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STOCHASTIC TRANSPORT EQUATION WITH SINGULAR DRIFT

DAMIR KINZEBULATOV, YULIY A. SEMËNOV, AND RENMING SONG

Abstract. We prove existence, uniqueness and Sobolev regularity of weak solution of the Cauchy

problem of the stochastic transport equation with drift in a large class of singular vector fields con-

taining, in particular, the L
d class, the weak L

d class, as well as some vector fields that are not even

in L
2+ε
loc

for any ε > 0.

1. Introduction

Throughout this paper we assume d ≥ 3. Let Bt be a Brownian motion in Rd defined on a

probability space (Ω,F ,P) with respect to a complete and right-continuous filtration Ft. Let ◦
denote the Stratonovich multiplication. Set Lp ≡ Lp(Rd) ≡ Lp(Rd, dx), Lp

loc ≡ Lp
loc(R

d),W 1,p ≡
W 1,p(Rd),W 1,p

loc ≡W 1,p
loc (R

d), C∞
c ≡ C∞

c (Rd). We denote by ‖ · ‖p→q the operator norm ‖ · ‖Lp→Lq .

The subject of this paper is the problem of existence, uniqueness and Sobolev regularity of weak

solution to the Cauchy problem for the stochastic transport equation (STE)

du+ b · ∇udt+ σ∇u ◦ dBt = 0 on (0,∞)× Rd,

u|t=0 = f,
(1)

where u(t, x) is a scalar random field, σ 6= 0, f is in Lp or W 1,p, and b : Rd → Rd is in the class of

form-bounded vector fields (see definition below), a large class of singular vector fields containing, in

particular, vector fields b with |b| ∈ Ld, or with |b| in the weak Ld class, as well as some vector fields

b with |b| 6∈ L2+ε
loc for any ε > 0.

It is well known that the Cauchy problem for the deterministic transport equation ∂tu+ b · ∇u = 0

(corresponding to σ = 0 in (1)) is in general not well posed already for a bounded but discontinuous b.

Moreover, in that case, even if the initial function f is regular, one can not hope that the corresponding

solution u will be regular immediately after t = 0. This, however, changes if one adds the noise term

σ∇u ◦ dBt, σ > 0. For the stochastic STE (1), a unique weak solution exists and is regular for

some discontinuous b. This effect of regularization and well-posedness by noise, demonstrated by the

STE, attracted considerable interest in the past few years, as a part of the more general program

of establishing well-posedness by noise for SPDEs whose deterministic counterparts arising in fluid

dynamics are not well-posed, see [BFGM, GM] for detailed discussions and further references.

In [BFGM], the authors establish existence, uniqueness and Sobolev W 1,p-regularity (up to the

initial time t = 0, with p large) for weak solutions of (1) with time-dependent drift b satisfying

|b(·, ·)| ∈ Lq
(
[0,∞), Lr + L∞)

,
d

r
+

2

q
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(actually, [BFGM] allows b = b1 + b1 with b1 satisfying the condition above and b2 being continu-

ously differentiable with at most linear growth at infinity; their uniqueness result imposes additional

assumptions on div b). They apply this result to study the SDE

Xt = x−
∫ t

s
b(r,Xr)dr + σ(Bt −Bs), (2)

constructing, in particular, a unique, W 1,p-regular stochastic Lagrangian flow that solves (2) for

a.e. x ∈ Rd. The STE can be viewed as the equation behind both the SDE (via path-wise interpretation

of the STE and the SDE, see [BFGM]) and the parabolic equation (∂t − σ2

2 ∆ + b · ∇)v = 0 (arising

from (1) upon taking expectation, i.e. v = E[u], see, if needed, (8) below).

In this paper, we show that the regularity and well-posedness for (1) hold for a much larger class

of drifts b, at least in the time-independent case b = b(x) (see, however, Remark 2 below concerning

time-dependent b).

Definition 1. A Borel vector field b : Rd → Rd is said to be form-bounded with relative bound δ > 0,

written as b ∈ Fδ, if |b| ∈ L2
loc and there exists a constant λ = λδ ≥ 0 such that

‖|b|(λ −∆)−
1

2‖2→2 ≤
√
δ.

It is easily seen that the condition b ∈ Fδ can be stated equivalently as a quadratic form inequality

‖bϕ‖22 ≤ δ‖∇ϕ‖22 + cδ‖ϕ‖22, ϕ ∈W 1,2,

for a constant cδ (= λδ). Let us also note that

b1 ∈ Fδ1 , b2 ∈ Fδ2 ⇒ b1 + b2 ∈ Fδ,
√
δ :=

√
δ1 +

√
δ2.

Examples. 1. Any vector field

b ∈ Ld(Rd,Rd) + L∞(Rd,Rd)

is in Fδ for δ > 0 that can be chosen arbitrarily small. Indeed, for any ε > 0 we can write b = f+h with

‖f‖d < ε, h ∈ L∞(Rd,Rd). It follows from Hölder’s inequality and the Sobolev embedding theorem

that for any g ∈ L2,

‖|b|(λ−∆)−
1

2 g‖2 ≤ ‖f‖d‖(λ−∆)−
1

2 g‖ 2d
d−2

+ ‖h‖∞λ−
1

2‖g‖2

≤ c‖f‖d‖g‖2 + ‖h‖∞λ−
1

2‖g‖2 ≤ (c+ 1)ε‖g‖2 for λ = ε−2‖h‖−2
∞ .

2. The class Fδ also contains vector fields having critical-order singularities, such as

b(x) = ±
√
δ
d− 2

2
|x|−2x

(by Hardy’s inequality (d−2)2

4 ‖|x|−1ϕ‖22 ≤ ‖∇ϕ‖22, ϕ ∈W 1,2).

3. More generally, the class Fδ contains vector fields b with |b| in Ld,w (the weak Ld space). Recall

that a Borel function h : Rd → R is in Ld,w if

‖h‖d,w := sup
s>0

s|{x ∈ Rd : |h(x)| > s}|1/d <∞.
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By the Strichartz inequality with sharp constant [KPS, Prop. 2.5, 2.6, Cor. 2.9], if |b| in Ld,w, then

b ∈ Fδ1 with
√
δ1 = ‖|b|(λ −∆)−

1

2 ‖2→2

≤ ‖b‖d,wΩ
− 1

d
d ‖|x|−1(λ−∆)−

1

2‖2→2

≤ ‖b‖d,wΩ
− 1

d
d

2

d− 2
,

where Ωd = π
d
2Γ(d2 + 1) is the volume of the unit ball in Rd.

We also note that if h ∈ L2(R), T : Rd → R is a linear map, then the vector field b(x) = h(Tx)e,

where e ∈ Rd, is in Fδ with appropriate δ, but |b| may not be in Ld,w
loc .

4. More generally, the class Fδ contains vector fields in the Campanato-Morrey class and the Chang-

Wilson-Wolff class, with δ depending on the respective norms of the vector field in these classes, see

[CWW].

5. We note that there exists b ∈ Fδ such that |b| 6∈ L2+ε
loc (Rd,Rd) for any ε > 0, e.g., consider

|b(x)|2 = C
1B(0,1+α) − 1B(0,1−α)∣∣|x| − 1

∣∣−1
(− ln

∣∣|x| − 1
∣∣)β

, β > 1, 0 < α < 1.

We emphasize that the condition b ∈ Fδ is not a refinement of |b| ∈ Ld + L∞ in the sense that Fδ

is not situated between Ld +L∞ and Lp +L∞, p < d. In contrast to the elementary sub-classes of Fδ

listed above, the class Fδ is defined in terms of the operators that, essentially, constitute the equation

in (1).

