KOLMOGOROV OPERATOR WITH THE VECTOR FIELD IN NASH CLASS

D. KINZEBULATOV AND YU. A. SEMËNOV

ABSTRACT. We consider divergence-form parabolic equation with measurable uniformly elliptic matrix and the vector field in a large class containing, in particular, the vector fields in L^p , p > d, as well as some vector fields that are not even in $L^{2+\varepsilon}_{loc}$, $\varepsilon > 0$. We establish Hölder continuity of the bounded soutions, sharp two-sided Gaussian bound on the heat kernel, Harnack inequality.

1. INTRODUCTION

A celebrated result of E. De Giorgi [3] and J. Nash [11] states that the bounded solutions of the parabolic equation

$$(\partial_t + A)u = 0, \quad A = -\nabla \cdot a \cdot \nabla \tag{1}$$

on $[0, \infty] \times \mathbb{R}^d$, $d \ge 3$, with measurable matrix

$$a = a^* : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d,$$

$$\sigma I \le a(x) \le \xi I \quad \text{for a.e. } x \in \mathbb{R}^d \quad \text{for constants } 0 < \sigma < \xi < \infty$$

$$(H_{\sigma,\xi})$$

are Hölder continuous, and the heat kernel $e^{-tA}(x, y)$ satisfies two-sided Gaussian bound with constants that depend only on d, σ, ξ . The purpose of this paper is to extend their result to the equation

$$(\partial_t + \Lambda)u = 0 \tag{2}$$

where

 $\Lambda = -\nabla \cdot a \cdot \nabla + b \cdot \nabla$

with $b: \mathbb{R}^d \to \mathbb{R}^d$ in a large class of locally unbounded measurable vector fields.

1. The existence and the precise form of the relationship between the integral characteristics of the coefficients a and b and the regularity properties of solutions to (1) and (2) is one of the classical and central problems in the theory of elliptic and parabolic PDEs.

By a result of D. G. Aronson [1], the heat kernel $e^{-t\Lambda}(x, y)$ of equation (2) satisfies two-sided Gaussian bound. By a result of S. D. Eidelman-F. O. Porper [4], $t|\partial_t e^{-t\Lambda}(x, y)|$ satisfies the Gaussian upper bound. The constants in their bounds depend on d, σ, ξ , and the following integral characteristics of b:

$$||b_1||_p + ||b_2||_{\infty}, \quad p > d$$

provided that $b_1 + b_2 = b$.

²⁰¹⁰ Mathematics Subject Classification. 35K08, 47D07 (primary), 60J35 (secondary).

Key words and phrases. Heat kernel bounds, De Giorgi-Nash theory, Harnack inequality, strong solutions, singular drift, Feller semigroups.

The research of D.K. is supported by grants from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2017-05567) and Fonds de recherche du Québec - Nature et technologies (2019-NC-254946).

Our first goal is to demonstrate, based on ideas of E. De Giorgi and J. Nash, that the constants in the two-sided bound on $e^{-t\Lambda}(x, y)$, in the upper bound on $t|\partial_t e^{-t\Lambda}(x, y)|$, as well as Hölder continuity of bounded solutions to (2) (assuming first that the coefficients *a*, *b* are smooth) depend in fact on a much finer characteristic of the vector field *b*, that is, on its *elliptic Nash norm*:

$$n_e(b,h) := \sup_{x \in \mathbb{R}^d} \int_0^h \sqrt{e^{t\Delta} |b|^2(x)} \, \frac{dt}{\sqrt{t}} \quad (h > 0),$$

and only on its elliptic Nash norm (Theorem 3.1).

Next, as is well known, the existence of even strong a priori estimates does not always mean that there is a satisfactory a posteriori regularity theory of the corresponding differential operator. Our second goal is to develop an exhaustive a posteriori theory of (2), including two-sided Gaussian bound on the heat kernel of $-\nabla \cdot a \cdot \nabla + b \cdot \nabla$, assuming only that b is measurable, $|b| \in L^2_{loc}$ and

 $n_e(b,h)$ is sufficiently small

for some h > 0 (Theorem 3.2).

DEFINITION 1.1. A measurable vector field $b : \mathbb{R}^d \to \mathbb{R}^d$ such that $|b| \in L^2_{\text{loc}}$ is said to be in the Nash class \mathbf{N}_e if

 $n_e(b,h) < \infty$

for some h > 0.

The class \mathbf{N}_e contains the vector fields $b = b_1 + b_2$ with $||b_1||_p + ||b_2||_{\infty} < \infty$, p > d. For such b one has $\lim_{h\downarrow 0} n_e(b,h) = 0$. The class \mathbf{N}_e also contains some vector fields b with |b| not even in $L^{2+\varepsilon}_{\text{loc}}$, $\varepsilon > 0$. See more detailed discussion in Section 3. The elliptic Nash norm $n_e(b,h)$ was introduced in [14] where the two-sided Gaussian bound on the heat kernel $e^{-t\Lambda}(x,y)$ was obtained under some additional to $b \in \mathbf{N}_e$ assumptions.

If a = I or a is Hölder continuous, then the condition $|b| \in L^1_{loc}$ and

 $\kappa_{d+1}(b,h)$ is sufficiently small

for some h > 0, where

$$\kappa_{d+1}(b,h) := \sup_{x \in \mathbb{R}^d} \int_0^h e^{t\Delta} |b|(x) \frac{dt}{\sqrt{t}} \qquad (\text{Kato norm of } b),$$

provides the upper Gaussian bound [13], the Harnack inequality and the lower Gaussian bound on the heat kernel $e^{-t\Lambda}(x,y)$ [16], see also [17]. The class of the vector fields b such that $|b| \in L^1_{\text{loc}}$ and

$$\kappa_{d+1}(b,h) < \infty$$

for some h > 0 is the well known Kato class \mathbf{K}^{d+1} . (The results in [16, 17] were obtained, in fact, for b = b(t, x) in the non-autonomous Kato class, itself introduced by Q. S. Zhang.)

Thus, the Nash class \mathbf{N}_e is an analogue of the Kato class \mathbf{K}^{d+1} in case a = a(x) is only measurable. Note that $\mathbf{N}_e \subset \mathbf{K}^{d+1}$ as is immediate from elementary inequality $e^{t\Delta}|b|(x) \leq \sqrt{e^{t\Delta}|b|^2(x)}$.

The principal difference between the cases covered by the Nash class \mathbf{N}_e (*a* is measurable) and the Kato class \mathbf{K}^{d+1} (*a* is Hölder continuous) is as follows. For Hölder continuous *a* one can appeal, in the proof of the two-sided bound, to the estimate $|\nabla_x e^{-tA}(x, y)| \leq Ct^{-\frac{1}{2}}e^{ct\Delta}(x, y)$, which does not hold for merely measurable a; for such a the role of the previous estimate is assumed by far-reaching inequalities

$$\mathcal{N}(t) \le \frac{c_0}{t}, \quad \hat{\mathcal{N}}(t) \le \frac{\hat{c}_0}{t},$$

where $\mathcal{N}(t)$, $\hat{\mathcal{N}}(t)$ are the so-called Nash's functions similar to

$$\langle \nabla_x p \cdot \frac{a(x)}{p} \cdot \nabla_x p \rangle, \quad p \equiv p(t, x, y) = e^{-tA}(x, y)$$

employed by J. Nash in [11]. See Sections 4 and 5 for details.

We comment more on the relationship between the Nash class and the Kato class in Section 9 below.

2. In the context of the semigroup theory of (2), the standard assumption on the vector field b used in the literature is the form-boundedness condition: there exist constants $\delta > 0$ and $c(\delta) \ge 0$ such that the quadratic inequality

$$\|\sqrt{b \cdot a^{-1} \cdot b} f\|_2^2 \le \delta \|A^{\frac{1}{2}}f\|_2^2 + c(\delta)\|f\|_2^2,$$

holds for all $f \in W^{1,2}$. Briefly,

 $b \cdot a^{-1} \cdot b \leq \delta A + c(\delta)$ (in the sense of quadratic forms)

(written as $b \in \mathbf{F}_{\delta}(A)$). This is a large class of singular vector fields containing e.g. the vector fields $b = b_1 + b_2$ with $|b_1|$ in L^d or in the weak L^d class, $|b_2| \in L^{\infty}$, see discussion below (before Theorem 3.3).

If $b \in \mathbf{F}_{\delta}(A)$ with $\delta < 1$, then the corresponding to $\Lambda = -\nabla \cdot a \cdot \nabla + b \cdot \nabla$ quadratic form on $W^{1,2}$ is quasi *m*-accretive, and so it determines an operator Λ_2 in L^2 generating a holomorphic semigroup. The equation (2) with $\Lambda = \Lambda_2$ possesses a detailed regularity theory in L^2 and, moreover, in L^p , $p > \frac{2}{2-\sqrt{\delta}}$, but not in L^1 . See Section 9 for more details.

If $b \in \mathbf{N}_e$, then the situation is different: the equation (2) does not seem to admit any L^p theory for p > 1 beyond the existence of a semigroup. However, it admits a detailed L^1 theory. In Theorem 3.2 we construct an operator realization Λ_1 of the formal operator Λ in L^1 as the *algebraic sum*

$$\Lambda_1 = A_1 + (b \cdot \nabla)_1, \quad D(\Lambda_1) = D(A_1),$$

where A_1 is the operator realization of $-\nabla \cdot a \cdot \nabla$ in L^1 and $(b \cdot \nabla)_1$ is the closure of $b \cdot \nabla$ in the graph norm of A_1 , and show that

$$e^{-t\Lambda_1} = s - L^1 - \lim_{\varepsilon \downarrow 0} e^{-t\Lambda_1^{\varepsilon}}$$
 (loc. uniformly in $t \ge 0$)

where $\Lambda_1^{\varepsilon} = -\nabla \cdot a_{\varepsilon} \cdot \nabla + b_{\varepsilon} \cdot \nabla$ of domain $D(\Lambda_1^{\varepsilon}) = (1 - \Delta)^{-1} L^1$ with smooth $(a_{\varepsilon}, b_{\varepsilon})$ approximating (a, b) and essentially non-increasing the Nash norm:

$$n_e(b_{\varepsilon}, h) \le n_e(b, h) + \tilde{c}\varepsilon.$$

Armed with the last results and a priori two-sided Gaussian bound on $e^{-t\Lambda^{\varepsilon}}(x, y)$ of Theorem 3.1, we develop an exhaustive regularity theory of (2), including a posteriori two-sided Gaussian bound on the heat kernel $e^{-t\Lambda}(x, y)$, the Harnack inequality, the Hölder continuity of bounded solutions of (2), the strong Feller property, and the Gaussian upper bound on $t|\partial_t e^{-t\Lambda}(x, y)|$ with

the optimal (up to a strict inequality) exponent in the Gaussian factor. We also establish the bounds

$$\|\nabla(\mu + \Lambda_1)^{-\alpha}\|_{1 \to 1} \le C\mu^{-\frac{2\alpha-1}{2}}$$
for $\frac{1}{2} < \alpha \le 1$, $\mu > \mu_0 > 0$ (μ_0 depends on $d, \sigma, \xi, n_e(b, h)$), and
 $\|\nabla e^{-t\Lambda_1}\|_{1 \to 1} \le ct^{-\frac{1}{2}}e^{\omega t}, \quad t > 0$

see Theorem 3.3.

We conclude this introduction by mentioning that the condition $b \in \mathbf{F}_{\delta}(A)$, $\delta < \infty$ provides two-sided Gaussian bounds on the heat kernel of $-\nabla \cdot a \cdot \nabla + b \cdot \nabla$ but only as long as div b satisfies additional integral constraints (that is, div b is in the Kato class \mathbf{K}^d , cf. Section 9), see [7].

CONTENTS

1. Introduction	1
2. Preliminaries	4
3. Main results	6
4. Nash's function \mathcal{N}_{δ}	10
5. Proof of Theorem 3.1	11
5.1. Auxiliary estimates	11
5.2. Nash's function $\hat{\mathcal{N}}_{\delta}$	12
5.3. Proof of the upper bound	14
5.4. Proof of the lower bound	15
6. Proof of Proposition 3.1	16
7. Proof of Theorem 3.2	18
8. Proof of Theorem 3.3	22
9. Comments	23
References	26

2. Preliminaries

We will need the following standard notations and results.

1. Let $\mathcal{B}(X, Y)$ denote the space of bounded linear operators between Banach spaces $X \to Y$, endowed with the operator norm $\|\cdot\|_{X\to Y}$. $\mathcal{B}(X) := \mathcal{B}(X, X)$.

We write $T = s \cdot X \cdot \lim_n T_n$ for $T, T_n \in \mathcal{B}(X, Y)$ if

$$\lim_{n} \|Tf - T_n f\|_Y = 0 \quad \text{for every } f \in X.$$

Denote by $[L^p]^d$ and $[L^p]^{d \times d}$ the spaces of the *d*-vectors and the $d \times d$ -matrices with entries in $L^p \equiv L^p(\mathbb{R}^d, dx)$.

Put

$$\langle f,g \rangle = \langle f\bar{g} \rangle := \int_{\mathbb{R}^d} f\bar{g}dx$$

and $\|\cdot\|_{p\to q} = \|\cdot\|_{L^p\to L^q}$.

 $C_{\infty} := \{ f \in C(\mathbb{R}^d) \mid \lim_{|x| \to \infty} f(x) = 0 \} \text{ endowed with the sup-norm.} \\ \mathcal{W}^{\alpha,1}, \alpha > 0 \text{, is the Bessel potential space endowed with norm } \|u\|_{1,\alpha} := \|g\|_1, u = (1 - \Delta)^{-\frac{\alpha}{2}}g, g \in L^1.$

Let $E_{\varepsilon}f := e^{\varepsilon\Delta}f$ ($\varepsilon > 0$), the De Giorgi mollifier of f. For a vector field b we put $b^2 := |b|^2$ and $b_a^2 := b \cdot a^{-1} \cdot b$. We write $c \neq c(\varepsilon)$ to emphasize that c is independent of ε . Put

$$k_{\mu}(t, x, y) \equiv k(\mu t, x, y) := (4\pi\mu t)^{-\frac{d}{2}} e^{-\frac{|x-y|^2}{4\mu t}}, \quad \mu > 0.$$

2. Let $a \in (H_{\sigma,\xi})$, $0 < \sigma < \xi < \infty$. Let p(t, x, y) be the heat kernel of $-\nabla \cdot a \cdot \nabla$ (that is, $p(t, x, y) = e^{-tA}(x, y)$ in the notation of the next section).

