., Tp2) satisges condition (2), in order to
prove the second case. If pj; > 0 for all j, then (82) becomes 0 since all
of the terms are non-negative. If at most m — 2 of the Pj1 are zero, then

(82) is zero because the signs (—1)i1+"'+im of pj1,pjo for the non-zero
terms balance out for all 7. If p11 = ... = pj_11 = Pjt1,0 = «.. = P1 = 0
and pj; > 0, for 7 = 1,...,m, then (82) becomes pjp — pj1 > 0. If
P11 = ... = Pm1 = 0, then (82) becomes P12 + ... + P — (M —1) > 0.

Hence, condition (2) is su(Ecient to have a proper cdf. I
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32.7. PCD Risks Versus PQD Risks. We now want to show
that for n = 2, positive quadrant dependence is equivalent to positive
cumulative dependence, that is PQD < PCD.

Suppose that the risks X; and Xy are PQD. By degnition of PC'D
risks, we have Z C {1,2}, and St = X;+ X5. Risks are said to be PC'D
if for any Z and j ¢ Z, Sz and X; are PQD. In our case, S; = X; and
Xsare PQD by assumption, as well as So = X5 and X4, and the PCD
condition is then veriged.

Now assume that the risks X; and X9 are PCD. By degnition, it
means that S7 = X; and X5, as well as So = X3 and X, are PQD,
which proves the necessary condition.

Alternatively, we can use Theorem 9.1 from the previous report to
prove the su(Ecient condition..

Suppose that the risks X; and Xy are PQ)D. By degnition, we have

Fx, x, (21, 72) > Fx; (11) Fx, (22)

that is the risks are more correlated than independent risks, which is
equivalent to

L 1
XlaX2 zcurr Xl ,X2 .
From Theorem 5.1, we can write
X1+ Xo >0 X{-+ X5,

and from Theorem 9.1 from the previous report, it follows that the
risks X; and Xy are PCD.

Note that it is normal that PQD < PCD for n = 2, since PCD is
a notion that allows to extend P@D to more than just 2 dimensions!

32.8. Bounds of General Risks Versus PCD Risks. Con-
sider the risks Xy, ..., X;, with marginal distributions Fl,,..., Fx, . We
consider four versions of these risks, that is the mutually exclusive,
independent, PC'D and comonotonic versions.

For the comonotonic risks, let X; be described by

Xi=Fx ' (U),i=1,..,n,
where U is uniformly distributed on the interval (0,1).
For the PCD risks, let X; be described by
Xz' = BZI, 1= 1, ey 1,
where B;, 7 = 1,...,n, is distributed as an Exponential with mean 1,
and where [ has the following distribution:
, 7=0
;o J=1



32. PROOFS AND EXERCISES

33

For the independent and the mutually exclusive risks, let X; be

described by
Xi = BzIz, 1= 1, ., n,

where B;, 1 = 1,...,n, is distributed as an Exponential with mean

and where I;, 2 =1,...,n, has the following distribution:

N S
Pr(l’:]):{ (S

However, for the mutually exclusive version, we have that Iy +...+ 1,

1.

We want to show that for mutually exclusive risks, condition (1) on

p-15 of the previous report is satisged. We have that
¢ = 1—Fx, (0)=1-Pr(B;[; <0)
1—Pr(B;; <0|; =0)Pr(I; =0)
—Pr(B;; <0|;=1)Pr(I; =1)

() o)

-1 — 1

1
n n n
for 1 = 1,...,n, which leads to

n n 1
doa=) ~=1<1,
i=1

i=1

satisfying the condition to have mutually exclusive risks.

We now compute the cdf of X;,2=1,...,n. For x; >0,i=1,..

we have

() el

n—1 1 —e™%
+

n n
o n—e®
B n
The distribution of X;, 1 = 1,...,n, is then given by
0 n=1
Pr ) ={ % e
79 n

for x; > 0,2=1,....n.

"n,
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The sum of the marginals is

i=1 =1
n
1 .
= 7’L——E e,
n
=1

and we obtain for the lower Frchet bound

n

Fx,..x, (®1,..,z,) = max ZFXi(xi)—(n—l),O
i=1
LS = (1.0
= max{n— — e " —(n—
"= ,

1 n
= max 1——E e "0
n
i=1

Since the expression 1 — %Z?:l e % cannot be negative, we are left
with

1 n

_ E e

FXl,---,Xn (iL'l, ,.’L‘n) =1- E e ™,
=1

for x; > 0,2=1,....n.
We now compute the joint cdf of Xi,..., X, the independent ver-
sion of the risks

FX%,...,X% (xla--'axn) = HFXi (xl)

=1

m(n—e T
- ()

n o=
- 1I(-5)

It is di(Ecult to quantify how much of an improvement represents the
independent version of the risks over the lower Frchet bound in terms
of lower bound. However, the existence of such an improvement is
evident by looking at the cdf’s obtained.