The key result of this paper is the Sobolev regularity of solutions u to the Cauchy problem for the

STE (1):

sup
t∈[0,T ]

∥∥E|∇u|2q
∥∥
2
≤ C‖∇f‖2q4q, q = 1, 2, . . . , (3)

provided that b is in Fδ with δ smaller than a certain explicit constant, see Theorem 2. This is a

stochastic (parabolic) counterpart of the Sobolev regularity estimates for solutions of the corresponding

deterministic elliptic equation established in [KS]. More precisely, in [KS] the authors consider the

operator −∆ + b · ∇, b ∈ Fδ with 0 < δ < 1 ∧
(

2
d−2

)2
, d ≥ 3 and establish the following Sobolev

regularity of solutions v to the elliptic equation (µ−∆+ b · ∇)v = f in Lq for 2 ∨ (d− 2) ≤ q < 2√
δ
:

‖∇v‖ qd
d−2

≤ K‖f‖q, (4)

with K depending only on d, q, the relative bound δ and cδ. The estimate (4) is needed in [KS] to

run a Moser-type iteration procedure that yields the Feller semigroup corresponding to −∆ + b · ∇.

It was established in [KiS2] that, given b ∈ Fδ with δ < 1 ∧
(

2
d−2

)2
, this Feller semigroup determines,

for every starting point x ∈ Rd, a weak solution to the SDE

Xt = x−
∫ t

0
b(Xr)dr +

√
2Bt (5)

(see also [KiS] where the authors consider drifts in a larger class).

The approach to studying SDEs via regularity theory of the STE, developed in [BFGM], can be

combined with Theorem 2 to obtain strong existence and uniqueness for (2) with b ∈ Fδ (cf. Remark

1 below), albeit potentially excluding a measure zero set of starting points x ∈ Rd. For results on
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strong existence and uniqueness for any x ∈ Rd, with b satisfying (in the time-independent case)

|b| ∈ Lp + L∞ with p > d or p = d, see [Kr1, Kr2, KrR].

We conclude this introduction with a few remarks concerning the criticality of the singularities of

form-bounded drifts.

1. In [BFGM, Sect. 7], the authors show that the SDE (5) with drift b(x) = β|x|−2x and starting

point x = 0 does not have a weak solution if β > d − 2. In view of Example 2 above, this drift b

belongs to Fδ with
√
δ = β 2

d−2 , so by the result of [KiS2] cited above, the weak solution to (5) with

x = 0 exists as long as β > 0 satisfies β < 1
2 if d = 3, β < 1 if d ≥ 4 (in fact, for d ≥ 5 it suffices

to require β < d−3
2 using [KiS3, Corollary 4.10]). Thus, the weak well-posedness of (5) is sensitive to

changes in the value of the constant multiple β of b (equivalently, changes in the value of the relative

bound δ). In this sense, the singularities of b ∈ Fδ are critical.

Let us note that the diffusion process with drift b(x) = c|x|−2x, c ∈ R, was studied earlier in [W].

2. Let b ∈ Fδ. There is a quantitative dependence between the value of the relative bound δ and

the regularity properties of solutions to the corresponding equations (PDEs or STEs). Indeed, the

admissible values of q in (4), as well as in (3), depend on the value of δ. This dependence is lost if one

considers b with |b| ∈ Ld + L∞ since any such b has arbitrarily small relative bound, cf. Example 1.

3. Concerning the difference between classes Fδ and its subclass Ld + L∞, let us also note the

following: if v is a weak solution of the elliptic equation (λ −∆ + b · ∇)v = f , λ > 0, f ∈ C∞
c with

|b| ∈ Ld + L∞ and v ∈W 1,r for r large (e.g. by (4)), then, by Hölder’s inequality,

∆v ∈ L
rd
d+r

loc .

However, for b ∈ Fδ, one can only say that (cf. Example 5 above)

∆v ∈ L
2d
d+2

loc

(one can in fact show that v ∈W 2,2). That is, in case b ∈ Fδ, there are no W
2,p estimates on solution

v for p large.

See [KiS3] for detailed discussions of remarks 2 and 3 above.

Notations. Denote

〈f, g〉 = 〈fg〉 :=
∫

Rd

fgdx

(all functions considered below are assumed to be real-valued).

Set

ρ(x) ≡ ρκ,θ(x) := (1 + κ|x|2)−θ, κ > 0, θ >
d

2
, x ∈ Rd.

It is easily seen that

|∇ρ(x)| ≤ θ
√
κρ(x), x ∈ Rd. (6)

Below we will be applying (6) to ρ with κ chosen sufficiently small.

For any p > 1, we use p′ to denote its conjugate p/(p− 1). Let Lp
ρ ≡ Lp(Rd, ρdx). Denote by ‖ · ‖p,ρ

the norm in Lp
ρ, and by 〈·, ·〉ρ the inner product in L2

ρ.

Set W 1,2
ρ := {g ∈W 1,2

loc | ‖g‖W 1,2
ρ

:= ‖g‖2,ρ + ‖∇g‖2,ρ <∞}.



STOCHASTIC TRANSPORT EQUATION 5

Define constants

β2q := 1 + 4qd, q = 1, 2, . . .

Put JT := [0, T ].

2. Main results

Below we consider the Cauchy problem for the STE

du+ µudt+ b · ∇udt+ σ∇u ◦ dBt = 0 on (0,∞) × Rd,

u|t=0 = f ∈ Lp, p ≥ 2,
(CP)

where µ ≥ 0. Since solutions of the Cauchy problems (1) and (CP) will differ by a multiple e−µt, it

suffices to prove the well-posedness of (CP).

Let us first make a few preliminary remarks.

1. We can rewrite the equation in (CP), using the identity relating Stratonovich and Itô integrals

∫ t

0
∇u ◦ dBs =

∫ t

0
∇udBs −

1

2

d∑

k=1

[∂xk
u,Bk]t, Bt = (Bk

t )
d
k=1, (7)

as

du+ µudt+ b · ∇udt+ σ∇udBt −
σ2

2
∆u = 0. (8)

2. If b ∈ C∞
c (Rd,Rd) and f ∈ C∞

c , then (see [Ku, Theorem 6.1.9]) there exists a unique adapted

strong solution of (CP)

u(t)− f + µ

∫ t

0
uds+

∫ t

0
b · ∇uds+ σ

∫ t

0
∇u ◦ dBs = 0 a.s., t ∈ JT ,

given by

e−µtu(t) = f(Ψ−1
t ), t > 0, (9)

where Ψt : R
d × Ω → Rd is the stochastic flow for the SDE

Xt = x−
∫ t

0
b(Xr)dr + σBt, (10)

i.e. there exists Ω0 ⊂ Ω, P(Ω0) = 1, such that, for all ω ∈ Ω0, Ψt(·, ω)Ψs(·, ω) = Ψt+s(·, ω), Ψ0(x, ω) =

x, and

1) for every x ∈ Rd, the process t 7→ Ψt(x, ω) is a strong solution of (10),

2) Ψt(x, ω) is continuous in (t, x), Ψt(·, ω) : Rd → Rd are homeomorphisms, and Ψt(·, ω), Ψ−1
t (·, ω) ∈

C∞(Rd,Rd).

We first state our basic existence result. Recall that b ∈ Fδ if

‖bϕ‖22 ≤ δ‖∇ϕ‖22 + cδ‖ϕ‖22, ϕ ∈W 1,2,

for some constant cδ ≥ 0.
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Theorem 1. Assume that d ≥ 3, b ∈ Fδ with
√
δ < σ2

2β2
. Let T > 0, p ≥ 2. Provided that κ is chosen

sufficiently small, there are constants µ1
(
δ, cδ , p

)
≥ 0, C1 = C1(δ, cδ , p) > 0 and C2 = C2(δ, cδ , p, T ) >

0 such that for any µ ≥ µ1
(
δ, cδ , p

)
, for every f ∈ L2p there exists a function u ∈ L∞(JT , L

2(Ω, L2
ρ))

for which the following are true.