THEOREM 2.1. Fix constants $0 < c_2 < \sigma$ and $c_4 > \xi$. There exist constants c_1 , $c_3 > 0$ that depend only on d, c_2, c_4 such that, for all t > 0, $x, y \in \mathbb{R}^d$,

$$p(t, x, y) \le c_3 k_{c_4}(t, x - y) \tag{UGB}^p$$

and

$$c_1 k_{c_2}(t, x - y) \le p(t, x, y). \tag{LGB}^p$$

Also, for a given $c_6 > \xi$ there is a generic constant c_5 depending on c_6 such that

$$t|\partial_t p(t, x, y)| \le c_5 k_{c_6}(t, x - y) \tag{UGB}^{\mathcal{O}_t p}$$

for all $t > 0, x, y \in \mathbb{R}^d$.

The proof of (UGB^p) and (LGB^p) with some constants c_2 and c_4 is due to [1]. The proof of $(\text{UGB}^{\partial_t p})$ with some constant c_6 is due to [4]. The proof of (UGB^p) and $(\text{UGB}^{\partial_t p})$ in the form as stated is due to [9], and in a strengthened form, i.e. with polynomial factor, can be found in [2]. The proof of (LGB^p) as stated is due to [13].

3. Recall that if S and T are linear operators in a Banach space $(Y, \|\cdot\|)$, then S is said to be T-bounded if $D(S) \supset D(T)$ and there exist constants η and c such that

$$||Sy|| \le \eta ||Ty|| + c||y|| \quad \text{for all } y \in D(T).$$

By $T \upharpoonright X$ we denote the restriction of T to a subset $X \subset D(T)$. By $(T \upharpoonright X)_{Y \to Y}^{clos}$ we denote the closure of $T \upharpoonright X$ (when it exists). Next, let operator T be closed. A subset $D_T \subset D(T)$ is called a core of T if

$$(T \upharpoonright D_T)_{Y \to Y}^{\text{clos}} = T.$$

Let P, Q be linear operators in a Banach space Y. Assume that Q is closed, D(P) contains a core D_Q of Q and $||Py|| \leq \eta ||Qy|| + c ||y||$, $y \in D_Q$ (η, c some constants). This inequality extends by continuity to D(Q). An extension of P obtained in this way, say \tilde{P} , is Q-bounded.

3. Main results

1. We first prove a priori Gaussian lower and upper bounds on the heat kernel of $-\nabla \cdot a \cdot \nabla + b \cdot \nabla$, $a \in (H_{\sigma,\xi})$. In what follows, $d \geq 3$.

DEFINITION 3.1. We say that a constant is generic if it depends only on the dimension d and the constants σ and ξ .

THEOREM 3.1. Let $a \in (H_{\sigma,\xi})$ be smooth, let $b : \mathbb{R}^d \to \mathbb{R}^d$ be smooth and bounded, $\xi_1 > \xi$. There exists a generic constant $\tilde{n} > 0$ such that if the Nash norm of b

$$n_e(b,h) \equiv \sup_{x \in \mathbb{R}^d} \int_0^h \sqrt{e^{t\Delta} |b|^2(x)} \, \frac{dt}{\sqrt{t}}$$

satisfies

$$n_e(b,h) \le \tilde{n}$$

for some h > 0, then there exist positive constants $\sigma_1 < \sigma$ and c_{σ_1} , $c_{\xi_1} > 0$, $\omega_i \ge 0$, i = 1, 2, such that the heat kernel u(t, x, y) of $-\nabla \cdot a \cdot \nabla + b \cdot \nabla$ satisfies the Gaussian lower and upper bounds

$$c_{\sigma_1} e^{-t\omega_1} k_{\sigma_1}(t, x - y) \le u(t, x, y) \le c_{\xi_1} e^{t\omega_2} k_{\xi_1}(t, x - y)$$
 (LUGB^{*u*})

for all t > 0 and $x, y \in \mathbb{R}^d$. The constants σ_1 , $c_{\sigma_1}, c_{\xi_1}, \omega_i$ depend only on d, ξ_1 and $n_e(b, h)$.

DEFINITION 3.2. We say that a constant is generic^{*} if it depends on d, σ, ξ and on the Nash norm $n_e(b,h)$ of the vector field b.

Thus, the constants in $(LUGB^u)$ are generic^{*}. The fact that they do not depend on the smoothness of a, b, coupled with the next Proposition 3.1 and a careful approximation argument, will allow us to establish the corresponding a posteriori heat kernel bounds (Theorem 3.2).

2. Recall that a vector field $b \in [L^2_{loc}]^d$ is said to be in the Nash class \mathbf{N}_e if

$$n_e(b,h) < \infty$$

for some h > 0.

EXAMPLE 3.1. (1) We have

$$|b| \in L^p, \, p > d \quad \Rightarrow \quad b \in \mathbf{N}_e,$$

as follows easily using $||e^{t\Delta}||_{r\to\infty} \leq Ct^{-\frac{d}{2r}}$ upon taking $r = \frac{p}{2}$:

$$\begin{split} \sup_{x \in \mathbb{R}^d} \int_0^h \sqrt{e^{t\Delta} |b|^2(x)} \frac{dt}{\sqrt{t}} &\leq \int_0^h \sqrt{\|e^{t\Delta} |b|^2\|_\infty} \frac{dt}{\sqrt{t}} \\ &\leq C^{\frac{1}{2}} \int_0^h \sqrt{t^{-\frac{d}{p}} \|b\|_p^2} \frac{dt}{\sqrt{t}} \\ &= C^{\frac{1}{2}} \frac{2p}{p-d} h^{\frac{p-d}{2p}} \|b\|_p < \infty. \end{split}$$

(2) There exist $b \in \mathbf{N}_e$ such that, for any $\varepsilon > 0$, $|b| \notin L^{2+\varepsilon}_{\text{loc}}$, e.g. consider

$$|b(x)| = \mathbf{1}_{B(0,e^{-1})}(x)|x_1|^{-\frac{1}{2}}|\log|x_1||^{-\alpha}, \quad \alpha > \frac{1}{2},$$

where $x = (x_1, ..., x_d)$.

3. Let $A \equiv A_2$ be the self-adjoint operator in L^2 associated with the quadratic form $\langle \nabla u, a \cdot \nabla u \rangle$, $u \in W^{1,2}$. A standard application of the Beurling-Deny theory yields that the operator A generates a symmetric Markov semigroup e^{-tA} . Then

$$e^{-tA_1} := \left[e^{-tA} \upharpoonright L^1 \cap L^2 \right]_{L^1 \to L^1}^{\operatorname{clos}} \in \mathcal{B}(L^1), \quad t > 0.$$

is a C_0 semigroup (this is a general fact from the theory of symmetric Markov semigroups). Its generator $-A_1$ is an appropriate operator realization of the formal operator $-\nabla \cdot a \cdot \nabla$ in L^1 .

Given a vector field $b \in [L^1_{\text{loc}}]^d$, we define in L^1 operator $B_{\text{max}} \supset b \cdot \nabla$ of domain

$$D(B_{\max}) := \{ f \in L^1 \mid f \in W_{\text{loc}}^{1,1} \text{ and } b \cdot \nabla f \in L^1 \}.$$

The following result will allow us to construct an operator realization of the formal Kolmogorov operator $-\nabla \cdot a \cdot \nabla + b \cdot \nabla$, with $a \in (H_{\sigma,\xi})$ measurable and $b \in \mathbf{N}_e$ locally unbounded, in L^1 .

PROPOSITION 3.1. Let $b \in \mathbf{N}_e$. Then $D(B_{\max}) \supset D(A) \cap D(A_1)$ and $B_{\max} \upharpoonright D(A_1) \cap D(A)$ extends by continuity in the graph norm of A_1 to A_1 -bounded operator $(b \cdot \nabla)_1$:

$$||(b \cdot \nabla)_1 f||_1 \le \eta ||A_1 f||_1 + \eta \mu ||f||_1, \quad f \in D(A_1),$$

with bound $\eta := \frac{1}{1-e^{-\mu h}} \sqrt{\frac{c_0}{\sigma c_4}} n_e(b,hc_4), \ \mu > 0.$ Here and below,

$$c_0 := 2c_3c_5 + \frac{d}{2},$$

where c_i (i = 3, 4, 5) are generic constants in the Gaussian bounds on the heat kernel $e^{-tA}(x, y)$ and its time derivative in Theorem 2.1.

We will also need the following standard result. Since e^{-tA_1} and e^{-tA} have the same integral kernel $e^{-tA}(x,y)$ which satisfies $|\partial_t e^{-tA}(x,y)| \leq c_5 t^{-1} k_{c_6}(t,x-y)$ (Theorem 2.1), there exists a generic constant C > 0 such that $(CtD_t e^{-tA_1})^n$ are uniformly (in $0 \leq t \leq 1$ and n = 1, 2...) bounded in $\mathcal{B}(L^1)$, and so, by a classical result [15, Ch. IX, sect. 10],

$$\|(\zeta + A_1)^{-1}\|_{1 \to 1} \le \frac{M}{|\zeta|}, \quad \operatorname{Re}\zeta > 0$$
 (3)

with generic constant M.

THEOREM 3.2. Let $a \in (H_{\sigma,\xi}), b \in \mathbf{N}_e$ with the Nash norm

$$n_e(b, hc_4) < \sqrt{\frac{\sigma c_4}{c_0}}$$

for some h > 0 (the constants c_0 , c_4 were introduced above).

The following is true:

(i) The algebraic sum $\Lambda_1 := A_1 + (b \cdot \nabla)_1$, $D(\Lambda_1) = D(A_1)$ generates a quasi bounded holomorphic semigroup $e^{-t\Lambda_1}$ in L^1 with the sector of holomorphy

$$\{z \in \mathbb{C} \mid |\arg z| < \frac{\pi}{2} - \theta\}, \quad where \ \tan \theta = \sqrt{2} \left(\frac{M}{1 - \sqrt{\frac{c_0}{\sigma c_4}} n_e(b, hc_4)} - 1\right).$$

The operator Λ_1 is an operator realization of the formal Kolmogorov operator $-\nabla \cdot a \cdot \nabla + b \cdot \nabla$ in L^1 .

(ii)

$$e^{-t\Lambda_1} = s \cdot L^1 \cdot \lim_{\varepsilon \downarrow 0} e^{-t\Lambda_1^{\varepsilon}} \quad (loc. uniformly in t \ge 0),$$

where

$$\Lambda_1^{\varepsilon} := -\nabla \cdot a_{\varepsilon} \cdot \nabla + b_{\varepsilon} \cdot \nabla, \quad D(\Lambda_1^{\varepsilon}) = \mathcal{W}^{2,1}$$

are the approximating operators, with smooth matrices $a_{\varepsilon} \in (H_{\sigma,\xi})$ and smooth bounded vector fields b_{ε} constructed in such a way that

$$a_{\varepsilon} \to a$$
 strongly in $[L^2_{\text{loc}}]^{d \times d}$, $b_{\varepsilon} \to b$ strongly in $[L^2_{\text{loc}}]^d$ as $\varepsilon \downarrow 0$,

and the Nash norm of b_{ε} for all small $\varepsilon > 0$ is controlled by the Nash norm of b:

 $n_e(b_{\varepsilon}, h) \leq n_e(b, h) + \tilde{c}\varepsilon$ (\tilde{c} generic constant).

The semigroup $e^{-t\Lambda_1}$ conserves positivity and is a L^{∞} contraction (and so the convergence in (ii) holds for $e^{-t\Lambda_r}$ in L^r for all $1 < r < \infty$).

Moreover, there exists a generic constant $\tilde{n} > 0$ such that if $n_e(b, hc_4) \leq \tilde{n}$, then we further have:

(iii) For every t > 0, $e^{-t\Lambda_1}$ is an integral operator.

(iv) The heat kernel $e^{-t\Lambda}(x, y)$ (\equiv the integral kernel of $e^{-t\Lambda_1}$) satisfies, possibly after redefinition on a measure zero set in $\mathbb{R}^d \times \mathbb{R}^d$, the lower and upper Gaussian bounds:

For every $\xi_1 > \xi$ there exist generic^{*} constants $\sigma_1 \in]0, \sigma[$ and $c_i > 0, \omega_i \ge 0, i = 1, 2$ such that

$$c_1 e^{-t\omega_1} k_{\sigma_1}(t, x - y) \le e^{-t\Lambda}(x, y) \le c_2 e^{t\omega_2} k_{\xi_1}(t, x - y)$$

for all $t > 0, x, y \in \mathbb{R}^d$.

(v) $e^{-t\Lambda_1}$ conserves probability:

$$\langle e^{-t\Lambda}(x,\cdot)\rangle = 1$$
 for every $x \in \mathbb{R}^d$.

(vi) For every $f \in L^1$, $u(t, \cdot) := e^{-t\Lambda_1} f(\cdot)$ is Hölder continuous (possibly after redefinition on a measure zero set in $\mathbb{R}^d \times \mathbb{R}^d$), i.e. for every $0 < \alpha < 1$ there exist generic* constants $C < \infty$ and $\beta \in]0,1[$ such that for all $z \in \mathbb{R}^d$, $s > R^2$, $0 < R \le 1$

$$|u(t,x) - u(t',x')| \le C ||u||_{L^{\infty}([s-R^2,s] \times \bar{B}(z,R))} \left(\frac{|t-t'|^{\frac{1}{2}} + |x-x'|}{R}\right)^{\beta}$$

for all $(t, x), (t', x') \in [s - (1 - \alpha^2)R^2, s] \times \overline{B}(z, (1 - \alpha)R).$

Furthermore, $u \ge 0$ satisfies the Harnack inequality: Let $0 < \alpha < \beta < 1$ and $\gamma \in]0, 1[$, then there exists a constant $K = K(d, \sigma, \xi, \alpha, \beta, \gamma) < \infty$ such that for all $(s, x) \in]R^2, \infty[\times \mathbb{R}^d, 0 < R \le 1$ one has

$$u(t,y) \le Ku(s,x)$$

for all $(t, y) \in [s - \beta R^2, s - \alpha^2 R^2] \times \overline{B}(x, \delta R).$ (vii)

$$e^{-t\Lambda_{C_{\infty}}} := \left[e^{-t\Lambda_1} \upharpoonright C_{\infty} \cap L^1\right]_{C_{\infty} \to C_{\infty}}^{\operatorname{clos}}, \quad t > 0$$

is a Feller semigroup in C_{∞} having the property $e^{-t\Lambda_{C_{\infty}}}[L^{\infty} \cap L^{1}] \subset C_{\infty}, t > 0$. Moreover,

$$e^{-t\Lambda_{C_u}}f(x) := \langle e^{-t\Lambda}(x,\cdot)f(\cdot)\rangle, \quad t > 0$$

is a Feller semigroup on C_u , the space of bounded uniformly continuous functions on \mathbb{R}^d .