Let

e T

a; =
n
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We then have for the independent case

FX%,...,X%— (xla an) = . (1 - n )
i=1
n
= H (1-a)
=1
For n = 2, we have
Fxixp (@1,22) = (1—a1)(1—ay)

= 1—a; —as+ aqas,
and for n = 3, we obtain
Fxi  xt (@1, 00) = (1—a1)(1—az)(1 - as)
(1 —ay —ag+ araqg) (1 — a3)

= 1- a; — G — a3 + a102 + a203 + 143 — A10203.

For the mutually exclusive version, we have respectively
FXl,Xg ($1,332) =1-a; — ao,
and
FX1,X2,X3 ($1,$2, 333) =1-a;—ay—as.

Since the terms ajag and (a1a2 —+ aqasz + a1a3 — alagag) are clearly big-
ger than 0 when 0 < ga; <1 for all %, then it is evident that

FxJ_

i ,___,X#- (xla axn) Z FXl,...,Xn (xla ,l‘n) ’

and so the independent case is a tighter bound for PCD risks.
We can generalize this result for the case where we have n PCD
risks, by using the proof by induction. We know that for n = 3,

l—a1—ay—a3<(1—a)(1—as)(l—a3).
Let assume that this is true for n =k :
l—a;—..—ap < (1—ay)...(1 —ag).
We verify that it is true for n =k + 1 :

1—ay — ... —ag — g1 (1—ay)...(1—ag) — g1

(I =ar) .. (1= ap) (1 = ),

— ak), we necessarily have that

IAINA

since if we let 3= (1—aq)...(1
B—ak < B(1—agu) = — Bag,
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since 0 < a;,8 <1, for all 7. Then, it follows that

FXI:---,Xn (371, amn) = 1- ap — ... — Qy
S (]- _a/l) eee (1 _an) = FXIJ‘,,X#" (xl,.’xn)’

for all n > 1.

33. SPLUS Functions

33.1. Stop-Loss Premiums. This function calculates the stop-
loss(d) premiums
stoploss <- function(fs, d1, pas = 1)-
psld <- ¢()
s <- ¢(1l:length(fs) - 1) * pas
for(i in 1l:length(dl)) —
sl <- ((s > d1[i]) * (d1[i] >= 0)) * (s - d1]i])
psld <- c¢(psld, sum (sl * fs))

return (psld)

33.2. Ruin Probabilities. This function calculates ruin proba-
bilities for many values of the initial surplus, either for the Poisson
with common shock or for the NB with common component. It takes
as arguments the model (JPj or jNBj), the length of the interval for
discretizing (pas), the parameters of each class of business (11,12,10),
the security margin (theta), and the periods of the ruin probabilities
(p)-

pruin <- function(cond = jPj, pas = 1, 11 = 4, 12 = 4, 10 = 0,
theta = 0.15, p = 20)-

111 <-11 -10
122 <-12 - 10
1 <-111 + 122 + 10
long <- 2715
#Discretize the severity distributions and calculate their character-
istic function
Fx1 <- pweibull((pas * (2 * (0:(2°12 - 1)) + 1))/2, 0.5, 0.5625)
fx1 <- dice(c(0, Fx1, 1))
fx11 <- ¢(fx1, rep(0, (long - length(fx1))))
Mx1 <- cet(fx1l)
Fx2 <- pexp((pas * (2 * (0:(2°12 - 1)) + 1))/2, 1/1.125)
fx2 <- dice(c(0, Fx2, 1))
fx2] <- ¢(fx2, rep(0, (long - length(fx2))))
Mx2 <- cet(fx2l)
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#Compute the characteristic function of W
if(cond == jPj) —
Mx <- (111 * Mx1 + 122 * Mx2 + 10 * Mx1 * Mx2)/l
Ms <-exp(l * Mx - 1))

if(cond == jNBj) -
A<-(1-4*Mx1-1)"(-111) *(1-4* Mx2-1))"(-
122)
B<-(1-4*%Mx1-1)-4%*Mx2-1))"(-10)
Ms <- A *B

#Compute the premiums received by the insurer at each period
EW <- (0.5625 * gamma(l + 1/0.5) * 4 + 1.125 * 4) * (1 +
theta)
#Calculate the discrete distribution of W
fs <- Re(cet(Ms, inverse = T))[1:long]
fs <- (fs >=0) * fs
fs <- fs/sum (fs)
Fs <- cumsum (fs)
Fsl <- ¢()
for(i in 0:((long - 2) * pas)) —
Fsl <- ¢(Fsl, Fs[i/pas + 1])

fs1 <- diee(c(0, Fsl))
#Calculate the ruin probabilities over p periods for many values of
the initial surplus
v <- 5000
bll <- ¢()
for(k in 0:v) —
bll <- ¢(bll, sum(fs[l:((k + EW)/pas + 1)]))

iml <- bll
bli <- ¢()
for(j in 2:20) -

for(k in 0:v) —

bli <- ¢(bli, sum(im1[l:(k + EW + 1)] * fs1[(k +
EW + 1):1]))
iml <- bli
bli <- ¢()

return(1l - im1[1:150])
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