(i)

sup
t∈JT

‖Eu2(t)‖p ≤ ‖f‖22p,
∫

JT

‖∇vp‖22ds ≤ C1‖f‖p2p, (11)

E
〈
ρ
∣∣∇

∫

JT

uds
∣∣2〉 ≤ C2‖f‖22p, (12)

where v := Eu2 and vp := v|v| p2−1, so, in particular, for a.e. ω ∈ Ω, ∇
∫ T
0 u(s, ·, ω)ds ∈ L2

loc(R
d,Rd)

and hence

b · ∇
∫

JT

u(s, ·, ω)ds ∈ L1
loc,

and, for every test function ϕ ∈ C∞
c , we have a.s. for all t ∈ JT ,

〈u(t), ϕ〉 − 〈f, ϕ〉

+ µ〈
∫ t

0
uds, ϕ〉+

〈
b · ∇

∫ t

0
uds, ϕ

〉
− σ

〈∫ t

0
udBs,∇ϕ

〉
+
σ2

2

〈
∇

∫ t

0
uds,∇ϕ

〉
= 0. (13)

(ii) For any sequence of smooth vector fields bm ∈ C∞
c (Rd,Rd), m = 1, 2, . . . , that are uniformly

form-bounded in the sense that bm ∈ Fδ with cδ independent of m, and are such that

bm → b in L2
loc(R

d,Rd) as m → ∞,

we have for initial functions f ∈ C∞
c ,

um(t) → u(t) in L2(Ω, L2
ρ) uniformly in t ∈ JT ,

where um is the unique strong solution to (CP) (with b = bm).

An example of such smooth approximating vector fields {bm} is given in the next section.

The next theorem establishes the Sobolev regularity of u up to the initial time t = 0.

Theorem 2. Assume that d ≥ 3, b ∈ Fδ with
√
δ < σ2

2β2
and f ∈ W 1,4. Let κ be sufficiently small

and µ1(δ, cδ , 2) be the constant in Theorem 1 with p = 2. For µ ≥ µ1(δ, cδ , 2), let u be the process

constructed in Theorem 1. There exists µ2(δ, cδ) ≥ µ1(δ, cδ , 2) such that for µ ≥ µ2(δ, cδ), the following

are true.

(a) Eu2, E|∇u|2 ∈ L∞(JT , L
2), so u ∈ L∞(JT , L

2(Ω,W 1,2
ρ ));

(b) for any test function ϕ ∈ C∞
c , the process t 7→ 〈u(t), ϕ〉 is (Ft)-progressively measurable and has

a continuous (Ft)-semi-martingale modification that satisfies a.s. for every t ∈ JT ,

〈u(t), ϕ〉 − 〈f, ϕ〉

+ µ

∫ t

0
〈u, ϕ〉ds +

∫ t

0

〈
b · ∇u, ϕ

〉
ds− σ

∫ t

0
〈u,∇ϕ〉dBs +

σ2

2

∫ t

0

〈
u,∆ϕ

〉
ds = 0. (14)

Moreover, if
√
δ < σ2

2β2q
for some q = 1, 2, . . . , then there exists constants µ2(δ, cδ , q) ≥ µ1(δ, cδ , 2q)

(with µ2(δ, cδ , 1) equal to the µ2(δ, cδ) above) and C1 = C1(δ, cδ , q) > 0 such that when µ ≥ µ2(δ, cδ , q)
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and f ∈W 1,4q, we have

sup
0≤α≤1

∥∥E|∇u|2q
∥∥
L

2
1−α (JT ,L

2d
d−2+2α )

≤ C1‖∇f‖2q4q. (15)

In particular, there exists C2 > 0 such that

sup
t∈JT

E〈ρ|∇u|2q〉 ≤ C2‖∇f‖2q4q. (16)

If 2q > d, then for a.e. ω ∈ Ω, t ∈ JT , the function x 7→ u(t, x, ω) is Hölder continuous, possibly after

modification on a set of measure zero in Rd (in general, depending on ω).

Theorem 3. Assume that d ≥ 3, b ∈ Fδ with
√
δ < σ2

2β2
and f ∈ W 1,4. Provided κ is sufficiently

small, there exists µ3 = µ3(δ, cδ) ≥ 0 such that for µ ≥ µ3(δ, cδ), (CP) has a unique solution in the

class of functions satisfying (a), (b) of Theorem 2.

A function satisfying (a), (b) of Theorem 2 will be called a weak solution of (CP). This definition

of weak solution is close to [BFGM, Definition 2.13]. It should be noted however that the authors in

[BFGM] prove their uniqueness result, in the time-dependent case, in a larger class of weak solutions

(not requiring any differentiability, see [BFGM, Definition 3.3]) but under additional assumptions on

b. Specialized to the time-dependent case, they assume that b satisfies

div b ∈ Ld + L∞ (17)

in addition to |b| ∈ Ld+L∞. The latter is needed to establish (15) for solutions of the adjoint equation

to the STE, i.e. the stochastic continuity equation (which allows to prove an even stronger result: the

uniqueness of weak solution to the corresponding random transport equation), see [BFGM, Sect. 3].

We expect that an analogue of (17) for b ∈ Fδ can be found with some additional effort. However,

we will not address this matter in this paper. Of course, in the case b ∈ Fδ, div b = 0, one has (15) for

solutions to the stochastic continuity equation, so one can prove the uniqueness for (CP) by repeating

the argument in [BFGM, Sect. 3].

The proof of the uniqueness result in Theorem 3 (see Section 6) adopts the method of [BFGM,

Sect. 3].

Remark 1 (On applications to SDEs). Armed with Theorems 1 and 2, one can repeat the argument

in [BFGM, Sect. 4] to prove the following result. Assuming that b ∈ Fδ with δ sufficiently small, there

exists a stochastic Lagrangian flow for SDE (10), i.e. a measurable map Φ : JT × Rd × Ω → Rd such

that, for a.e. x ∈ Rd, the process t 7→ Φt(x, ω) is a strong solution of the SDE (10):

Φt(x, ω) = x−
∫ t

0
b(s,Φr(x, ω))dr + σBt(ω), a.s., t ∈ JT , (18)

and Φt(x, ·) is Ft-progressively measurable. If also
√
δ < σ2

2β2q
, q = 1, 2, . . . , then Φt(·, ω) ∈ W 1,2q

loc

(t ∈ JT ) for a.e. ω ∈ Ω. Moreover, Φt is unique, i.e. any two such stochastic flows coincide a.s. for

every t > 0 for a.e. x.

Remark 2 (STE with time-dependent b). The proof of the key result of this paper (Proposition 2

below, i.e. a priori Sobolev regularity of solutions of the STE) carries over, without change, to the

time-dependent form-bounded vector fields:
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Definition 2. A vector field b ∈ L2
loc

(
[0,∞)×Rd,Rd

)
is said to be form-bounded with relative bound

δ > 0, written as b ∈ F̃δ, if |b| ∈ L2
loc([0,∞) × Rd) and

∫ ∞

0
‖b(t, ·)φ(t, ·)‖22dt 6 δ

∫ ∞

0
‖∇φ(t, ·)‖22dt+

∫ ∞

0
g(t)‖φ(t, ·)‖22dt

for some g = gδ ∈ L1
loc[0,∞), for all φ ∈ C∞

c ([0,∞) × Rd).

The class F̃δ contains vector fields

|b(·, ·)| ∈ Lq
(
[0,∞), Lr + L∞)

,
d

r
+

2

q
6 1,

with δ that can be chosen arbitrarily small (using Hölder’s inequality and the Sobolev embedding

theorem). Another example is

|b(t, x)|2 6 c1|x− x0|−2 + c2|t− t0|−1
(
log(e+ |t− t0|−1)

)−1−ε
, ε > 0, (t, x) ∈ [0,∞)× Rd,

which belongs to the class F̃δ with δ = c1 (2/(d− 2))2 (using Hardy’s inequality).

We plan to address the regularity theory of the STE with b ∈ F̃δ elsewhere.

3. A priori estimates

Assume b ∈ Fδ. In the remainder of this paper, we fix some bm ∈ C∞
c (Rd,Rd) such that

bm → b in L2
loc(R

d,Rd) as m→ ∞

and for every m = 1, 2, . . .

‖bmϕ‖22 ≤ δ‖∇ϕ‖22 + cδ‖ϕ‖22, ϕ ∈W 1,2

with cδ independent of m (see example of such bm below). Let f ∈ C∞
c . Let um be the unique strong

solution to

um(t)− f + µ

∫ t

0
umds+

∫ t

0
bm · ∇uds+ σ

∫ t

0
∇um ◦ dBs = 0 a.s., t ∈ JT = [0, T ]. (19)

Then, by [Ku, Section 6.1], for any p, r ≥ 1 and any multiindex α = (α1, . . . , αd) of non-negative

integers,

E (|Dαum|p) ∈ L∞(JT × Rd)

and
∫

Rd

(1 + |x|r)
(
E|um|p + E|∇um|p

)
dx ∈ L∞(JT ).