(viii) For every $c_6 > \xi$ there exists a generic^{*} constant c_5 such that

$$|\partial_t e^{-t(\omega_2 + \Lambda_1)}(x, y)| \le c_5 t^{-1} k_{c_6}(t, x - y)$$

for all $t > 0, x, y \in \mathbb{R}^d$.

(ix) For every 1 ,

$$e^{-t\Lambda_p} := \left[e^{-t\Lambda_1} \upharpoonright L^1 \cap L^p \right]_{L^p \to L^p}^{\operatorname{clos}}$$

is a quasi bounded holomorphic semigroup with the same sector of holomorphy as in (i).

(x) For every $\frac{1}{2} < \alpha \leq 1$,

$$\|\nabla(\zeta + \Lambda_1)^{-\alpha}\|_{1 \to 1} \le C(\operatorname{Re}\zeta)^{-\alpha + \frac{1}{2}}.$$

4. Recall that a vector field b is said to be form-bounded (with respect to $A \equiv A_2$) if there exist finite constants $\delta > 0$ and $c(\delta) \ge 0$ such that the quadratic inequality

$$\|b_a f\|_2^2 \le \delta \|A^{\frac{1}{2}} f\|_2^2 + c(\delta) \|f\|_2^2$$

is valid for all $f \in D(A^{\frac{1}{2}}) \equiv W^{1,2}$, where $b_a := \sqrt{b \cdot a^{-1} \cdot b}$. We write $b \in \mathbf{F}_{\delta}(A)$.

It is easily seen that

$$b \in \mathbf{F}_{\delta}(-\Delta) \quad \Rightarrow \quad b \in \mathbf{F}_{\delta_a}(A) \text{ with } \delta_a = \sigma^{-2}\delta.$$

The class $\mathbf{F}_{\delta}(A)$ contains, in particular, the vector fields

$$b = b_1 + b_2, \quad |b_1| \in L^d, \quad |b_2| \in L^{\infty},$$

and for every such b the form-bound δ can be chosen arbitrarily small. The class $\mathbf{F}_{\delta}(A)$ also contains vector fields having critical-order singularities. For instance,

$$b(x) = \pm \sqrt{\delta} \frac{d-2}{2} |x|^{-2} x \in \mathbf{F}_{\delta}(-\Delta) \quad \text{with } c(\delta) = 0$$

(by Hardy's inequality). More generally, $\mathbf{F}_{\delta}(A)$ contains the vector fields $b = b_1 + b_2$ with $|b_1|$ in the weak L^d class or the Campanato-Morrey class, and $|b_2| \in L^{\infty}$, with δ depending on the norm of $|b_1|$ in the respective classes. Moreover, for every $\varepsilon > 0$ one can find vector fields $b \in \mathbf{F}_{\delta}(A)$ such that $|b| \notin L_{loc}^{2+\varepsilon}$. We refer to [8, sect. 4] for details and other examples.

THEOREM 3.3. Let $d \ge 3$, assume that $b \in \mathbf{N}_e$ with the same norm $n_e(b,h)$ as in Theorem 3.2(iii)-(x) for some h > 0. Additionally, assume that $b \in \mathbf{F}_{\beta}(-\Delta)$ for some $\beta < \infty$. Then

$$\|\nabla e^{-t\Lambda_1}\|_{1\to 1} \le Ct^{-\frac{1}{2}}e^{\omega_2 t}, \quad t > 0,$$
(4)

with constant C depending on d, σ , ξ , $n_e(b,h)$, β and $c(\beta)$.

Remark 3.1. It is not clear how to extend (4) and the bound in Theorem 3.2(x) to

$$\|\nabla e^{-t\Lambda_p}\|_{p\to p} \le C_p t^{-\frac{1}{2}} e^{\nu_p t}, \quad \|\nabla (\zeta + \Lambda_p)^{-1}\|_{p\to p} \le c_p (\operatorname{Re}\zeta)^{-\frac{1}{2}}$$
(*)

for some p > 1. Of course, if also $b \in \mathbf{F}_{\beta}(A)$ with $\beta < 1$, then by standard theory $\|\nabla e^{-t\Lambda_2}\|_{2\to 2} \le C_2 t^{-\frac{1}{2}} e^{\nu_2 t}$, t > 0 for constants C_2 , ν_2 depending on d, ξ , σ , β and $c(\beta)$, and so (*) follows by interpolation for all $p \in [1, 2]$ (similarly for $\nabla(\zeta + \Lambda_p)^{-1}$).

4. NASH'S FUNCTION \mathcal{N}_{δ}

Put $p(t, x, y) \equiv p_{\varepsilon}(t, x, y) := e^{-tA^{\varepsilon}}(x, y)$, where $A^{\varepsilon} := -\nabla \cdot a_{\varepsilon} \cdot \nabla$, $a_{\varepsilon} \equiv E_{\varepsilon}a$ (the De Giorgi mollifier, see above). Below we write for brevity $a \equiv a_{\varepsilon}$.

Define Nash's function

$$\mathcal{N}_{\delta}(t,x) := \left\langle \nabla_{\cdot} p(t,\cdot,x) \cdot \frac{a(\cdot)}{k_{\delta}(t,x-\cdot)} \cdot \nabla_{\cdot} p(t,\cdot,x) \right\rangle, \quad \delta > 0.$$

In what follows, we use function \mathcal{N}_{δ} (and its counterpart $\hat{\mathcal{N}}_{\delta}$, see Section 5) with essentially the same purpose as J. Nash did himself in [11].

PROPOSITION 4.1. If $\delta = c_4$ then there exists a generic constant c_0 such that

$$\mathcal{N}_{\delta}(t,x) \leq \frac{c_0}{t}, \quad (t,x) \in]0, \infty[\times \mathbb{R}^d.$$

Proof. Write $\mathcal{N}_{\delta} = \langle \nabla p \cdot \frac{a}{k_{\delta}} \cdot \nabla p \rangle$. Integrating by parts and using the equation $(\partial_t + A^{\varepsilon})p(t, \cdot, x) = 0$, we have

$$\mathcal{N}_{\delta} = \left\langle -\partial_t p, \frac{p}{k_{\delta}} \right\rangle + \left\langle \nabla p \cdot \frac{ap}{k_{\delta}^2} \cdot \nabla k_{\delta} \right\rangle.$$

Let us show that the RHS is finite. By (UGB^p) , $(UGB^{\partial_t p})$ and by our choice of δ ,

$$\left|\langle -\partial_t p, \frac{p}{k_{\delta}} \rangle\right| \le c_3 c_5 t^{-1} \left\langle \frac{k_{c_6} k_{c_4}}{k_{\delta}} \right\rangle = \frac{c_3 c_5}{t};$$

Due to (UGB^{*p*}) and a qualitative bound $|\nabla_x p(t, x, y)| \leq Ct^{-1/2}k_c(t, x, y)$ (i.e. the constants C, c depend on ε), we have $|\langle \nabla p \cdot \frac{ap}{k_{\delta}^2} \cdot \nabla k_{\delta} \rangle| < \infty$ and hence $\mathcal{N}_{\delta} < \infty$.

By quadratic inequalities and (UGB^p) ,

$$\left|\left\langle \nabla p \cdot \frac{ap}{k_{\delta}^{2}} \cdot \nabla k_{\delta} \right\rangle\right| \leq c_{3} \mathcal{N}_{\delta}^{\frac{1}{2}} \left\langle \nabla k_{\delta} \cdot \frac{a}{k_{\delta}} \left(\frac{k_{c_{4}}}{k_{\delta}}\right)^{2} \cdot \nabla k_{\delta} \right\rangle^{\frac{1}{2}},$$
$$\left\langle \nabla k_{\delta} \cdot \frac{ak_{c_{4}}^{2}}{k_{\delta}^{3}} \cdot \nabla k_{\delta} \right\rangle \leq \xi \left\langle \frac{(\nabla k_{\delta})^{2}}{k_{\delta}} \right\rangle = \frac{\xi d}{2\delta} \frac{1}{t} < \frac{d}{2} \frac{1}{t}.$$

and so

$$\mathcal{N}_{\delta} \leq 2\langle -\partial_t p, \frac{p}{k_{\delta}} \rangle + c_3^2 \langle \nabla k_{\delta} \cdot \frac{a}{k_{\delta}} \cdot \nabla k_{\delta} \rangle \leq \frac{c_0}{t}, \quad \text{where } c_0 = 2c_3c_5 + \frac{d}{2}.$$

5. Proof of Theorem 3.1

5.1. Auxiliary estimates. For a given $\lambda > 0$, denote

$$k_{\lambda} := k_{\lambda}(\tau - s, y - \cdot)$$
 and $\hat{k}_{\lambda} := k_{\lambda}(t - \tau, x - \cdot), \quad s < \tau < t$

and

$$\left\langle \frac{(\nabla k_{\lambda})^2}{k_{\lambda}} \right\rangle := \left\langle \frac{(\nabla k_{\lambda}(\tau - s, y - \cdot))^2}{k_{\lambda}(\tau - s, y - \cdot)} \right\rangle.$$

The next three facts are evident:

 $(\mathbf{a_1})$

$$\left\langle \frac{(\nabla k_{\lambda})^{2}}{k_{\lambda}} \right\rangle = \frac{d}{2\lambda} \frac{1}{\tau - s} = \left\langle \left(\frac{y - \cdot}{2\lambda(\tau - s)}\right)^{2} k_{\lambda}(\tau - s, y - \cdot) \right\rangle,$$
$$\left\langle \frac{(\nabla \hat{k}_{\lambda})^{2}}{\hat{k}_{\lambda}} \right\rangle = \frac{d}{2\lambda} \frac{1}{t - \tau}.$$

(**a**₂) If $\lambda < \lambda_1$, then $k_{\lambda} \leq \left(\frac{\lambda_1}{\lambda}\right)^{\frac{d}{2}} k_{\lambda_1}$. (**a**₃) If $2\delta > c_4$, then

$$\frac{k_{c_4}^2}{k_\delta} = \left(\frac{\delta^2}{(2\delta - c_4)c_4}\right)^{\frac{d}{2}} k_{\frac{\delta c_4}{2\delta - c_4}}.$$

$$\begin{aligned} \mathbf{(a_4^-)} &\begin{cases} 0 < 2\delta < \lambda \\ 0 < \varepsilon < 1 \\ 0 < \tau - s < (t - s)\varepsilon \end{cases} \Rightarrow \begin{cases} \hat{k}_{\lambda}^2 k_{\delta} \leq c_-^2 k_{\frac{\lambda\delta}{\lambda - 2\delta}} \cdot k_{\lambda}^2 (t - s, x - y), \\ \text{where } c_- := (1 - \varepsilon)^{-d/2} \left(\frac{\lambda}{\lambda - 2\delta}\right)^{d/4}. \end{cases} \\ (\mathbf{a_4^+}) &\begin{cases} 0 < 2\delta < \lambda \\ \frac{\lambda}{2(\lambda - \delta)} < \varepsilon < 1 \\ (t - s)\varepsilon < \tau - s < t - s \end{cases} \Rightarrow \begin{cases} \hat{k}_{\lambda} k_{2\delta}^2 \leq c_+^2 \hat{k}_{\frac{\lambda}{r}} \cdot k_{\lambda}^2 (t - s, x - y), \\ \text{where } c_+ := \varepsilon^{-d/2} \left(\frac{\lambda}{2\delta}\right)^{d/2} r^{-d/2}, r = \frac{2(\lambda - \delta)\varepsilon - \lambda}{\lambda - 2\delta\varepsilon}. \end{aligned}$$

Proof of $(\mathbf{a}_{\mathbf{4}}^{-})$. Using $ab \leq a^2 + 4^{-1}b^2$ and $t - \tau \geq (1 - \varepsilon)(t - s)$ we have, for any $\alpha \in \mathbb{R}^d$, $\alpha \neq 0$, $e^{\alpha \cdot (x-y)} \hat{k}_{\lambda}^2 k_{\delta} = e^{\alpha \cdot (x-y)} \hat{k}_{\lambda}^2 e^{\alpha \cdot (y-y)} k_{\delta}$

$$\leq (1-\varepsilon)^{-d} \left(4\pi\lambda(t-s)\right)^{-d} e^{\alpha^2 \frac{\lambda}{2}(t-\tau)} \cdot \left(4\pi\delta(\tau-s)\right)^{-d/2} e^{\alpha^2 \frac{\lambda}{2}(\tau-s)} e^{-\frac{|\cdot-y|^2}{4(\tau-s)} \left(\frac{1}{\delta}-\frac{2}{\lambda}\right)}$$
$$= (1-\varepsilon)^{-d} \left(\lambda/(\lambda-2\delta)\right)^{d/2} k_{\frac{\lambda\delta}{\lambda-2\delta}} \cdot \left(4\pi\lambda(t-s)\right)^{-d} e^{\alpha^2 \frac{\lambda}{2}(t-s)};$$

Therefore,

$$\hat{k}_{\lambda}^{2}k_{\delta} \leq (1-\varepsilon)^{-d} \left(\lambda/(\lambda-2\delta)\right)^{d/2} k_{\frac{\lambda\delta}{\lambda-2\delta}} \cdot \left(4\pi\lambda(t-s)\right)^{-d} e^{-\alpha \cdot (x-y) + \alpha^{2}\frac{\lambda}{2}(t-s)}$$

Set $\alpha = \frac{x-y}{\lambda(t-s)}$.

Proof of (\mathbf{a}_{4}^{+}) . Using $ab \leq a^{2} + 4^{-1}b^{2}$ and $\varepsilon(t-s) \leq \tau - s$ we have, for any $\alpha \in \mathbb{R}^{d}$, $\alpha \neq 0$ and $r \in]0, 1[$,

$$e^{\alpha \cdot (x-y)} \hat{k}_{\lambda} k_{2\delta}^{2} = e^{\alpha \cdot (\cdot-y)} k_{2\delta}^{2} e^{\alpha \cdot (x-\cdot)} \hat{k}_{\lambda}$$

$$\leq \varepsilon^{-d} (\lambda/(2\delta))^{d} (4\pi\lambda(t-s))^{-d} e^{\alpha^{2}\delta(\tau-s)} \cdot (4\pi\lambda(t-\tau))^{-d/2} e^{\alpha \cdot (x-\cdot) - \frac{|x-\cdot|^{2}}{4\lambda(t-\tau)}(1-r+r)}$$

$$\leq \varepsilon^{-d} (\lambda/(2\delta)^{d} r^{-d/2} \hat{k}_{\frac{\lambda}{r}} \cdot (4\pi\lambda(t-s))^{-d} e^{\alpha^{2}\delta(\tau-s) + \alpha^{2}\frac{\lambda}{1-r}(t-\tau)};$$

Using $t - \tau \leq (1 - \varepsilon)(t - s)$ and taking into account our choice of r and ε , we have

$$\delta(\tau - s) + \frac{\lambda}{1 - r}(t - \tau) = \delta(t - s) + \left(\frac{\lambda}{1 - r} - \delta\right)(t - \tau)$$

$$\leq \delta(t - s) + \left(\frac{\lambda}{1 - r} - \delta\right)(1 - \varepsilon)(t - s) = \frac{\lambda}{2}(t - s).$$

Therefore

 $\hat{k}_{\lambda}k_{2\delta}^2 \leq \varepsilon^{-d} (\lambda/(2\delta)^d r^{-d/2} \hat{k}_{\frac{\lambda}{r}} \cdot (4\pi\lambda(t-s))^{-d} e^{-\alpha \cdot (x-y) + \alpha^2 \frac{\lambda}{2}(t-s)}.$

Set $\alpha = \frac{x-y}{\lambda(t-s)}$.

5.2. Nash's function $\hat{\mathcal{N}}_{\delta}$. Let p(t, x, y) denote the heat kernel of $\partial_t + A^{\varepsilon}$, $A^{\varepsilon} \equiv -\nabla \cdot a_{\varepsilon} \cdot \nabla$. Put for brevity $a \equiv a_{\varepsilon}$. Define

$$\hat{\mathcal{N}}_{\delta}(t-\tau,\tau-s,x,y) := \left\langle \nabla_{\cdot} p(\tau-s,\cdot,y) \cdot \frac{a(\cdot)k_{\lambda}(t-\tau,x,\cdot)}{k_{2\delta}^2(\tau-s,y,\cdot)} \cdot \nabla_{\cdot} p(\tau-s,\cdot,y) \right\rangle$$

for all $s < \tau < t, x, y \in \mathbb{R}^d$.

PROPOSITION 5.1. Let $c_4, c_6 < 2\delta < \lambda$, fix $0 < \varepsilon < 1$. There exists a generic constant \hat{c}_0 such that

$$\hat{\mathcal{N}}_{\delta}(t-\tau,\tau-s,x,y) \leq \frac{\hat{c}_0}{t-\tau}$$

for all t > s, $(t - s)\varepsilon < \tau - s < t - s$, $x, y \in \mathbb{R}^d$.

Proof. Write $\hat{\mathcal{N}}_{\delta} = \langle \nabla p \cdot \frac{a\hat{k}_{\lambda}}{k_{2\delta}^2} \cdot \nabla p \rangle$. Integrating by parts and using the equation $(\partial_{\tau} + A^{\varepsilon})p(\tau - s, \cdot, y) = 0$, we obtain

$$\hat{\mathcal{N}}_{\delta} = \left\langle -\partial_{\tau} p, \frac{\hat{k}_{\lambda} p}{k_{2\delta}^2} \right\rangle - \left\langle \nabla p \cdot \frac{ap}{k_{2\delta}^2} \cdot \nabla \hat{k}_{\lambda} \right\rangle + 2 \left\langle \nabla p \cdot \frac{ap \hat{k}_{\lambda}}{k_{2\delta}^3} \cdot \nabla k_{2\delta} \right\rangle.$$

By quadratic inequalities,

$$\begin{split} |\langle \nabla p \cdot \frac{ap}{k_{2\delta}^2} \cdot \nabla \hat{k}_{\lambda} \rangle| &\leq \frac{1}{4} \hat{\mathcal{N}}_{\delta} + \langle \nabla \hat{k}_{\lambda} \cdot \frac{ap^2}{k_{2\delta}^2 \hat{k}_{\lambda}} \cdot \nabla \hat{k}_{\lambda} \rangle \\ &\equiv \frac{1}{4} \hat{\mathcal{N}}_{\delta} + M_1, \\ 2|\langle \nabla p \cdot \frac{ap \hat{k}_{\lambda}}{k_{2\delta}^3} \cdot \nabla k_{2\delta} \rangle| &\leq \frac{1}{4} \hat{\mathcal{N}}_{\delta} + 4 \langle \nabla k_{2\delta} \cdot \frac{ap^2 \hat{k}_{\lambda}}{k_{2\delta}^4} \cdot \nabla k_{2\delta} \rangle \\ &\equiv \frac{1}{4} \hat{\mathcal{N}}_{\delta} + 4M_2. \end{split}$$

Therefore,

$$\hat{\mathcal{N}}_{\delta} \le 2 \langle -\partial_{\tau} p, \frac{\hat{k}_{\lambda} p}{k_{2\delta}^2} \rangle + 2M_1 + 8M_2. \tag{*}$$

Let us estimate the terms in the RHS of (*).

By (UGB^{*p*}), (UGB^{$\partial_t p$}) and by our choice of δ ,

$$\begin{aligned} \left| \left\langle -\partial_{\tau} p, \frac{\hat{k}_{\lambda} p}{k_{2\delta}^2} \right\rangle \right| &\leq c_3 c_5 (\tau - s)^{-1} \left\langle \frac{k_{c_6} k_{c_4} \hat{k}_{\lambda}}{k_{2\delta}^2} \right\rangle \\ &\leq c_3 c_5 (\tau - s)^{-1} \left(\frac{(2\delta)^2}{c_4 c_6} \right)^{\frac{d}{2}} \langle \hat{k}_{\lambda} \rangle = c_3 c_5 (\tau - s)^{-1} \left(\frac{(2\delta)^2}{c_4 c_6} \right)^{\frac{d}{2}}. \end{aligned}$$

Taking into account that $\tau - s > \varepsilon(t - s) \Rightarrow \frac{1}{\tau - s} < \frac{1 - \varepsilon}{\varepsilon} \frac{1}{t - \tau}$, we thus obtain

$$\left|\left\langle -\partial_{\tau} p, \frac{\hat{k}_{\lambda} p}{k_{2\delta}^2}\right\rangle\right| \le c_3 c_5 \left(\frac{(2\delta)^2}{c_4 c_6}\right)^{\frac{d}{2}} \frac{1-\varepsilon}{\varepsilon} \frac{1}{t-\tau}.$$

Next, using $(\mathbf{a_1})$ - $(\mathbf{a_3})$, we have:

$$M_{1} \leq \xi c_{3}^{2} \left\langle \left(\frac{k_{c_{4}}}{k_{2\delta}}\right)^{2} \frac{(\nabla \hat{k}_{\lambda})^{2}}{\hat{k}_{\lambda}} \right\rangle$$
$$\leq \xi c_{3}^{2} \left(\frac{2\delta}{c_{4}}\right)^{d} \left\langle \frac{(\nabla \hat{k}_{\lambda})^{2}}{\hat{k}_{\lambda}} \right\rangle$$
$$= \xi c_{3}^{2} \left(\frac{2\delta}{c_{4}}\right)^{d} \frac{d}{2\lambda} \frac{1}{t-\tau}.$$
$$M_{2} \leq \xi c_{3}^{2} \left\langle \left(\frac{k_{c_{4}}}{k_{2\delta}}\right)^{2} \hat{k}_{\lambda} (\nabla \log k_{2\delta})^{2} \right\rangle,$$

where

$$\left(\frac{k_{c_4}}{k_{2\delta}}\right)^2 = \left(\frac{2\delta}{c_4}\right)^d \exp\left[-\frac{|y-\cdot|^2}{4(\tau-s)}\left(\frac{1}{c_4}-\frac{1}{2\delta}\right)^2\right]$$
$$= \left(\frac{2\delta}{c_4}\right)^d \exp\left[-\frac{|y-\cdot|^2}{4\gamma(\tau-s)}\right], \qquad \gamma := \frac{\delta c_4}{2\delta - c_4},$$
$$(\nabla \log k_{2\delta})^2 = \left(\frac{y-\cdot}{2(2\delta)(\tau-s)}\right)^2 = \frac{|y-\cdot|^2}{4\gamma(\tau-s)}\frac{\gamma}{(2\delta)^2}\frac{1}{\tau-s}.$$

Since $0 < \eta < e^{\eta}$, we have therefore

$$\left\langle \left(\frac{k_{c_4}}{k_{2\delta}}\right)^2 \hat{k}_{\lambda} (\nabla \log k_{2\delta})^2 \right\rangle \leq \left(\frac{2\delta}{c_4}\right)^d \frac{\gamma}{(2\delta)^2} \frac{1}{\tau - s} \langle \hat{k}_{\lambda} \rangle,$$

and so

$$M_2 \le \xi c_3^2 \left(\frac{2\delta}{c_4}\right)^d \frac{c_4}{(2\delta - c_4)4\delta} \frac{1 - \varepsilon}{\varepsilon} \frac{1}{t - \tau}.$$

Substituting the previous estimates into (*), we obtain

$$\hat{\mathcal{N}}_{\delta} \leq 2 c_3 c_5 \left(\frac{(2\delta)^2}{c_4 c_6}\right)^{\frac{d}{2}} \frac{1-\varepsilon}{\varepsilon} \frac{1}{t-\tau} + c_3^2 \left(\frac{2\delta}{c_4}\right)^d \left(2 \cdot \frac{\xi d}{2\lambda} + 8 \cdot \frac{2\xi}{4\delta} \cdot \frac{c_4}{2\delta-c_4} \cdot \frac{1-\varepsilon}{\varepsilon}\right) \frac{1}{t-\tau},$$

as claimed.

5.3. **Proof of the upper bound.** For brevity, $b \equiv b_{\varepsilon}$. We iterate the Duhamel formula

$$u(t-s,x,y) = p(t-s,x,y) - \int_{s}^{t} \langle u(t-\tau,x,\cdot)b(\cdot) \cdot \nabla p(\tau-s,\cdot,y) \rangle d\tau.$$

We obtain the series

$$l(t - s, x, y) := \sum_{n=0}^{\infty} (-1)^n u_n(t - s, x, y)$$

where $u_0(t - s, x, y) := p(t - s, x, y)$ and, for n = 1, 2, ...,

$$u_n(t-s,x,y) := \int_s^t \langle u_{n-1}(t-\tau,x,\cdot)b(\cdot) \cdot \nabla_{\cdot}p(\tau-s,\cdot,y) \rangle d\tau.$$

In particular,

$$u_1(t-s,x,y) = \int_s^t \langle p(t-\tau,x,\cdot)b(\cdot) \cdot \nabla p(\tau-s,\cdot,y) \rangle d\tau,$$

and so

$$|u_1(t-s,x,y)| \le c_3 \int_s^t \langle k_{c_4}(t-\tau,x-\cdot)|b(\cdot)\cdot\nabla p(\tau-s,\cdot,y)| \rangle d\tau$$

Suppose that we are able to find generic^{*} constants h > 0 and $C_h < 1$ such that the bound:

$$\int_{s}^{t} \langle k_{c_4}(t-\tau, x-\cdot) | b(\cdot) \cdot \nabla_{\cdot} p(\tau-s, \cdot, y) | \rangle d\tau \le C_h k_{c_4}(t-s, x-y) \qquad (\star^b \star^N)$$

is valid for all $x, y \in \mathbb{R}^d$ and $0 < t - s \leq h$.

Then $|u_1(t-s, x, y)| \leq c_3 C_h k_{c_4}(t-s, x-y)$, and by induction,

$$|u_n(t-s,x,y)| \le c_3 (C_h)^n k_{c_4}(t-s,x-y).$$

Therefore, for all $0 < t - s \le h$ and all $x, y \in \mathbb{R}^d$, the series l(t - s, x, y) is well defined and

$$|l(t-s,x,y)| \le \frac{c_3}{1-C_h}k_{c_4}(t-s,x-y).$$

Repeating the standard argument we conclude that l satisfies the Duhamel formula provided that $0 < t - s \le h$. Then the uniqueness of u(t - s, x, y) implies

$$u = l \quad (0 < t - s \le h),$$

and the reproduction property of u implies

$$u(t-s, x, y) \le \frac{c_3}{1-C_h} e^{(t-s)\omega_h} k_{c_4}(t-s, x-y)$$

for all t-s > h, where $\omega_h = \frac{1}{h} \log \frac{c_3}{1-C_h}$. Thus, we obtain the upper bound in (LUGB^{*u*}) of Theorem 3.1.

It remains to prove $(\star^b \star^N)$. Without loss of generality, s = 0. Set $b_a^2 := b \cdot a^{-1} \cdot b$ and denote

$$\langle k_{\mu}b_{a}^{2}\rangle := \langle k_{\mu}(\tau, y - \cdot)b_{a}^{2}(\cdot)\rangle, \qquad \langle \hat{k}_{\mu}b_{a}^{2}\rangle := \langle k_{\mu}(t - \tau, x - \cdot)b_{a}^{2}(\cdot)\rangle.$$

 Set

$$I := \int_0^t \langle k_\lambda(t - \tau, x - \cdot) | b(\cdot) \cdot \nabla p(\tau, \cdot, y) | \rangle d\tau$$

LEMMA 5.1. Fix $\lambda > \xi$ and select constants δ , c_4 such that

$$\lambda > 2\delta > c_4 > \xi.$$

Let $\frac{\lambda}{2(\lambda-\delta)} < \varepsilon < 1$, $r = \frac{2(\lambda-\delta)\varepsilon-\lambda}{\lambda-2\delta\varepsilon}$, and let c_{\pm} be the constants defined in (\mathbf{a}_{4}^{\pm}) . Then, for all $x, y \in \mathbb{R}^{d}$ and t > 0,

$$I \le (c_{-}M^{-} + c_{+}M^{+})k_{\lambda}(t, x, y),$$

where

$$M^{-} := \int_{0}^{t\varepsilon} \sqrt{\left\langle k_{\frac{\lambda\delta}{\lambda-2\delta}} b_{a}^{2} \right\rangle} \sqrt{\frac{c_{0}}{\tau}} \, d\tau,$$
$$M^{+} := \int_{t\varepsilon}^{t} \sqrt{\left\langle \hat{k}_{\frac{\lambda}{\tau}} b_{a}^{2} \right\rangle} \sqrt{\frac{\hat{c}_{0}}{t-\tau}} \, d\tau.$$

Proof. Using quadratic inequality, we bound $\langle \hat{k}_{\lambda} | b \cdot \nabla p | \rangle^2$ in two ways:

$$\langle \hat{k}_{\lambda} | b \cdot \nabla p | \rangle^2 \leq \langle \hat{k}_{\lambda}^2 k_{\delta} b_a^2 \rangle \langle \nabla p \cdot \frac{a}{k_{\delta}} \cdot \nabla p \rangle$$

and

$$\langle \hat{k}_{\lambda} | b \cdot \nabla p | \rangle^2 \le \langle \hat{k}_{\lambda} k_{2\delta}^2 b_a^2 \rangle \langle \nabla p \cdot \frac{a \hat{k}_{\lambda}}{k_{2\delta}^2} \cdot \nabla p \rangle,$$

and hence

$$I \equiv \int_0^t \langle \hat{k}_\lambda | b \cdot \nabla p | \rangle \ d\tau \le I_\varepsilon^- + I_\varepsilon^+,$$

where

$$\begin{split} I_{\varepsilon}^{-} &:= \int_{0}^{t\varepsilon} \sqrt{\langle \hat{k}_{\lambda}^{2} k_{\delta} b_{a}^{2} \rangle} \sqrt{\langle \nabla p \cdot \frac{a}{k_{\delta}} \cdot \nabla p \rangle} \, d\tau \\ I_{\varepsilon}^{+} &:= \int_{t\varepsilon}^{t} \sqrt{\langle \hat{k}_{\lambda} k_{2\delta}^{2} b_{a}^{2} \rangle} \sqrt{\langle \nabla p \cdot \frac{a \hat{k}_{\lambda}}{k_{2\delta}^{2}} \cdot \nabla p \rangle} \, d\tau \end{split}$$

Now the assertion of Lemma 5.1 follows directly from $(\mathbf{a}_{\mathbf{4}}^{\mp})$ and Propositions 4.1 and 5.1. (Here we apply Propositions 4.1 with δ chosen as in Proposition 5.1, but it is not difficult to see, using $(\mathbf{a}_{\mathbf{3}})$, that its proof works for all $\delta > \frac{c_4}{2}$ although with different generic constant c_0 .)