Remark 3 (Example of {bm}). Denote by 1m the indicator of {|x| ≤ m, |b(x)| ≤ m}, and by ηm ∈ C∞
c

a [0, 1]-valued function such that ηm = 1 on B(0,m). Consider

bm := ηme
ǫm∆(1mb), (∗)

where ǫm ↓ 0 is to be chosen.

First, let us show that, for any {γm} ↓ 0 we can select {ǫm} ↓ 0 in the definition of bm so that

bm ∈ Fδm with δm = (
√
δ +

√
γm)2 ↓ δ and cδm ≤ 2cδ starting from some m on.
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Since b ∈ Fδ, there exists λ ≥ 0 such that ‖|b|(λ −∆)−
1

2 ‖2→2 ≤
√
δ. Then cδ = λδ. We claim that,

we can select {ǫm} ↓ 0 fast enough so that

‖|bm|(λ−∆)−
1

2‖2→2 ≤
√
δm. (∗∗)

Once this claim is proven, we will have cδm = λδm ≤ 2cδ starting from some m on, which implies the

required. Now we prove the claim. We have

bm = 1mb+ (bm − 1mb),

where, clearly, ‖|1mb|(λ−∆)−
1

2‖2→2 ≤
√
δ for every m, while bm−1mb ∈ Ld. It follows from Hölder’s

inequality and the Sobolev embedding theorem that for any g ∈ L2,

‖|bm − 1mb|(λ−∆)−
1

2 g‖2 ≤ ‖bm − 1mb‖d‖(λ−∆)−
1

2 g‖ 2d
d−2

≤ c‖bm − 1mb‖d‖g‖2.

It is easily seen that, for every m, the norm ‖bm−1mb‖d can be made smaller than c−1γm by selecting

{ǫm} ↓ 0 sufficiently rapidly. Thus

‖(bm − 1mb)(λ−∆)−
1

2 ‖2→2 ≤ γm.

Now (∗∗) follows.
Finally, to have bm form-bounded with the original relative bound δ, it suffices to multiply bm in

(∗) by δ
δm

. (Although, to carry out the proofs of Theorems 1-3, the last step is not necessary since all

our assumptions on δ are strict inequalities.)

We prove the next proposition under more general assumptions on δ and p than in Theorem 1.

Proposition 1. Let b ∈ Fδ with
√
δ < σ2. Let T > 0, p ∈ (pc,∞), pc :=

(
1 −

√
δ

σ2

)−1
. Let

f ∈ C∞
c , let bm and um be as above. There exist constants µ(δ, cδ , p) ≥ 0, C1 = C1(δ, cδ , p) > 0 and

C2 = C2(δ, cδ , p, T ) > 0 independent of m such that for any µ ≥ µ
(
δ, cδ , p

)
and m = 1, 2, . . . , the

following are true:

(i)

sup
t∈JT

‖Eu2m(t)‖p ≤ ‖f‖22p,
∫

JT

‖∇vp‖22ds ≤ C1‖f‖p2p, (E1)

where v := Eu2 and vp := v|v| p2−1;

(ii) if
√
δ < σ2

2 , then

E
〈
ρ

(
∇

∫

JT

um(s)ds

)2〉
≤ C2‖f‖22p. (E2)

Proposition 2. Let b ∈ Fδ and f ∈ C∞
c , let bm and um be as above. For every q ≥ 1, there

exists constants µ(δ, cδ , q) ≥ 0 and C = C(δ, cδ , q) > 0 independent of m such that if
√
δ < σ2

2β2q
and

µ ≥ µ(δ, cδ , q), then

sup
0≤α≤1

∥∥E|∇um|2q
∥∥
L

2
1−α

(
[0,T ],L

2d
d−2+2α

) ≤ C‖∇f‖2q4q. (E3)

Proof of Proposition 1. For brevity, we write u for um in this proof. The identity (7) allows us to

rewrite (19) as

u(t, ·) − f + µ

∫ t

0
uds+

∫ t

0
bm · ∇uds+ σ

∫ t

0
∇udBs −

σ2

2

∫ t

0
∆uds = 0 a.s., t ∈ JT . (20)
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Below we will be appealing to (20).

We first prove (E1). Applying Itô’s formula to u2, we obtain, in view of (20),

u2(t)− f2 = −2µ

∫ t

0
u2ds −

∫ t

0
bm · ∇u2ds− σ

∫ t

0
∇u2dBs +

σ2

2

∫ t

0
∆u2ds.

Since t 7→
∫ t
0 ∇u2dBs is a martingale, v = Eu2 satisfies

∂tv = −2µv − bm · ∇v + σ2

2
∆v, v(0) = f2.

We multiply the last equation by v|v|p−2 and integrate by parts (recall that vp = v|v| p2−1),

1

p
∂t〈|vp|2〉+ 2µ〈|vp|2〉+

4

pp′
σ2

2
〈|∇vp|2〉 −

2

p
〈bm · ∇vp, vp〉 ≤ 0,

so applying the quadratic inequality we have (for ε > 0)

∂t〈|v|p〉+ 2pµ〈|v|p〉+ 2σ2

p′
〈|∇vp|2〉 − 2

(
ε〈|∇vp|2〉+

1

4ε
〈b2mv2p〉

)
≤ 0.

Finally, by our assumption on bm,

∂t〈|v|p〉+ 2pµ〈|v|p〉+ 2σ2

p′
〈|∇vp|2〉 − 2

(
ε〈|∇vp|2〉+

δ

4ε
〈|∇vp|2〉+

cδ
4ε

〈|v|p〉
)

≤ 0.

Taking ε =
√
δ
2 in the last inequality and integrating with respect to t, we obtain for t > 0

〈|v(t)|p〉+ 2

(
σ2

p′
−
√
δ

)∫ t

0
〈|∇vp|2〉ds +

[
2pµ− cδ

2
√
δ

] ∫ t

0
〈|v|p〉ds ≤ ‖f2‖pp,

where σ2

p′ −
√
δ > 0 since p > pc. Taking µ ≥ cδ

4
√
δp
, we arrive at (E1).

Now we deal with (E2). Let µ ≥ cδ
4
√
δp

as above. By (E1),

sup
t∈JT

〈
ρEu2(t)

〉
≤ ‖ρ‖p′ sup

t∈JT
‖Eu2(t)‖p ≤ c1‖f‖22p, (21)

since θ > d
2 in the definition of ρ.

We multiply (20) by ρ
∫ t
0 uds, integrate, and take expectation, to get

E
〈
ρ

∫ t

0
uds, u(t)

〉
= E

〈
ρ

∫ t

0
uds, f

〉
− E

〈
ρ

∫ t

0
uds, bm · ∇

∫ t

0
uds

〉
(22)

− σE
〈
ρ

∫ t

0
uds,

∫ t

0
∇udBs

〉
+
σ2

2
E
〈
ρ

∫ t

0
uds,

∫ t

0
∆uds

〉
+ µE

〈
ρ

∫ t

0
uds,

∫ t

0
uds

〉

=: I1 + I2 + I3 + I4 + I5.

Denote the left-hand side of (22) by I0. Set

U :=

∫ t

0
uds.

By Hölder’s inequality and (21),

E
〈
ρU2

〉
≤ t

〈
ρ

∫ t

0
Eu2ds

〉
≤ t2c1‖f‖22p. (23)
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Integrating by parts in I4 and using the quadratic inequality, we have

2

σ2
I4 = −E

〈
ρ|∇U |2

〉
− E

〈
U∇ρ,∇U

〉

≤ −E
〈
ρ|∇U |2

〉
+ αE

〈
|∇ρ|U2

〉
+

1

4α
E
〈
|∇ρ||∇U |2

〉
(α > 0)

(we are applying (6) in the last term, and (6), (23) in the middle term)

≤ −
(
1− θ

√
κ

4α

)
E
〈
ρ|∇U |2

〉
+ θ

√
καT 2c1‖f‖22p.

Substituting the last estimate into (22), we obtain

σ2

2

(
1− θ

√
κ

4α

)
E
〈
ρ|∇U |2

〉
≤ σ2

2
θ
√
καT 2c1‖f‖22p + |I0|+ |I1|+ |I2|+ |I3|+ |I5|. (24)

We now estimate |Ii|, i = 0, 1, 2, 3, 5. By (21) and (23),

|I0| ≤
(
E
〈
ρU2

〉) 1

2
(
E
〈
ρu2(t)

〉) 1

2 ≤ c2‖f‖22p.

Similarly,

|I1| ≤ c3‖f‖22p, |I5| ≤ µc4‖f‖22p.

Next, applying the quadratic inequality, we get

|I2| ≤ νE
〈
ρb2mU

2
〉
+

1

4ν
E
〈
ρ|∇U |2

〉
(ν > 0)

(
in the first term, we apply bm ∈ Fδ with ϕ :=

√
ρU)

≤ ν
(
δE〈|∇(

√
ρU)|2〉+ cδE〈ρU2〉

)
+

1

4ν
E
〈
ρ|∇U |2

〉

(in the first term, we use (a+ c)2 ≤ (1 + ǫ)a2 + (1 +
1

ǫ
)c2, ǫ > 0)

≤ νδ(1 + ǫ)E
〈
|√ρ∇U |2

〉
+ νδ

(
1 +

1

ǫ

)
E
〈
|U∇√

ρ|2
〉
+ νcδE〈ρU2〉+ 1

4ν
E
〈
ρ |∇U |2

〉

(in the second term, we apply (6) and then use (23); also, we apply (23) in the last term)

≤
(
νδ(1 + ǫ) +

1

4ν

)〈
ρ |∇U |2

〉
+ T 2c5‖f‖22p, c5 = c5(ν, δ, cδ , θ, κ, ǫ).

In the current setting, we have
∫ t
0 ∇udBs = ∇

∫ t
0 udBs (see, for instance, [HN]). Thus, integrating by

parts, we obtain

I3 = σE
〈
ρ∇U,

∫ t

0
udBs

〉
+ σE

〈
U∇ρ,

∫ t

0
udBs

〉
,
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so

|I3| ≤ σ
(
E
〈
ρ |∇U |2

〉) 1

2
(
E
〈
ρ

(∫ t

0
udBs

)2〉) 1

2

+ σ
(
E
〈
|∇ρ|U2

〉) 1

2
(
E
〈
|∇ρ|

(∫ t

0
udBs

)2〉) 1

2

(we use (6) and apply the Itô isometry)

≤ σ
(
E
〈
ρ |∇U |2

〉) 1

2
(
E
〈
ρ

∫ t

0
u2ds

〉) 1

2

+ θ
√
κσ

(
E
〈
ρU2

〉) 1

2

(
E
〈
ρ

∫ t

0
u2ds

〉) 1

2

(we apply the quadratic inequality in the first term and then use (23))

≤ σγE
〈
ρ |∇U |2

〉
+
σT 2c1
4γ

‖f‖22p + θ
√
κσT 2c1‖f‖22p (γ > 0).

Substituting the above estimates on |I0|, |I1|, |I2|, |I3| and |I5| in (24), we obtain
(
σ2

2
− νδ(1 + ǫ)− 1

4ν
− σγ − σ2

2

θ
√
κ

4α

)
E
〈
ρ |∇U |2

〉
≤ c6‖f‖22p

for an appropriate constant c6 = c6(α, γ, ν, δ, θ, κ, ǫ, cδ , µ) <∞. Take ν = (2
√
δ)−1. Since

√
δ < σ2

2 by

assumption, we can select γ, ǫ sufficiently small and α sufficiently large so that

σ2

2
−

(
νδ +

1

4ν

)
− νδε− σγ − σ2

2

θ
√
κ

4α
> 0,

and thus (E2) follows with constant C2 = c6
(
σ2

2 − νδ(1 + ǫ)− 1
4ν − σγ − σ2

2
θ
√
κ

4α

)−1
. �

Remark 4. In Proposition 1, the interval (pc,∞) of admissible values of p decreases to the empty set

as
√
δ ↑ σ2. In fact, one can show that if b ∈ Fδ,

√
δ < σ2 and bm ∈ C∞

c are as above, then the limit

s-Lp- lim
m
e−tΛm (loc. uniformly in t ≥ 0), p > pc,

where Λm = −σ2

2 ∆+ bm · ∇, D(Λm) = W 2,p, exists and determines a L∞ contraction, quasi contrac-

tion holomorphic semigroup in Lp, say, e−tΛ, see [KiS3, Theorems 4.2, 4.3]. The operator Λ is an

appropriate operator realization of the formal operator −σ2

2 ∆ + b · ∇ in Lp. One can compare this

result with the example in [BFGM, Sect. 7], where the authors show that the SDE

Xt = −
∫ t

0
b(Xs)ds+ σBt, b(x) =

√
δ
d− 2

2
|x|−2x ∈ Fδ,

corresponding to operator −σ2

2 ∆+ b · ∇, does not have a weak solution if
√
δ > σ2.

Proof of Proposition 2. For any multiindex I with entries in {1, . . . , d}, i.e., an element of {1, . . . , d}×
· · · × {1, . . . , d}, say, p times, we write |I| = p. For any such multiindex I and l ∈ {1, . . . , d}, we
denote by I − l the multiindex obtained from I by dropping an index of value l. Let I − l + k be

the multiindex I with an index of value l dropped and replaced with an index of value k. It does not

matter from which component the value l is dropped.
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For brevity, we write u for um in this proof. Set

wr := ∂xru, 1 ≤ r ≤ d,

where u is the strong solution of (19), and

wI :=
∏

r∈I
∂xru.

Step 1. We apply Itô’s formula in Stratonovich form to wI , obtaining

wI(t)−
∏

r∈I
∂xrf =

∑

r∈I

∫ t

0
wI−r(s) ◦ dwr(s).

Next, differentiating (20) in xr and then substituting the resulting expression for dwr into the previous

formula, we obtain

wI(t)−
∏

r∈I
∂xrf = −µ

∫ t

0
wIds−

∑

r∈I

∫ t

0
wI−r

(
bm · ∇wr + ∂xrb · ∇u

)
ds− σ

∑

r∈I

∫ t

0
wI−r∇wr ◦ dBs.

Let bkm, k = 1, . . . , d, be the components of the vector field bm. We have

wI(t)−
∏

r∈I
∂xrf = −µ

∫ t

0
wIds−

∑

r∈I

∫ t

0
wI−r

(
bm · ∇wr + ∂xrbm · ∇u

)
ds− σ

∫ t

0
∇wI ◦ dBs

(we use

∫ t

0
∇wI ◦ dBs =

∫ t

0
∇wIdBs −

1

2

d∑

k=1

[∂xk
wI , B

k]t)

= −µ
∫ t

0
wIds−

∑

r∈I

∫ t

0
wI−r

(
bm · ∇wr + ∂xrbm · ∇u

)
ds− σ

∫ t

0
∇wIdBs +

σ2

2

∫ t

0
∆wIds

= −µ
∫ t

0
wIds−

∫ t

0
bm · ∇wIds−

∑

r∈I

d∑

k=1

∫ t

0
∂xrb

k
mwI−r+kds− σ

∫ t

0
∇wIdBs +

σ2

2

∫ t

0
∆wIds.

Put

vI := E[wI ].