It remains to note that both M_+ , M_- in Lemma 5.1 are majorated by $c n_e(b,h)$ for appropriate multiple c > 0. Provided that $n_e(b,h)$ is sufficiently small, i.e. so that $C_h := (c_- + c_+)cn_e(b,h) < 1$, we obtain $(\star^b \star^N)$.

5.4. Proof of the lower bound. The analysis of the previous section and the Gaussian upper bound (UGB^{*p*}) of Theorem 2.1 yield for $|x - y|^2 \le t \le h$

$$\begin{split} u(t,x,y) &\geq p(t,x,y) - \sum_{n\geq 1} |u_n(t,x,y)| \\ &\geq c_1 k_{c_2}(t,x-y) - \frac{c_3 C_h}{1-C_h} k_{c_4}(t,x-y) \\ &\geq \left(c_1 c_2^{-\frac{d}{2}} e^{-\frac{1}{4c_2}} - \frac{c_3 C_h}{1-C_h} c_4^{-\frac{d}{2}} \right) (4\pi t)^{-\frac{d}{2}} \\ &\equiv r t^{-\frac{d}{2}}, \end{split}$$

$$(**)$$

where r > 0 provided that C_h is small enough, i.e. $\frac{C_h}{1-C_h} < \frac{c_1}{c_3} \left(\frac{c_4}{c_2}\right)^{\frac{d}{2}} e^{-\frac{1}{4c_2}}$.

Now the standard argument ("small gains yield large gain", see e.g. [2, Theorem 3.3.4]) yields for all $x, y \in \mathbb{R}^d$, t > 0,

$$u(t, x, y) \ge r e^{t\nu_h} t^{-\frac{d}{2}} \exp\left(-\frac{|x-y|^2}{4c_2 t}\right), \quad \nu_h = \frac{1}{h} \log r.$$

The proof of Theorem 3.1 is completed.

6. Proof of Proposition 3.1

1. Let $\mathbf{1}_{\varepsilon}, \varepsilon > 0$ be the indicator of $\{x \in \mathbb{R}^d \mid |x| \leq \varepsilon^{-1}, |b(x)| \leq \varepsilon^{-1}\}$. Define

$$b_{\varepsilon} := E_{\nu_{\varepsilon}}(\mathbf{1}_{\varepsilon}b),$$

where, recall, $E_{\nu} \equiv e^{\nu \Delta}$, and ε , $\nu_{\varepsilon} > 0$.

Define also $(b^2)_{\varepsilon} = E_{\nu_{\varepsilon}}(\mathbf{1}_{\varepsilon}b^2)$ and set $g_{1,\varepsilon} := b_{\varepsilon} - \mathbf{1}_{\varepsilon}b$ and $g_{2,\varepsilon} := |(b^2)_{\varepsilon} - \mathbf{1}_{\varepsilon}b^2|$.

In what follows, we select $\{\nu_{\varepsilon}\}$ so that $\nu_{\varepsilon} \downarrow 0$ sufficiently rapidly as $\varepsilon \downarrow 0$ so that $\|g_{1,\varepsilon}\|_2 \leq \varepsilon$ and $\|g_{2,\varepsilon}\|_q \leq \varepsilon^2$ for some $q \geq d$. Note that $(b^2)_{\varepsilon} \leq g_{2,\varepsilon} + b^2$. Since $\|\mathbf{1}_{B(0,R)}(b_{\varepsilon} - b)\|_2 \leq \|g_{1,\varepsilon}\|_2 + \|\mathbf{1}_{B(0,R)}(\mathbf{1}_{\varepsilon}b - b)\|_2$, we have

 $b_{\varepsilon} \to b$ strongly in $[L^2_{\text{loc}}]^d$.

The Nash norm of b_{ε} is controlled by the Nash norm of b:

LEMMA 6.1. $n_e(b_{\varepsilon}, h) \leq n_e(b, h) + c_d h^{\frac{1}{4}} \varepsilon, \ \varepsilon > 0.$

Proof. Clearly, $(b_{\varepsilon})^2 \leq (b^2)_{\varepsilon}$, and so

$$n_e(b_{\varepsilon}, h) \equiv \sup_{x \in \mathbb{R}^d} \int_0^h \sqrt{e^{t\Delta} (b_{\varepsilon})^2(x)} \frac{dt}{\sqrt{t}}$$
$$\leq n_e(b, h) + \sup_{x \in \mathbb{R}^d} \int_0^h \sqrt{e^{t\Delta} g_{2,\varepsilon}(x)} \frac{dt}{\sqrt{t}},$$

where

$$\sup_{x \in \mathbb{R}^d} \int_0^h \sqrt{e^{t\Delta}g_{2,\varepsilon}(x)} \frac{dt}{\sqrt{t}} \le \int_0^h \sqrt{\|e^{t\Delta}g_{2,\varepsilon}\|_\infty} \frac{dt}{\sqrt{t}} \le C_d \int_0^h \sqrt{t^{-\frac{d}{2q}} \|g_{2,\varepsilon}\|_q} \frac{dt}{\sqrt{t}}$$
$$\le \sqrt{\|g_{2,\varepsilon}\|_q} C_d \frac{2}{1-\frac{d}{2q}} h^{\frac{1}{2}-\frac{d}{4q}} \le 4C_d h^{\frac{1}{4}} \varepsilon.$$

2. Now we can give

Proof of Proposition 3.1. Set $\delta := c_4$. We will construct $(b \cdot \nabla)_1$ and prove

 $\|(b \cdot \nabla)_1 g\|_1 \le \eta \|(\zeta + A_1)g\|_1, \quad g \in D(A_1),$ (5)

with $\eta := \frac{1}{1-e^{-\operatorname{Re}\zeta h}} \sqrt{\frac{c_0}{\sigma \delta}} n_e(b, h\delta)$, for all $\operatorname{Re}\zeta > 0$, so taking $\zeta := \mu > 0$ we obtain the assertion of the proposition.

Step 1. Put $B_1^{\varepsilon} := [b_{\varepsilon} \cdot \nabla \upharpoonright C_c^1]_{L^1 \to L^1}^{\text{clos}}$ of domain $\mathcal{W}^{1,1}$, and

$$T_1^{\varepsilon} := B_1^{\varepsilon} (\zeta + A_1^{\varepsilon})^{-1} \in \mathcal{B}(L^1),$$

where, recall, $A_1^{\varepsilon} := -\nabla \cdot a_{\varepsilon} \cdot \nabla$, $a_{\varepsilon} \equiv E_{\varepsilon}a$, $D(A_1^{\varepsilon}) = \mathcal{W}^{2,1}$. Since B_1^{ε} is closed, we can write

$$T_1^{\varepsilon}f(x) = \int_0^{\infty} e^{-\zeta t} B_1^{\varepsilon} e^{-tA_1^{\varepsilon}} f(x) dt = \int_0^{\infty} e^{-\zeta t} \langle b_{\varepsilon}(x) \cdot \nabla_x p_{\varepsilon}(t, x, \cdot) f(\cdot) \rangle dt, \quad f \in \mathcal{W}^{1,1}.$$

Denote $\mu := \operatorname{Re}\zeta$. We have

$$\|T_{1}^{\varepsilon}f\|_{1} \leq \sum_{j=0}^{\infty} e^{-j\mu h} \int_{jh}^{(j+1)h} \|B_{1}^{\varepsilon}e^{-tA_{1}^{\varepsilon}}f\|_{1}dt$$
$$= \sum_{j=0}^{\infty} e^{-j\mu h} \int_{0}^{h} \|B_{1}^{\varepsilon}e^{-tA_{1}^{\varepsilon}}e^{-jhA_{1}^{\varepsilon}}f\|_{1}dt$$

By the Fubini Theorem and the Cauchy-Bunyakovsky inequality,

$$\int_{0}^{h} \|B_{1}^{\varepsilon} e^{-tA^{\varepsilon}} e^{-jhA_{1}^{\varepsilon}} f\|_{1} dt \leq \left\langle \int_{0}^{h} \langle |b_{\varepsilon}(x) \cdot \nabla_{x} p_{\varepsilon}(t, x, y)| \rangle_{x} dt |e^{-jhA_{1}^{\varepsilon}} f(y)| \right\rangle_{y} \\
\leq \sup_{y \in \mathbb{R}^{d}} \int_{0}^{h} \langle |b_{\varepsilon}(x) \cdot \nabla_{x} p_{\varepsilon}(t, x, y)| \rangle_{x} dt \|f\|_{1} \\
\leq \sup_{y \in \mathbb{R}^{d}} \int_{0}^{h} \sqrt{\langle k_{\delta}(t, x - y)(b_{\varepsilon} \cdot a_{\varepsilon}^{-1} \cdot b_{\varepsilon})(x) \rangle_{x}} \sqrt{\mathcal{N}_{\delta}(t, y)} dt \|f\|_{1}$$

where $\mathcal{N}_{\delta}(t,y) \equiv \left\langle \nabla_x p_{\varepsilon}(t,x,y) \cdot \frac{a_{\varepsilon}(x)}{k_{\delta}(t,x-y)} \cdot \nabla_x p_{\varepsilon}(t,x,y) \right\rangle_x \leq \frac{c_0}{t}$ by Proposition 4.1. Therefore,

$$\int_0^h \|B_1^\varepsilon e^{-tA_1^\varepsilon} e^{-jhA_1^\varepsilon} f\|_1 dt \le \sqrt{\frac{c_0}{\sigma\delta}} \ n_e(b_\varepsilon, h\delta) \|f\|_1$$

(we are applying lemma above)

$$\leq \sqrt{\frac{c_0}{\sigma\delta}} \left(n_e(b,h\delta) + c_d h^{\frac{1}{4}} \delta^{\frac{1}{4}} \varepsilon \right) \|f\|_1.$$

Thus,

$$\|T_1^{\varepsilon}f\|_1 \le \eta_{\varepsilon}\|f\|_1, \quad f \in L^1, \quad \eta_{\varepsilon} := \eta + \tilde{c}\varepsilon, \quad \operatorname{Re}\zeta > 0.$$

Step 2. Set $Tf := b \cdot \nabla(\zeta + A)^{-1}f$, $f \in L^2$ and note that $\nabla(\zeta + A^{\varepsilon})^{-1} \to \nabla(\zeta + A)^{-1}$ strongly in $[L^2]^d$. [The proof is standard: For $1 \le i \le d$, $f \in W^{-1,2}$, $\|\nabla_i(\zeta + A^{\varepsilon})^{-1}f - \nabla_i(\zeta + A)^{-1}f\|_2 =: M_{\varepsilon}(f)$,

$$M_{\varepsilon}(f) := \|\nabla_i (\zeta + A^{\varepsilon})^{-1} \nabla \cdot (a - a_{\varepsilon}) \cdot \nabla (\zeta + A)^{-1} f\|_2$$

$$\leq \|\nabla_i (\zeta + A^{\varepsilon})^{-1} \nabla\|_{2 \to 2} \|(a - a_{\varepsilon}) \cdot \nabla (\zeta + A)^{-1} f\|_2$$

where $\|\nabla_i(\zeta + A^{\varepsilon})^{-1}\nabla\|_{2\to 2} \leq \|\nabla(\zeta + A^{\varepsilon})^{-\frac{1}{2}}\|_{2\to 2}^2 \leq C, C \neq C(\varepsilon)$ and $\|(a - a_{\varepsilon}) \cdot \nabla(\zeta + A)^{-1}f\|_2 \to 0$ (e.g. using the Dominated Convergence Theorem), so $M_{\varepsilon}(f) \to 0$ as $\varepsilon \downarrow 0$, in particular, for $f \in L^2$.]

Therefore, since $b_{\varepsilon} \to b$ strongly in $[L^2_{\text{loc}}]^d$,

$$T^{\varepsilon}f \to Tf$$
 strongly in L^{1}_{loc} as $\varepsilon \downarrow 0.$ (6)

Passing to a subsequence in ε , if necessary, we have $T^{\varepsilon}f \to Tf \mathcal{L}^d$ a.e. Applying Fatou's Lemma, we have by Step 1, for all $f \in L^1 \cap L^2$,

$$\|Tf\|_{1} \le \liminf_{\varepsilon} \|T^{\varepsilon}f\|_{1} \le \eta \|f\|_{1}.$$
(7)

Let T_1 denote the extension of $T \upharpoonright L^1 \cap L^2$ by continuity to L^1 .

Step 3. Since, by Step 2, $\|b \cdot \nabla(\zeta + A)^{-1}f\|_1 \leq \eta \|f\|_1$ for all $f \in L^1 \cap L^2$, $\operatorname{Re}\zeta > 0$, the operator $B := b \cdot \nabla \upharpoonright D(A_1) \cap D(A) : L^1 \to L^1$, and

$$||b \cdot \nabla h||_1 \le \eta ||(\zeta + A_1)h||_1, \quad h \in D(A_1) \cap D(A).$$

Since $D(A_1) \cap D(A)$ (= $(1 + A)^{-1}[L^1 \cap L^2]$) is a core of A_1 , B extends by continuity in the graph norm of A_1 to A_1 -bounded operator $(b \cdot \nabla)_1$. The proof of Proposition 3.1 is completed.

Remark 6.1. The proof above can be extended to non-local operators of the type $\Lambda = (\mu - \nabla \cdot a \cdot \nabla)^{\frac{\alpha}{2}} + b \cdot \nabla$, $1 < \alpha < 2$, with *b* in an appropriate modification of the elliptic Nash class.

That is, assume that $b \in [L^2_{loc}]^d$ satisfies

$$\tilde{n}^{\alpha}(b,\mu) = \sup_{y \in \mathbb{R}^d} \int_0^{\infty} e^{-\mu t} \sqrt{e^{t\Delta} |b|^2(y)} \frac{dt}{t^{\frac{3-\alpha}{2}}} < \infty, \quad \mu > 0.$$

Put $T_1^{\varepsilon} := b_{\varepsilon} \cdot \nabla(\mu + A_1^{\varepsilon})^{-\frac{\alpha}{2}}$. A key bound $\|T_1^{\varepsilon}f\|_1 \leq \tilde{\eta}\|f\|_1$, $f \in L^1$ remains valid with $\tilde{\eta} = \delta^{\frac{1-\alpha}{2}} \sqrt{\frac{c_0}{\sigma}} \tilde{n}^{\alpha}(b, \mu \delta^{-1})$. Namely,

$$\begin{split} \|T_1^{\varepsilon}f\|_1 &\leq \left(\sup_y \int_0^{\infty} e^{-\mu t} t^{\frac{\alpha}{2}-1} \sqrt{\langle k_{\delta}(t,y-\cdot)b_a^2(\cdot)\rangle} \sqrt{\mathcal{N}_{\delta}(t,y)} dt\right) \|f\|_1 \qquad (b_a^2 = b \cdot a^{-1} \cdot b) \\ &\leq \delta^{\frac{1-\alpha}{2}} \sqrt{\frac{c_0}{\sigma}} \tilde{n}^{\alpha}(b,\mu\delta^{-1}) \|f\|_1. \end{split}$$

Above one can replace $\tilde{n}^{\alpha}(b,\mu)$ by $n^{\alpha}(b,h) := \sup_{y \in \mathbb{R}^d} \int_0^h \sqrt{e^{t\Delta} |b|^2(y)} \frac{dt}{t^{\frac{3-\alpha}{2}}}.$

7. Proof of Theorem 3.2

In the proof of Proposition 3.1 we established: $T_1^{\varepsilon} := b_{\varepsilon} \cdot \nabla(\zeta + A_1^{\varepsilon})^{-1}$, $T_1 := (b \cdot \nabla)_1 (\zeta + A_1)^{-1}$, $\operatorname{Re} \zeta > 0$ satisfy $T_1 \in \mathcal{B}(L^1)$ and

$$||T_1^{\varepsilon}||_{1\to 1} \le \eta + \tilde{c}\varepsilon, \quad ||T_1||_{1\to 1} \le \eta.$$

PROPOSITION 7.1. $T_1 = s \cdot L^1 \cdot \lim_{\varepsilon \downarrow 0} T_1^{\varepsilon}$.

Proof of Proposition 7.1. Under the additional assumption $b^2 \in L^1 + L^{\infty}$, the assertion of the proposition is evident (use (6) in the proof of Proposition 3.1). In general one has to employ the separation property of e^{-tA} , as is done below.

Since $\sup_{\varepsilon>0} ||T_1^{\varepsilon}||_{1\to 1}, ||T_1||_{1\to 1} < \infty$, it suffices to prove the claimed convergence on C_c^{∞} . Fix $f \in C_c^{\infty}$ and then r > 0 by $B(0,r) \supset \operatorname{sprt} f$. Since by (6) $T_1^{\varepsilon}f \to T_1f$ strongly in L^1_{loc} , the required convergence in (*ii*) would follow from (7) once we show that, for every $\theta > 0$, there exists $R = R(r, \theta) > 0$ such that

 $\|\mathbf{1}_{B^c(0,R)}T_1^{\varepsilon}f\|_1 \le \theta \|f\|_1$ for all $\varepsilon > 0$ sufficiently small.

Here $B^{c}(0, R) := \mathbb{R}^{d} - B(0, R)$.

To prove the latter, we write

$$\mathbf{1}_{B^{c}(0,R)}T_{1}^{\varepsilon}f(x) = \int_{0}^{\infty} e^{-\zeta t} \langle \mathbf{1}_{B^{c}(0,R)}(x)b_{\varepsilon}(x) \cdot \nabla_{x}p_{\varepsilon}(t,x,\cdot)f(\cdot) \rangle dt$$

where $p_{\varepsilon}(t, x, y) = e^{-tA_1^{\varepsilon}}(x, y)$. Put $\mu := \operatorname{Re}\zeta$. Then

$$\begin{aligned} \|\mathbf{1}_{B^{c}(0,R)}T_{1}^{\varepsilon}f\|_{1} &\leq \sum_{j=0}^{\infty} e^{-j\mu h} \int_{jh}^{(j+1)h} \|\mathbf{1}_{B^{c}(0,R)}B_{1}^{\varepsilon}e^{-tA_{1}^{\varepsilon}}f\|_{1}dt \\ &= \sum_{j=0}^{\infty} e^{-j\mu h} \int_{0}^{h} \|\mathbf{1}_{B^{c}(0,R)}B_{1}^{\varepsilon}e^{-tA_{1}^{\varepsilon}}e^{-jhA_{1}^{\varepsilon}}f\|_{1}dt \\ &= \sum_{j=0}^{\infty} e^{-j\mu h} \left[\int_{0}^{h} \|\mathbf{1}_{B^{c}(0,R)}B_{1}^{\varepsilon}e^{-tA_{1}^{\varepsilon}}\mathbf{1}_{B(0,mr)}e^{-jhA_{1}^{\varepsilon}}f\|_{1}dt \\ &+ \int_{0}^{h} \|\mathbf{1}_{B^{c}(0,R)}B_{1}^{\varepsilon}e^{-tA_{1}^{\varepsilon}}\mathbf{1}_{B^{c}(0,mr)}e^{-jhA_{1}^{\varepsilon}}f\|_{1}dt \right] =: \sum_{j=0}^{\infty} e^{-j\mu h} \left[I_{j} + J_{j}\right], \end{aligned}$$

where constant $m \ge 1$ is to be chosen. Arguing as in the proof of Step 1 of the proof of Proposition 3.1 and putting $\delta := c_4$, we obtain, for all $j \ge 0$,

$$I_{j} \leq \sqrt{\frac{c_{0}}{\sigma\delta}} \sup_{y \in B(0,mr)} \int_{0}^{h} \sqrt{\langle k_{\delta}(t,y,\cdot) \mathbf{1}_{B^{c}(0,R)}(\cdot) | b_{\varepsilon}(\cdot) |^{2} \rangle} \frac{dt}{\sqrt{t}} \| e^{-khA_{1}^{\varepsilon}} f \|_{1}$$
$$\leq \left(\sqrt{\frac{c_{0}}{\sigma\delta}} M_{R} + 4C_{d}(h\delta)^{\frac{1}{4}} \varepsilon \right) \| f \|_{1},$$

where $M_R := \sup_{y \in B(0,mr)} \int_0^h \sqrt{\langle k_\delta(t,y,\cdot) \mathbf{1}_{B^c(0,R)}(\cdot) | b(\cdot) |^2 \rangle} \frac{dt}{\sqrt{t}}, R > mr.$ Clearly, $J_0 = 0$. For all $j \ge 1$ and $\eta_0 = \sqrt{\frac{c_0}{\sigma\delta}} n_e(b,h\delta),$

$$J_{j} \leq \eta_{0} \| \mathbf{1}_{B^{c}(0,mr)} e^{-jhA_{1}^{\varepsilon}} f \|_{1}$$

(we are applying (UGB^p) to $e^{-jhA_{1}^{\varepsilon}}(x,y)$)
 $\leq \eta_{0}c_{3}(4\pi c_{4}jh)^{-\frac{d}{2}} e^{-\frac{(m-1)^{2}r^{2}}{4c_{4}jh}} \| f \|_{1}.$

Thus, we have

$$\|\mathbf{1}_{B^{c}(0,R)}T_{1}^{\varepsilon}f\|_{1} \leq \theta \|f\|_{1},$$

where

$$\theta := \left(\sqrt{\frac{c_0}{\sigma\delta}}M_R + 4C_d(h\delta)^{\frac{1}{4}}\varepsilon\right)\frac{1}{1 - e^{-\mu h}} + C_g \sum_{j=1}^{\infty} e^{-\mu jh}(jh)^{-\frac{d}{2}} e^{-\frac{(m-1)^2 r^2}{4c_4 jh}}.$$

It is clear that selecting m sufficiently large, we can make the second term in the RHS as small as needed.

We are left to prove the convergence $M_R \to 0$ as $R \to \infty$.

 (a_1) Fix n>0 by $k_{\delta}(t,z,y)\leq C_nk_{\delta}(t,z,0)$ for all $t>0,\ z\in B^c(0,(m+n)r),\ y\in B(0,mr).$ Then

$$M_R \le C_n \int_0^h \sqrt{\langle k_\delta(t,0,\cdot) \mathbf{1}_{B^c(0,R)}(\cdot) | b(\cdot) |^2 \rangle} \frac{dt}{\sqrt{t}} \quad \forall R > (m+n)r.$$

 (a_2) Due to $b \in \mathbf{N}_e$ the function

$$w_R(t) := \sqrt{\langle k_\delta(t,\cdot,0) \mathbf{1}_{B^c(0,R)}(\cdot) | b(\cdot) |^2 \rangle} \frac{1}{\sqrt{t}}$$

is in $L^1([0,h])$ for every $R \ge 1$. Moreover, it is seen from the definition of w_R that for every $0 < t_1 < t_2 \le h$, $w_R(t_1) \le C_{t_1,t_2-t_1} w_R(t_2)$, $C_{t_1,t_2-t_1} < \infty$. Thus, $w_R(t)$ is finite for all $0 < t \le h$. $(a_3) w_R(t) \to 0$ as $R \to \infty$ for every $0 < t \le h$.

Indeed, fix $t \in]0, h]$. Set $v_R(x) := k_{\delta}(t, x, 0) \mathbf{1}_{B^c(0,R)}(x) |b(x)|^2$. For a.e. $x \in \mathbb{R}^d$, $v_R(x) \downarrow 0$ as $R \uparrow \infty$, and $v_R \leq v_1$ a.e. on \mathbb{R}^d for all $R \geq 1$, where v_1 is summable. Hence by the Dominated Convergence Theorem, $\langle v_R \rangle \to 0$ as $R \to \infty$, and so $w_R(t) \to 0$ as $R \to \infty$.

 (a_4) Due to (a_3) and $w_R \leq w_1$ for $R \geq 1$, the Dominated Convergence Theorem yields

$$\int_0^h w_R(t)dt \to 0 \quad \text{ as } R \to \infty$$

Thus, $M_R \to 0$ as $R \to \infty$. The proof of Proposition 7.1 is completed.

We are in position to complete the proof of Theorem 3.2. Recall $\delta := c_4$.

(i) By our assumption on $n_e(b, h\delta)$, there exists $\lambda_0 > 0$ such that

$$\eta := \frac{1}{1 - e^{-\lambda_0 h}} \sqrt{\frac{c_0}{\sigma \delta}} n_e(b, h\delta) < 1.$$

By Proposition 3.1, Λ_1 is a closed densely defined operator. Using (5), we obtain that

$$(\zeta + \Lambda_1)^{-1} = (\zeta + A_1)^{-1} (1 + T_1)^{-1} \in \mathcal{B}(L^1), \quad \text{Re}\zeta > \lambda_0.$$

Using (3), we obtain

$$\|(\zeta + \Lambda_1)^{-1}\|_{1 \to 1} \le \frac{M}{|\zeta|(1 - \eta)}, \quad \operatorname{Re}\zeta > \lambda_0,$$
(8)

completing the proof of the first part of assertion (i).

To prove the second part of (i), note that, in view of (8), the resolvent $\zeta \mapsto (\zeta + \lambda_0 + \Lambda_1)^{-1} = \Theta(\zeta + \lambda_0)$ is holomorphic in the right-half plane $\operatorname{Re}\zeta > 0$ and in $|\zeta - \zeta_0| < \sqrt{2}(\frac{M}{1-\eta} - 1)|\zeta_0|$ for every ζ_0 with $\operatorname{Re}\zeta_0 = 0$ (see, if needed, the argument in [15, Ch. IX, sect. 10]). Thus, $e^{-z(\lambda_0 + \Lambda_1)}$ is holomorphic in the sector

$$\{z \in \mathbb{C} \mid |\arg z| < \frac{\pi}{2} - \theta_{\lambda_0}\}, \text{ where } \tan \theta_{\lambda_0} = \sqrt{2} \left(\frac{M}{1-\eta} - 1\right)$$

This completes the proof of assertion (i).

(*ii*) The claimed approximation $\{b_{\varepsilon}\}$ was constructed in the proof of Proposition 3.1. Let us show that

$$(\lambda + \Lambda_1^{\varepsilon})^{-1} \to (\lambda + \Lambda_1)^{-1}$$
 strongly in L^1 as $\varepsilon \downarrow 0$,

which, by a standard result, implies the convergence of the semigroups.

Since $(\lambda + \Lambda_1^{\varepsilon})^{-1} = (\lambda + A_1^{\varepsilon})^{-1}(1 + T_1^{\varepsilon})^{-1}$, $(\lambda + \Lambda_1)^{-1} = (\lambda + A_1)^{-1}(1 + T_1)^{-1}$, it suffices to show that 1) $T_1^{\varepsilon} \to T_1$ and 2) $(\lambda + A_1^{\varepsilon})^{-1} \to (\lambda + A_1)^{-1}$ strongly in L^1 as $\varepsilon \downarrow 0$. 1) is Proposition 7.1. 2) follows immediately from

$$(\lambda + A^{\varepsilon})^{-1} \to (\lambda + A)^{-1}$$
 strongly in L^2

and $(\lambda + A^{\varepsilon})^{-1}(x, y) \leq C(\lambda - c\Delta)^{-1}(x, y)$ for generic constants $0 < c, C < \infty$, an immediate consequence of (UGB^p) .