Since t 7→
∫ t
0 ∇wIdBs is a martingale, vI satisfies

vI(t)−
∏

r∈I
∂xrf = −µ

∫ t

0
vIds−

∫ t

0
bm · ∇vIds−

∑

r∈I

d∑

k=1

∫ t

0
∂xrb

k
mvI−r+kds+

σ2

2

∫ t

0
∆vIds,

i.e.,

∂tvI = −µvI +
σ2

2
∆vI − bm · ∇vI −

∑

r∈I

d∑

k=1

∂xrb
k
mvI−r+k, vI(0) =

∏

r∈I
∂xrf. (25)

Step 2. We multiply the equation in (25) by vI , and integrate:

1

2
∂t
〈
v2I
〉
+ µ〈v2I 〉+

σ2

2

〈
(∇vI)2

〉
= −

〈
vI , bm · ∇vI

〉
−

〈
vI ,

∑

r∈I

d∑

k=1

∂xrb
k
mvI−r+k

〉
.
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Then, for every t ∈ JT ,

1

2

〈
v2I (t)

〉
− 1

2

〈
v2I (0)

〉
+ µ

∫ t

0
v2Ids+

σ2

2

∫ t

0

〈
(∇vI)2

〉
ds (26)

= −
∫ t

0

〈
vI , bm · ∇vI

〉
ds −

∫ t

0

〈
vI ,

∑

r∈I

d∑

k=1

∂xrb
k
mvI−r+k

〉
ds =: −S1

I − S2
I .

We estimate |S1
I | and |S2

I | as follows:

|S1
I | ≤

∣∣∣∣
∫ t

0

〈
vI , bm · ∇vI

〉
ds

∣∣∣∣ ≤ γ

∫ t

0

〈
(∇vI)2

〉
ds +

1

4γ

∫ t

0

〈
v2Ib

2
m

〉
ds

(we use bm ∈ Fδ))

≤
(
γ +

δ

4γ

)∫ t

0

〈
(∇vI)2

〉
ds+

cδ
4γ

∫ t

0
〈v2I 〉. (27)

Next, integrating by parts, and applying the quadratic inequality, we have

|S2
I | =

∣∣∣∣−
∫ t

0

∑

r∈I

d∑

k=1

〈(vI−r+k∂xrvI + vI∂xrvI−r+k)b
k
m〉

∣∣∣∣ds

≤ α

∫ t

0

∑

r∈I

d∑

k=1

〈
(∂xrvI)

2 + (∂xrvI−r+k)
2
〉
ds+

1

4α

∫ t

0

∑

r∈I

d∑

k=1

〈
v2I−r+k(b

k
m)2 + v2I (b

k
m)2

〉
ds.

Let q = 1, 2, . . . . Summing over all I with |I| = 2q and noticing that every multiindex of length 2q

is counted 4qd times, we obtain

∑

I

|S2
I | ≤ 4αqd

∑

I

∫ t

0

〈
|∇vI |2

〉
ds+

qd

α

∑

I

∫ t

0

〈
v2I b

2
m

〉
ds

(use bm ∈ Fδ in the second term)

≤ 4αqd
∑

I

∫ t

0

〈
|∇vI |2

〉
ds+

qdδ

α

∑

I

∫ t

0

〈
|∇vI |2

〉
ds+

qdcδ
α

∑

I

∫ t

0

〈
v2I
〉
ds.

Also, by (27), we have

∑

I

|S1
I | ≤

(
γ +

δ

4γ

)∑

I

∫ t

0

〈
|∇vI |2

〉
ds+

cδ
4γ

∑

I

∫ t

0
〈v2I 〉.

Now, armed with the last two estimates, we sum both sides of (26) over all I with |I| = 2q to obtain

1

2

∑

I

〈
v2I (t)

〉
+ µ

∫ t

0
v2Ids+ κ

∫ t

0

∑

I

〈
|∇vI |2

〉
ds

≤ 1

2

∑

I

〈
v2I (0)

〉
+

[
qdcδ
α

+
cδ
4γ

]∑

I

∫ t

0
〈v2I 〉,

where

κ :=
σ2

2
− γ − δ

4γ
− 4αqd− qdδ

α
.
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The maximum κ∗ := maxα,γ>0 κ = σ2

2 −
√
δ − 4qd

√
δ is attained at

α =

√
δ

2
, γ =

√
δ

2
.

For this choice of α and γ, we have κ∗ = σ2

2 − β2q
√
δ. Since β2q

√
δ < σ2

2 by assumption, we have

κ∗ > 0 and

1

2

∑

I

〈
v2I (t)

〉
+

(
µ− ĉ

) ∫ t

0
v2Ids+ κ∗

∫ t

0

∑

I

〈
|∇vI |2

〉
ds ≤ 1

2

∑

I

〈
v2I (0)

〉
,

where ĉ := 2qdcδ√
δ

+ cδ
2
√
δ
. Thus, choosing µ ≥ ĉ, we obtain

1

2
sup

τ∈[0,t]

∑

I

〈
v2I (τ)

〉
+ κ∗

∫ t

0

∑

I

〈
|∇vI |2

〉
ds ≤ 1

2

∑

I

〈
v2I (0)

〉
.

Step 3. Recalling that vI = E
[∏

r∈I ∂xru
]
, vI(0) =

∏
r∈I ∂xrf , we obtain from the previous estimate:

sup
t∈JT

∑

1≤k≤d

〈
(E(∂xk

u)2q)2
〉
≤ c1

〈
|∇f |2q

〉
, (28)

∑

1≤k≤d

∫ t

0

〈
|∇E(∂xk

u)2q|2
〉
ds ≤ c2

〈
|∇f |2q

〉
, (29)

for appropriate positive constants c1, c2. By the Sobolev embedding theorem,
∫ t

0

〈
(∇E|∇u|2q)2

〉
ds ≥ c3

∫ t

0

〈
(E|∇u|2q)

2d
d−2

〉 d−2

d ds,

so (29) yields

‖E|∇u|2q‖2
L2(JT ,L

2d
d−2 )

≤ c4‖∇f‖4q4q,

for appropriate constant c4 > 0.

Interpolating between the last estimate, and (28), that is, ‖E|∇u|2q‖2L∞(JT ,L2) ≤ c1‖∇f‖4q4q, we
obtain (E3). �

4. Proof of Theorem 1

Recall that ‖ · ‖p,ρ denotes the norm in Lp(Rd, ρdx), and 〈·, ·〉ρ the inner product in L2(Rd, ρdx).

We assume throughout this section that b ∈ Fδ and bm, m = 1, 2, . . . are as in the beginning of the

previous section.

Lemma 1. Let b ∈ Fδ, and let bm be as above. Then the following are true:

(i) ‖b√ρ‖2 <∞.

(ii) ‖b√ρ1Bc(0,R+1)‖2 ↓ 0 as R→ ∞.

(iii) 〈ρ|b− bm|2〉 → 0 as m→ ∞.

Proof. (i) Using b ∈ Fδ, and applying (6) and 〈ρ〉 <∞, we have

‖b√ρ‖22 ≤ δ‖∇√
ρ‖22 + cδ〈ρ〉 <∞.
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(ii) For any R ≥ 1, let ηR be a [0, 1]-valued smooth function such that ηR(x) = 1 if |x| > R + 1;

ηR(x) = 0 if |x| ≤ R; and supR≥1 ‖∇ηR‖∞ ≤ C. Then

‖b√ρηR‖22 ≤ δ‖∇[
√
ρηR]‖22 + cδ〈ρη2R〉.

We have ∇[
√
ρηR] =

1
2
√
ρ (∇ρ)ηR +

√
ρ∇ηR =: S1 + S2. Using (6), we have

‖S1‖22 ≤ C〈ρη2R〉 → 0 as R→ ∞.

Next, we use supR≥1 ‖∇ηR‖∞ ≤ C to get

‖S2‖22 ≤ C(1 + κR2)−θ〈1B(0,R+1)−B(0,R)〉 = cdC(1 + κR2)−θRd → 0 as R→ ∞

since θ > d
2 . This completes the proof of (ii).

(iii) This is a consequence of (ii) and bm → b in L2
loc(R

d).

The proof of Lemma 1 is complete. �

Lemma 2. Let β2
√
δ < σ2

2 , f ∈ C∞
c and um be the strong solution to (19). Provided that κ > 0 in

the definition of ρ is chosen sufficiently small, there exists µ
(
δ, cδ

)
≥ 0 such that for any µ ≥ µ

(
δ, cδ

)
,

lim
n,m→∞

sup
t∈JT

‖E|un(t)− um(t)|2‖2,ρ = 0.