(*iii*) The upper bound in $(LUGB^u)$ of Theorem 3.1 yields

$$\|e^{-t\Lambda_1^{\varepsilon}}\|_{1\to\infty} \le c_2 e^{t\omega_2} t^{-\frac{d}{2}}, \quad t>0, \quad \varepsilon>0$$

with generic^{*} constants c_2 , $\omega_2 < \infty$. Using Theorem 3.2(*ii*) and applying Fatou's lemma, we obtain $||e^{-t\Lambda_1}||_{1\to\infty} \leq c_2 e^{t\omega_2} t^{-\frac{d}{2}}$, t > 0. Hence $e^{-t\Lambda_1}$ is an integral operator for every t > 0.

(iv) The a priori bounds (LUGB^{*u*}) of of Theorem 3.1, and Theorem 3.2(ii), yield for every pair of bounded measurable subsets $S_1, S_2 \subset \mathbb{R}^d$:

$$c_1 e^{t\omega_1} \langle \mathbf{1}_{S_1}, e^{t\sigma_1 \Delta} \mathbf{1}_{S_2} \rangle \leq \langle \mathbf{1}_{S_1}, e^{-t\Lambda_1} \mathbf{1}_{S_2} \rangle \leq c_2 e^{t\omega_2} \langle \mathbf{1}_{S_1}, e^{t\xi_1 \Delta} \mathbf{1}_{S_2} \rangle.$$

Since $e^{-t\Lambda_1}$ is an integral operator for every t > 0, assertion (iv) follows by applying the Lebesgue Differentiation Theorem.

(v) For every $\varepsilon > 0$, $\langle e^{-t\Lambda^{\varepsilon}}(x,\cdot) \rangle = 1$, $x \in \mathbb{R}^{d}$. Fix t > 0 and $\Omega \subset \mathbb{R}^{d}$, a bounded open set. By the upper bound (LUGB^u) of Theorem 3.1, for every $\gamma > 0$ there exists $R = R(\gamma, t, \Omega) > 0$ such that, for every $x \in \Omega$, $\langle e^{-t\Lambda^{\varepsilon}}(x,\cdot) \mathbf{1}_{B^{c}(0,R)}(\cdot) \rangle < \gamma$, so $\langle e^{-t\Lambda^{\varepsilon}}(x,\cdot) \mathbf{1}_{B(0,R)}(\cdot) \rangle \geq 1 - \gamma$. Hence

$$\langle \mathbf{1}_{\Omega} e^{-t\Lambda^{\varepsilon}} \mathbf{1}_{B(0,R)} \rangle \geq (1-\gamma) |\Omega|.$$

Applying Theorem 3.2(ii), we obtain

$$\frac{1}{|\Omega|} \langle \mathbf{1}_{\Omega} e^{-t\Lambda} \mathbf{1} \rangle \geq \frac{1}{|\Omega|} \langle \mathbf{1}_{\Omega} e^{-t\Lambda} \mathbf{1}_{B(0,R)} \rangle \geq 1 - \gamma.$$

Applying the Lebesgue Differentiation Theorem, we obtain $\langle e^{-t\Lambda}(x,\cdot)\rangle \geq 1 - \gamma$ for a.e. $x \in \mathbb{R}^d$. In turn, the opposite inequality $\langle e^{-t\Lambda}(x,\cdot)\rangle \leq 1$ for a.e. $x \in \mathbb{R}^d$ follows easily using Theorem 3.2(*ii*), and hence $1 \geq \langle e^{-t\Lambda}(x,\cdot)\rangle \geq 1 - \gamma$. The proof of (*v*) is completed.

(vi) Put $u_{\varepsilon}(t,x) := e^{-t\Lambda^{\varepsilon}} f(x)$. Repeating the argument in [5, sect. 3] which appeals to the ideas of E. De Giorgi, we obtain assertion (vi) for u_{ε} . The result now follows upon applying Theorem 3.2(ii) and the Arzelà-Ascoli Theorem.

- (vii) follows from (iv), (v) and (vi) using a standard argument for mollifiers.
- (viii) is proved repeating the argument in [2, sect. 2].
- (ix) follows repeating the argument in [12].
- (x) In the proof of (i) we obtain the resolvent representation as the K. Neumann series

$$(\zeta + \Lambda_1)^{-1} = (\zeta + A_1)^{-1} (1 + T_1)^{-1} \in \mathcal{B}(L^1), \quad \text{Re}\zeta \ge \lambda_0,$$

where $\lambda_0 = \lambda_0 (n_e(b,h)) > 0$, $T_1 := (b \cdot \nabla)_1 (\zeta + A_1)^{-1} \in \mathcal{B}(L^1)$. The latter yields $\|\nabla(\zeta + A_1)^{-1}\|_{1\to 1} \leq c(\operatorname{Re}\zeta)^{-\frac{1}{2}}$. Indeed, $\|\nabla(\zeta + A_1)^{-1}\|_{1\to 1} \leq c(\operatorname{Re}\zeta)^{-\frac{1}{2}}$ (integrating (\star) in $t \in [0, \infty[$ in the proof of Theorem 3.3), so the resolvent representation yields the required bound. The latter now easily yields the case $1/2 < \alpha < 1$.

8. Proof of Theorem 3.3

It suffices to carry out the proof on C_c^{∞} for smooth bounded $a \in (H_{\sigma,\xi})$, b, and then apply Theorem 3.2(ii) using the closedness of the gradient.

First, let $0 < t \le h$.

The Duhamel formula for $\nabla e^{-t\Lambda_1}$ yields:

$$\|\nabla e^{-t\Lambda_1}f\|_1 \le \|\nabla e^{-tA_1}f\|_1 + \int_0^t \|\nabla e^{-(t-\tau)A_1}\|_{1\to 1} \|b \cdot \nabla e^{-\tau\Lambda_1}f\|_1 d\tau, \quad f \in C_c^{\infty}.$$
 (9)

We will need (proved below):

$$\|\nabla e^{-tA_1}\|_{1\to 1} \le C/\sqrt{t},\tag{(\star)}$$

$$\int_0^t \frac{C}{\sqrt{t-\tau}} \|b \cdot \nabla e^{-\tau \Lambda_1} f\|_1 d\tau \le C \sup_{x \in \mathbb{R}^d} \int_0^t \frac{1}{\sqrt{t-\tau}} \sqrt{e^{\delta \tau \Delta} b_a^2(x)} \sqrt{\mathcal{N}_\delta^u(\tau, x)} d\tau \, \|f\|_1, \qquad (\star\star)$$

$$\mathcal{N}^{u}_{\delta}(\tau, x) \leq \frac{C_2}{\tau}, \qquad (\star \star \star)$$

where $\mathcal{N}^{u}_{\delta}(\tau, x) := \langle \nabla u(\tau, x, \cdot) \cdot \frac{a(\cdot)}{k_{\delta}(\tau, x, \cdot)} \cdot \nabla u(\tau, x, \cdot) \rangle, \ u(\tau, x, y) = e^{-\tau \Lambda}(x, y), \ \delta > \xi$, the constants C_1, C_2, ω are generic. We estimate the RHS of $(\star\star)$: write $\int_0^t = \int_0^{t/2} + \int_{t/2}^t$ and use $(\star\star\star)$ to obtain

$$\begin{split} \sup_{x \in \mathbb{R}^d} \int_0^{t/2} \frac{1}{\sqrt{t - \tau}} \sqrt{e^{\delta \tau \Delta} b_a^2(x)} \sqrt{\mathcal{N}_{\delta}^u(\tau, x)} d\tau &\leq \frac{\sqrt{2C_2}}{\sqrt{t}} \sup_{x \in \mathbb{R}^d} \int_0^{t/2} \sqrt{e^{\delta \tau \Delta} b_a^2(x)} \frac{d\tau}{\sqrt{\tau}} \\ &\leq \frac{\sqrt{2C_2}}{\sqrt{\delta t}} n_e(b, \frac{\delta h}{2}), \end{split}$$

$$\begin{split} \sup_{x \in \mathbb{R}^d} \int_{t/2}^t \frac{1}{\sqrt{t - \tau}} \sqrt{e^{\delta \tau \Delta} b_a^2(x)} \sqrt{\mathcal{N}_{\delta}^u(\tau, x)} d\tau &\leq \sqrt{C_2} \sup_{x \in \mathbb{R}^d} \int_{t/2}^t \frac{1}{\sqrt{t - \tau}} \sqrt{e^{\delta \tau \Delta} b_a^2(x)} \frac{d\tau}{\sqrt{\tau}} \\ & (\text{we are using } e^{\delta \tau \Delta} b_a^2(x) \leq \frac{\xi d\beta}{8\delta} \frac{1}{\tau} + c(\beta) \text{ since } b \in \mathbf{F}) \\ &\leq \tilde{C} \int_{t/2}^t \frac{1}{\sqrt{t - \tau}} \frac{d\tau}{\tau} \leq \tilde{C} \frac{1}{\sqrt{t}}. \end{split}$$

Substituting (\star) , $(\star\star)$ and the last two estimates into (9), we have $\|\nabla e^{-t\Lambda_1}\|_{1\to 1} \leq \frac{c}{\sqrt{t}}$ for $0 < t \leq h$. Also, for all t > h, $\|\nabla e^{-t\Lambda_1}\|_{1\to 1} \leq \|\nabla e^{-h\Lambda_1}\|_{1\to 1} \|e^{-(t-h)\Lambda_1}\|_{1\to 1} \leq \frac{\tilde{c}}{\sqrt{h}}e^{(t-h)\omega_2}$ (cf. Theorem 3.2). The latter yields the assertion of Theorem 3.3 for all t > 0.

It remains to prove (\star) - $(\star \star \star)$.

Proof of (*): We have for $h \in \mathbb{R}^d$, h = (0, ..., 1, ..., 0) (1 is in the *i*-th coordinate, $1 \le i \le d$)

$$\begin{aligned} \|\mathbf{h} \cdot \nabla e^{-tA_1} f\|_1 &\leq \sup_{x \in \mathbb{R}^d} \sqrt{\langle k_{\delta}(t, x, \cdot) (\mathbf{h} \cdot a^{-1}(\cdot) \cdot \mathbf{h}) \rangle} \sqrt{\mathcal{N}_{\delta}(t, x)} \|f\|_1 \\ &\leq \sigma^{-\frac{1}{2}} \sup_{x \in \mathbb{R}^d} \sqrt{\mathcal{N}_{\delta}(t, x)} \|f\|_1 = \sigma^{-\frac{1}{2}} \sqrt{\sup_{x \in \mathbb{R}^d} \mathcal{N}_{\delta}(t, x)} \|f\|_1, \end{aligned}$$

and so by Proposition 4.1

$$\|\nabla e^{-tA_1}f\|_1 \le \frac{d\sqrt{\sigma^{-1}c_0}}{\sqrt{t}}\|f\|_1.$$

The estimate $(\star\star)$ follows using quadratic inequality.

Thus, we are left to prove $(\star \star \star)$. Integrating by parts, using the equation for u(t, x, y) and $(\text{UGB}^{u}), (\text{UGB}^{\partial_{t}u})$ (see Theorem 3.2(*iv*), (*viii*)), we obtain for $0 < t \leq h$ (below c is a generic constant)

$$\mathcal{N}^{u}_{\delta}(t,x) = \langle \nabla u \cdot \frac{a}{k_{\delta}} \cdot \nabla u \rangle = -\langle k_{\delta}^{-1} u \partial_{t} u \rangle - \langle k_{\delta}^{-1} u b \cdot \nabla u \rangle + \langle u k_{\delta}^{-2} \nabla k_{\delta} \cdot a \cdot \nabla u \rangle,$$
$$|\langle k_{\delta}^{-1} u \partial_{t} u \rangle| \leq \frac{c}{t}, \quad |\langle u k_{\delta}^{-2} \nabla k_{\delta} \cdot a \cdot \nabla u \rangle| \leq c |\langle \nabla k_{\delta} \cdot \frac{a}{k_{\delta}} \cdot \nabla u \rangle|.$$

Clearly,

$$\begin{split} |\langle \nabla k_{\delta} \cdot \frac{a}{k_{\delta}} \cdot \nabla u \rangle| &\leq \frac{c}{\sqrt{t}} \sqrt{\mathcal{N}_{\delta}^{u}(t,x)}.\\ |\langle k_{\delta}^{-1} u b \cdot \nabla u \rangle| &\leq c \sqrt{e^{\delta t \Delta} b_{a}^{2}(x)} \sqrt{\mathcal{N}_{\delta}^{u}(t,x)} \leq \hat{c} \frac{1}{\sqrt{t}} \sqrt{\mathcal{N}_{\delta}^{u}(t,x)} \end{split}$$

(due to $e^{\delta t \Delta} b_a^2(x) \leq \frac{\xi d\beta}{8\delta} \frac{1}{t} + c(\beta)$, see above). Now $(\star \star \star)$ is evident.

The proof of Theorem 3.3 is completed.

9. Comments

1. The following result was proved in [8] (the reader can compare it with Theorem 3.2). It establishes quantitative dependence of the regularity properties of solutions to $(\partial_t + \Lambda)u = 0$ with $b \in \mathbf{F}_{\delta}(A)$ on the value of δ .

THEOREM 9.1. Let $d \ge 3$. Assume that $b \in \mathbf{F}_{\delta}(A)$ for some $0 < \delta < 4$. Set $r_c := \frac{2}{2-\sqrt{\delta}}$ and $b_a^2 := b \cdot a^{-1} \cdot b \in L^2_{\text{loc}}$. The following is true:

(i) Let $\mathbf{1}_n$ denote the indicator of $\{x \in \mathbb{R}^d \mid b_a(x) \leq n\}$ and set $b_n := \mathbf{1}_n b$. Then the limit

$$s - L^r - \lim_{n \to \infty} e^{-t\Lambda_r(a, b_n)}, \quad r \in I_c^o :=]r_c, \infty[,$$

where $\Lambda_r(a, b_n) := A_r + b_n \cdot \nabla$, exists locally uniformly in $t \ge 0$ and determines a positivity preserving, L^{∞} contraction, quasi contraction C_0 semigroup on L^r , say, $e^{-t\Lambda_r(a,b)}$.

(*ii*) Define

$$e^{-t\Lambda_{r_c}(a,b)} := \left[e^{-t\Lambda_r(a,b)} \upharpoonright L^1 \cap L^r \right]_{L^{r_c} \to L^{r_c}}^{\operatorname{clos}}, \qquad r \in I_c^o.$$

Then $e^{-t\Lambda_{r_c}(a,b)}$ is a C_0 semigroup and

$$\|e^{-t\Lambda_r(a,b)}\|_{r\to r} \le e^{t\omega_r}, \quad \omega_r = \frac{\lambda\delta}{2(r-1)}, \quad r\in I_c := [r_c,\infty[.$$

- (iii) The interval I_c is the maximal interval of quasi contractive solvability.
- (iv) For each $r \in I_c^o$, $e^{-t\Lambda_r(a,b)}$ is a holomorphic semigroup of quasi contractions in the sector

$$|\arg t| \le \frac{\pi}{2} - \theta_r, \quad 0 < \theta_r < \frac{\pi}{2}, \ \tan \theta_r \le \mathcal{K}(2 - r'\sqrt{\delta})^{-1},$$

where $\mathcal{K} = \frac{|r-2|}{\sqrt{r-1}} + r'\sqrt{\delta}$ if $r \leq 2r_c$ and $\mathcal{K} = \frac{r-2+r\sqrt{\delta}}{\sqrt{r-1}}$ if $r > 2r_c$.

(v) $e^{-t\Lambda_r(a,b)}$, $r \in I_c$, extends to a positivity preserving, L^{∞} contraction, quasi bounded holomorphic semigroup on L^r for every $r \in I_m :=]\frac{2}{2-\frac{d-2}{d}\sqrt{\delta}}, \infty[.$

(vi) The interval I_m is the maximal interval of quasi bounded solvability.

(vii) For every $r \in I_m$ and q > r there exist constants $c_i = c_i(\delta, r, q)$, i = 1, 2 such that the (L^r, L^q) estimate

$$\|e^{-t\Lambda_r(a,b)}\|_{r\to q} \le c_1 e^{c_2 t} t^{-\frac{d}{2}(\frac{1}{r} - \frac{1}{q})}$$

is valid for all t > 0.

(viii) Let
$$\delta < 1$$
, and let $a_n \in (H_{\sigma,\xi})$, $b_n : \mathbb{R}^d \to \mathbb{R}^d$, $n = 1, 2, ...$ be smooth and such that
 $a_n \to a \text{ strongly in } [L^2_{\text{loc}}]^{d \times d}$, $b_n \to b \text{ strongly in } [L^2_{\text{loc}}]^d$

and $b_n \in \mathbf{F}_{\delta}(A^n)$ with $c(\delta)$ independent of n, where $A^n \equiv -\nabla \cdot a_n \cdot \nabla$. Then

$$e^{-t\Lambda_r(a,b)} = s \cdot L^r \cdot \lim_{n \uparrow \infty} e^{-t\Lambda_r(a_n,b_n)}$$

whenever $r \in I_c^o$, where $\Lambda_r(a_n, b_n) = -\nabla \cdot a_n \cdot \nabla + b_n \cdot \nabla$ of domain $W^{2,r}$.

REMARKS. (a) For $\delta < 1$, the corresponding to Λ quadratic form $t[u] = \langle a \cdot \nabla u, \nabla u \rangle + \langle b \cdot \nabla u, u \rangle$, $D(t) = W^{1,2}$ possesses the Sobolev embedding property

$$\operatorname{Ret}[u] \ge c_S ||u||_{2j}^2, \quad j = \frac{d}{d-2}$$

This ceases to be true already for $\delta = 1$. The same occurs for $1 < \delta < 4$ and $r = r_c$.

(b) The intervals I_c , I_m are maximal already for a = I and $b(x) = \sqrt{\delta \frac{d-2}{2}} |x|^{-2} x$.

(c) Assertions (i)-(iv) are in fact valid for symmetric $a \in [L_{\text{loc}}^1]^{d \times d}$ such that $a \ge \sigma I$, $\sigma > 0$, and $b_a^2 \in L^1 + L^\infty$, see [8, Theorem 4.2].

(d) While for $b \in \mathbf{F}_{\delta}(A)$, $\delta < 1$ one first constructs the semigroup in L^2 (using the method of quadratic forms) and then proves the corresponding convergence results, in the case $b \in \mathbf{F}_{\delta}(A)$, $1 \leq \delta < 4$ the convergence result of Theorem 9.1(*i*) becomes the means of construction of the semigroup.

2. Note that
$$\mathbf{N}_e \cap \mathbf{F} \subset \mathbf{K}^d \subset \mathbf{F}$$
, where $\mathbf{F} := \bigcup_{\beta > 0} \mathbf{F}_\beta(-\Delta)$, and
 $\mathbf{K}^d := \{ |b| \in L^2_{\text{loc}} \mid \kappa_d(b,h) := \sup_{x \in \mathbb{R}^d} \int_0^h e^{t\Delta} |b|^2(x) dt < \infty \text{ for some } h > 0 \}.$

Indeed, using $b \in \mathbf{F}$, we have $e^{t\Delta}b^2(x) \equiv \langle k(t,x,\cdot)b^2(\cdot)\rangle \leq \beta \|\nabla\sqrt{k(t,x,\cdot)}\|_2^2 + c(\beta) = \frac{\beta d}{8}\frac{1}{t} + c(\beta)$ for some $\beta > 0$ and $c(\beta)$. Therefore, for $0 < t \leq h$,

$$e^{t\Delta}b^2(x) \le \sqrt{\frac{\beta d}{8}} + c(\beta)h\sqrt{e^{t\Delta}b^2(x)}\frac{1}{\sqrt{t}},$$

and so the condition $b \in \mathbf{N}_e$ now yields the required. In turn, the inclusion $\mathbf{K}^d \subset \mathbf{F}$ is well known (use the fact that $b \in \mathbf{K}^d$ is equivalent to $||b|^2 (\lambda - \Delta)^{-1} ||_{1 \to 1} < \infty, \lambda > 0$).

3. Let us fix a continuous function $\phi : [0, \infty[\rightarrow [0, \infty[$ satisfying the following properties: 1) $\phi(0) = 0$, 2) $\phi(t)/t \in L^1[0, 1]$. Put

$$n_{\phi}(b,h) = \sup_{x \in \mathbb{R}^d} \int_0^h e^{t\Delta} b^2(x) \frac{dt}{\phi(t)}.$$

If $n_{\phi}(b,h) < \infty$ for some h > 0, then we write $b \in \mathbf{N}_{\phi}$.

The class \mathbf{N}_{ϕ} arises as the class providing the two-sided Gaussian on the heat kernel of $-\nabla \cdot a(t,x) \cdot \nabla + b(t,x) \cdot \nabla$, where a(t,x) is a measurable uniformly elliptic matrix, see [14], [10]. Since (for b = b(x))

$$\int_0^h \sqrt{e^{t\Delta}b^2(x)} \frac{dt}{\sqrt{t}} \le \left[\int_0^h e^{t\Delta}b^2(x) \frac{dt}{\phi(t)}\right]^{\frac{1}{2}} \left[\int_0^h \frac{\phi(t)}{t} dt\right]^{\frac{1}{2}},$$

we have $\mathbf{N}_{\phi} \subset \mathbf{N}_{e}$ for every admissible ϕ . Moreover, since ϕ is continuous and $\phi(0) = 0$, it is seen that $n_{\phi}(b,h) > k_{d}(b,h)$, and so $\mathbf{N}_{\phi} \subset \mathbf{K}^{d}$. Thus,

$$\mathbf{N}_{\phi} \subset \mathbf{N}_{e} \cap \mathbf{K}^{d} \subset \mathbf{K}^{d+1} \cap \mathbf{K}^{d}.$$

The need for more restrictive assumption " $b \in \mathbf{N}_{\phi}$ " when a = a(t, x) is dictated by the subject matter: in the time-dependent case there are no estimates $\mathcal{N}(t)$, $\hat{\mathcal{N}}(t) \leq c(t)$ for any c(t), cf. the previous comment.

4. Let us comment more on classes \mathbf{K}^{d+1} and \mathbf{F} .

Note that $\mathbf{K}^{d+1} \not\subset \mathbf{F}$: There are $b \in \mathbf{K}^{d+1}$ such that, for a given p > 1, $|b| \notin L_{\text{loc}}^p$, e.g. consider

$$|b(x)| = \mathbf{1}_{B(0,1)}(x)|x_1|^{-\alpha_p}, \quad 0 < \alpha_p < 1.$$

On the other hand, already $[L^d]^d \not\subset \mathbf{K}^{d+1}$, and so $\mathbf{F} \not\subset \mathbf{K}^{d+1}$. [Indeed, let

$$|b(x)| = \mathbf{1}_{B(0,e^{-1})}(x)|x|^{-1}|\log|x||^{-\alpha}, \ \alpha > d^{-1}, \ d \ge 3$$

Then $||b||_d < \infty$ and $k_{d+1}(b, h) = \infty$.]

This dichotomy between the classes \mathbf{K}^{d+1} and \mathbf{F} was resolved in [6, 8] with development of the Sobolev regularity theory of $-\Delta + b \cdot \nabla$ for b in the class

$$\mathbf{F}^{1/2} = \left\{ b \in L^{1}_{\text{loc}} \mid \lim_{\lambda \to \infty} \||b|^{\frac{1}{2}} (\lambda - \Delta)^{-\frac{1}{4}} \|_{2 \to 2} < \infty \right\}$$

(introduced in [13] as the class responsible for the (L^p, L^q) estimate on the semigroup) that contains $\mathbf{K}^{d+1} + \mathbf{F} := \{b_1 + b_2 \mid b_1 \in \mathbf{K}^{d+1}, b_2 \in \mathbf{F}\}.$

By analogy, one can ask if it is possible to extend the convergence results in Theorem 3.2 and Theorem 9.1, or (L^p, L^q) estimates, to $-\nabla \cdot a \cdot \nabla + b \cdot \nabla$ with a measurable $a \in (H_{\sigma,\xi})$ and $b = b_1 + b_2$ with $b_1 \in \mathbf{N}_e, b_2 \in \mathbf{F}_{\delta}(A)$.

5. Theorem 3.2(iv), (viii) (the two-sided Gaussian bounds on the heat kernel and its time derivative) can be extended to more general operator

$$\Lambda(a, b, \hat{b}) = -\nabla \cdot a \cdot \nabla + b \cdot \nabla + \nabla \cdot \hat{b}$$

with $a \in (H_{\sigma,\xi})$, and $(b, \hat{b} \in \mathbf{N}_e, \hat{b} \in \mathbf{F})$ or $(b, \hat{b} \in \mathbf{N}_e, b \in \mathbf{F})$, provided that n(b,h), $n(\hat{b},h)$ are sufficiently small. Note that the above assumptions on b and \hat{b} are non-symmetric, i.e. the presence of $b \in \mathbf{N}_e$ forces \hat{b} to be more regular: $\hat{b} \in \mathbf{N}_e \cap \mathbf{F}$, and vice versa. We also note that here the form-boundedness assumption seems to be justified. The proof follows the argument in the present paper but with the Nash's functions \mathcal{N} , $\hat{\mathcal{N}}$ defined with respect to $u(t, x, y) := e^{-t\Lambda(a,b)}(x, y)$. We will address this matter in detail elsewhere.

6. The authors do not know if there is a proof of the Harnack inequality for $\Lambda = -\nabla \cdot a \cdot \nabla + b \cdot \nabla$, $a \in (H_{\sigma,\xi}), b \in \mathbf{N}_e$ that does not use the lower bound on $e^{-t\Lambda}(x, y)$.

D. KINZEBULATOV AND YU. A. SEMËNOV

References

- D.G. Aronson, "Non-negative solutions of linear parabolic equations", Ann. Sc. Norm. Sup. Pisa (3) 22 (1968), 607-694.
- [2] E.B. Davies, "Pointwise bounds on the space and time derivatives of heat kernels", J. Operator Theory 21 (1989), 367-378.
- [3] E. De Giorgi, "Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari", Mem. Acc. Sci. Torino 3 (1957), 25-43.
- [4] S.D. Eidelman, F. O. Porper, "Two-sided estimates of the fundamental solutions of second-order parabolic equations and some applications of them" (in Russian), Uspekhi Mat. Nauk 39 (1984), no. 3(237), 107-156.
- [5] E. B. Fabes and D. W. Stroock, "A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash", Arch. Ratl. Mech. and Anal. 96 (1986), 327-338.
- [6] D. Kinzebulatov, "A new approach to the L^p -theory of $-\Delta + b \cdot \nabla$, and its applications to Feller processes with general drifts", Ann. Sc. Norm. Sup. Pisa (5) 17 (2017), 685-711.
- [7] D. Kinzebulatov and Yu. A. Semënov, "Heat kernel bounds for parabolic equations with singular (form-bounded) vector fields", *Preprint*, arXiv:2103.11482 (2021).
- [8] D. Kinzebulatov and Yu. A. Semënov, "On the theory of the Kolmogorov operator in the spaces L^p and C_{∞} ", Ann. Sc. Norm. Sup. Pisa (5) **21** (2020), 1573-1647.
- [9] V. F. Kovalenko and Yu. A. Semënov, "Semigroups generated by an elliptic operator of second order (Russian)", in Methods of Functional Analysis in Problems of Mathematical Physics, Physics, Kiev, Ukrainian Acad. of Sciences (1987), 17-36.
- [10] V. Liskevich and Yu. A. Semënov, "Estimates for fundamental solutions of second-order parabolic equations", J. London Math. Soc. (2) 62 (2000), 521-543.
- [11] J. Nash, "Continuity of solutions of parabolic and elliptic equations", Amer. Math. J. 80 (1) (1958), p. 931-954.
- [12] E. M. Ouhabaz, "Gaussian estimates and holomorphy of semigroups", Proc. Amer. Math. Soc. 123 (1995), 1465-1474.
- [13] Yu. A. Semënov, "On perturbation theory for linear elliptic and parabolic operators; the method of Nash", Proceedings of the Conference on Applied Analysis, April 19-21 (1996), Bâton-Rouge, Louisiana, Contemp. Math., 221 (1999), 217-284.
- [14] Yu. A. Semënov, "Heat kernel bounds. L^1 -iteration techniques. The Nash algorithm", Preprint (1998).
- [15] K. Yosida, Functional Analysis. Springer-Verlag Berlin Heidelberg, 1980.
- [16] Q. S. Zhang, "A Harnack inequality for the equation $\nabla(a\nabla u) + b\nabla u = 0$, Manuscripta Math. 89 (1995), 61-77.
- [17] Q. S. Zhang, "Gaussian bounds for the fundamental solutions of $\nabla(A\nabla u) + B\nabla u u_t = 0$ ", Manuscripta Math. 93 (1997), 381-390.

Université Laval, Département de mathématiques et de statistique, 1045 av. de la Médecine, Québec, QC, G1V 0A6, Canada

Email address: damir.kinzebulatov@mat.ulaval.ca

University of Toronto, Department of Mathematics, 40 St. George Str, Toronto, ON, M5S 2E4, Canada

Email address: semenov.yu.a@gmail.com