Proof. Set

g ≡ gn,m := un − um, n,m = 1, 2, . . . ,

then

g(t) + µ

∫ t

0
gds +

∫ t

0
bm · ∇gds +

∫ t

0
(bn − bm) · ∇umds+ σ

∫ t

0
∇gdBs −

σ2

2

∫ t

0
∆gds = 0.

Applying Itô’s formula, we obtain

g2(t) = −2µ

∫ t

0
g2ds−

∫ t

0
bm · ∇g2ds− 2

∫ t

0
g(bn − bm) · ∇umds− σ

∫ t

0
∇g2dBs +

σ2

2

∫ t

0
∆g2ds,

so denoting h := E[g2] we arrive at

∂th+ 2µh− σ2

2
∆h+ bm · ∇h+ 2(bn − bm) · E[g∇um] = 0, h(0) = 0.

Multiplying this equation by ρh and integrating by parts, we obtain

1

2
‖h(t)‖22,ρ + 2µ

∫ t

0
‖h‖22,ρds+

σ2

2

∫ t

0
‖∇h‖22,ρds+

σ2

2

∫ t

0
〈(∇ρ)h,∇h〉 (30)

+

∫ t

0
〈bm · ∇h, h〉ρds+ 2

∫ t

0
〈h(bn − bm) · E[g∇um]〉ρds = 0.

Since our assumption on δ is a strict inequality, using (6) and selecting κ sufficiently small, we can

and will ignore in what follows the terms containing ∇ρ.
Applying the quadratic inequality and using bm ∈ Fδ, we obtain (cf. the proof of (E1))

σ2

2

∫ t

0
‖∇h‖22,ρds+

∫ t

0
〈bm · ∇h, h〉ρds ≥

(
σ2

2
−

√
δ

)∫ t

0
‖∇h‖22,ρds−

cδ

4
√
δ

∫ t

0
‖h‖22,ρds,

where σ2

2 −
√
δ > 0 by the assumption on δ.
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We obtain from (30):

1

2
sup

τ∈[0,t]
‖h(τ)‖22,ρ +

(
σ2

2
−

√
δ

)∫ t

0
‖∇h(s)‖22,ρds+

[
2µ − cδ

4
√
δ

] ∫ t

0
‖h‖22,ρds

≤ 2

∫ t

0
〈h|bn − bm| · E[|g∇um|]〉ρds.

Select µ ≥ cδ
4
√
δ
. Then the previous estimate yields

1

2
sup

τ∈[0,t]
‖h(τ)‖22,ρ ≤ 2

∫ t

0
〈h|bn − bm| · E[|g∇um|]〉ρds,

so it remains to show that
∫ t

0
〈h|bn − bm| · E[|g∇um|]〉ρds→ 0 as n,m→ ∞.

We estimate

〈h|bn − bm| · E[|g∇um|]〉ρ ≤ 〈|bn − bm|h(E[g2]) 1

2 (E[|∇um|2]) 1

2 〉ρ ≡ 〈|bn − bm|h 3

2 (E[|∇um|2]) 1

2 〉ρ

≤ 〈|bn − bm|2〉
1

2
ρ 〈h3E[|∇um|2]〉

1

2
ρ ≤ 〈|bn − bm|2〉

1

2
ρ 〈h3E[|∇um|2]〉 1

2

≤ 〈|bn − bm|2〉
1

2
ρ 〈h6〉

1

4 〈(E[|∇um|2])2〉 1

4

(we apply Proposition 1, and (28) with q = 1)

≤ c〈|bn − bm|2〉
1

2
ρ ‖f‖312‖∇f‖4

(we apply Lemma 1(iii))

→ 0 as n,m→ ∞.

The proof of Lemma 2 is complete. �

Lemma 2 allows to prove that {um} is a Cauchy sequence in L∞(JT , L
2(Ω, L2

ρ)).

Lemma 3. Let β2
√
δ < σ2

2 , f ∈ C∞
c and um be the strong solution to (19). Provided that κ > 0 in

the definition of ρ is chosen sufficiently small, it holds that um converges in L2(Ω, L2
ρ) to a process u,

uniformly in t ∈ JT .

Proof. Let κ be small enough and µ greater than or equal to the µ(δ, cδ). Let µ ≥ µ(δ, cδ). Then by

Lemma 2,

sup
t∈JT

E‖(un(t)− um(t))‖22,ρ ≤ 〈ρ〉 1

2 sup
t∈JT

‖E|un(t)− um(t)|2‖2,ρ → 0

as m, n→ ∞. Thus, we can define

u(t) := s-L2(Ω, L2
ρ)- limm

um(t) uniformly in t ∈ JT .

The proof is complete �

We are in position to give the proof of Theorem 1.
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Proof of Theorem 1. It suffices to carry out the proof for f ∈ C∞
c , and then use a density argument.

It follows from the assumption
√
δ < σ2

2β2
that p ≥ 2 is in the interval (pc,∞), pc =

(
1 −

√
δ

σ2

)−1
.

(Indeed, pc < 2 if and only if
√
δ < σ2

2 . In particular, pc < 2 if
√
δ < σ2

2β2
since β2 > 1.) Let µ(δ, cδ , p)

be the constant from Proposition 1. Assume that µ ≥ µ(δ, cδ , p). Then the conclusions of Proposition

1 are valid.

We prove (i) first. We do this in two steps.

Step 1. Selecting κ sufficiently small so that Lemma 3 applies, we obtain that um converges in

L2(Ω, L2
ρ) to a process u, uniformly in t ∈ JT . Thus u ∈ L∞(JT , L

2
loc(R

d, L2(Ω)), and we have for all

t ∈ JT ,

um → u in L∞(JT , L
2(Ω, L2

ρ)), (31)

which yields
∫ t

0
umds→

∫ t

0
uds in L2(Ω, L2

ρ); (32)

the latter, (E2) and a standard weak compactness argument yield

∇
∫ t

0
umds → ∇

∫ t

0
uds weakly in L2(Ω, L2

ρ(R
d,Rd)). (33)

Step 2.Given a test function ϕ ∈ C∞
c , we multiply (19) by ρϕ, integrate and write (we take µ = 0

to shorten calculations)

〈um(t)− u(t), ρϕ〉 + 〈u(t), ρϕ〉 − 〈f, ρϕ〉 = −
〈
(bm − b) · ∇

∫ t

0
umds, ρϕ

〉
−

〈
b · ∇

∫ t

0
umds, ρϕ

〉

+ σ
〈∫ t

0
(um − u)dBs,∇ρϕ

〉
+ σ

〈∫ t

0
udBs,∇ρϕ

〉
(34)

− σ2

2

〈
∇

∫ t

0
(um − u)ds,∇ρϕ

〉
− σ2

2

〈
∇

∫ t

0
uds,∇ρϕ

〉
.

Let us now note the following. In view of (31) and (33), 〈um(t)− u(t), ρϕ〉 ≡ 〈um(t)− u(t), ϕ〉ρ →
0 in L2(Ω). Similarly, using (33) and (6),

〈
∇

∫ t

0
(um − u)ds,∇ρϕ

〉
→ 0 weakly in L2(Ω), (a)

and, since ϕ|b| ∈ L2
ρ (using that ϕ has compact support),

〈
b · ∇

∫ t

0
umds, ρϕ

〉
→

〈
b · ∇

∫ t

0
uds, ρϕ

〉
weakly in L2(Ω). (b)

By (E2), ‖∇
∫ t
0 umds‖L2(Ω,L2

ρ)
≤ c1 with c1 <∞ independent of m, and ϕ|bm − bn| → 0 in L2

ρ (in fact,

in L2). Thus

〈
(bm − b) · ∇

∫ t

0
umds, ρϕ

〉
→ 0 in L2(Ω). (c)

Finally, let us show that

〈∫ t

0
(um − u)dBs,∇ρϕ

〉
→ 0 in L2(Ω). (d)
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Indeed, using Itô’s isometry, we have using (6)

E

∣∣∣∣
〈∫ t

0
(um − u)dBs,∇ρϕ

〉∣∣∣∣
2

≤ c2E〈
∣∣
∫ t

0
(um − u)dBs

∣∣2〉ρ〈|ϕ|2〉ρ

= c3〈E
∫ t

0
(um − u)2ds〉ρ → 0 by (31).

The convergence (d) follows.

Thus, using (a)-(d), we can pass to the L2(Ω)-weak limit in (34) as m → ∞, obtaining that u

satisfies (13) (with test functions ϕρ which, clearly, exhaust C∞
c ).

The estimates in (11), (12) now follow from Proposition 1.

The last assertion (ii) is Lemma 3 proved above.

The proof of Theorem 1 is complete. �

5. Proof of Theorem 2

Proof of Theorem 2. Part (a) follows from Theorem 1(i). The last assertion, (15), follows from Propo-

sition 2 and Lemma 3. So we only need to prove part (b).

Since the weak-L2(JT × Ω) limit of any sequence of (Ft)-progressively measurable processes on JT
remains (Ft)-progressively measurable and t 7→ 〈um(t), ϕ〉 is (Ft)-progressively measurable for every

m, in view of (32), the process t 7→ 〈u(t), ϕ〉 is (Ft)-progressively measurable as well. The proof of

(14) follows closely the proof of (13) above except that now, instead of (E2), we appeal to the Sobolev

regularity estimate (16) with q = 1.

The existence of a continuous (Ft)-semi-martingale modification of t 7→ 〈u(t), ϕ〉 is a consequence

of the identity (14).

The proof of Theorem 2 is complete. �

6. Proof of Theorem 3 (weak uniqueness)

The fact that (CP) has at least one weak solution was proved in Theorem 2. We now prove its

uniqueness. We adopt the argument of [BFGM, Sect. 3]. We will need the following definitions and

results. Let us fix a version of the Brownian motion Bt having continuous trajectories Bt(ω) for every

ω ∈ Ω.

Lemma 4. Let b ∈ Fδ with
√
δ < σ2

2β2
and f ∈ W 1,4. Let u = u(t, x, ω) be a weak solution to (CP).

Then for a.e. ω ∈ Ω,

ũω(t, x) := u(t, x+ σBt(ω), ω)

is a weak solution to the Cauchy problem

∂tũ
ω + µũω + b̃ω · ∇ũω = 0, ũω|t=0 = f, where b̃ω(t, x) := b(x+ σBt(ω)), (35)

that is, the following are true:

1) ũω ∈ L∞(JT ,W
1,2
ρ );

2) for every ψ ∈ C1(JT , C
∞
c ), the function t 7→ 〈ũω(t), ψ(t)〉 has a continuous representative, i.e. a

continuous function which coincides with t 7→ 〈ũω(t), ψ(t)〉 for a.e. t ∈ JT ;
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3) for every ψ ∈ C1(JT , C
∞
c ), this continuous representative of t 7→ 〈ũω(t), ψ(t)〉 satisfies for every

t ∈ JT ,

〈ũω(t), ψ(t)〉 = 〈f, ψ(0)〉 + µ

∫ t

0
〈ũω(s), ψ(s)〉ds +

∫ t

0
〈ũω(s), ∂sψ(s)〉ds −

∫ t

0
〈∇ũω(s), b̃ω(s)ψ(s)〉ds.

The proof of Lemma 4 follows closely the proof of [BFGM, Prop. 3.4] (taking into account the

definition of the weak solution to (CP)) and we omit the details.

Consider the terminal value problem

dvm + µvmdt+∇ · (bmvm)dt+ σ∇vm ◦ dBt = 0, t ∈ [0, t∗], vm|t=t∗ = v0 ∈ C∞
c , (36)

where bm ∈ C∞
c (Rd,Rd) (m = 1, 2, . . . ) (since bm are bounded and smooth, we have strong existence

and uniqueness for this equation).

The following is an analogue of [BFGM, Cor. 3.8].

Lemma 5. ṽωm(t, x) := vm(t, x+ σBt(ω)) satisfies, for a.e.ω ∈ Ω, ṽωm ∈ C1([0, t∗], C
∞
c ) and

∂tṽ
ω
m + µṽωm +∇ · (bωmṽωm) = 0, ṽωm(t∗, x) = v0(x+ σBt∗(ω)).

We will also need

Lemma 6. Let
√
δ < σ2

6 . There exist a constant µ(cδ) ≥ 0 and a sufficiently small κ > 0 (in the

definition of ρ) such that

sup
t∈JT

‖ρ−1E[v2m(t)]‖2 ≤ ‖ρ−1v0‖24, µ ≥ µ(cδ),m = 1, 2, . . .

where vm is the strong solution to (36).

Proof. Without loss of generality, we will carry out the proof for the forward equation, and will drop

the subscript m from bm. Set w := E[v2]. Arguing as in the proof of Proposition 1, we obtain that w

satisfies

∂tw + 2µw − σ2

2
∆w − 2∇ · (bw) + b · ∇w = 0, w(0) = v20 . (37)

We first carry out the proof for ρ ≡ 1. Multiplying the previous equation by w and integrating, we

obtain

1

2
∂t〈|w|2〉+ 2µ〈|w|2〉+ σ2

2
〈|∇w|2〉+ 3〈∇w, bw〉 = 0.

Applying the quadratic inequality and the form-boundedness condition b ∈ Fδ, we get that, for any

γ > 0,

1

2
∂t〈|w|2〉+ (2µ − 3γcδ)〈|w|2〉+

[
σ2

2
− 3(γδ +

1

4γ
)

]
〈|∇w|2〉 ≤ 0,

and so, selecting µ(cδ) :=
3
2γcδ and µ ≥ µ(cδ), we obtain

1

2
〈|w(t)|2〉+

[
σ2

2
− 3(γδ +

1

4γ
)

] ∫ t

0
〈|∇w|2〉ds ≤ 1

2
〈|v0|4〉.

Upon maximizing the coefficient in the square brackets in γ (thus, selecting γ = 1
2
√
δ
), we obtain that

the coefficient is positive since
√
δ < σ2

6 . In particular, it follows that supt∈JT ‖E[v2m(t)]‖2 ≤ ‖v0‖24.
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In presence of ρ−1, we argue as above but get new terms containing∇ρ−1, which we bound appealing

to the estimate

|∇ρ−1| =
∣∣∣∣
∇ρ
ρ2

∣∣∣∣ ≤ θ
√
κρ−1 (by (6)),

with κ selected sufficiently small. (Note that to justify ‖ρ−1E[v2m(t)]‖2 < ∞ we can appeal to quali-

tative Gaussian upper bound on the heat kernel of (37).) �

Let us note that the assumption of the theorem β2
√
δ < σ2

2 implies
√
δ < σ2

6 .

We are now in position to complete the proof of Theorem 3.

Proof of Theorem 3. Let µ and κ be as in Lemma 6. In view of the linearity of the stochastic transport

equation, it suffices to show that a weak solution u to (CP) with initial condition u(0) = 0 must be

identically zero for all t ∈ JT . In view of Lemma 4, it suffices to show that ũω corresponding to u is

identically zero a.s.

Let v0 ∈ C∞
c . It follows from Lemma 5 that, for a.e.ω ∈ Ω, ṽω(s) ∈ C1(JT , C

∞
c ). Thus by Lemma

4, for a.e.ω ∈ Ω with ψ(s) := ṽω(s), for all 0 < t∗ ≤ T ,

〈ũω(t∗), v0(·+ σBt∗(ω))〉 (•)

= µ

∫ t∗

0
〈ũω(s), ṽωm(s)〉d+

∫ t∗

0
〈ũω(s), ∂sṽωm(s)〉ds−

∫ t∗

0
〈∇ũω(s), b̃ω(s)ṽωm(s)〉ds

=

∫ t∗

0
〈∇ũω, (b̃ωm(s)− b̃ω(s))ṽωm〉ds =: I.

Step 1. Let us first show that

E

∣∣∣∣
∫ t∗

0
〈∇u, (b− bm)vmn〉ds

∣∣∣∣ → 0 as m ↑ ∞. (••)

We have

E

∣∣∣∣
∫ t∗

0
〈∇u, (b− bm)vm〉ds

∣∣∣∣ ≤
∫ t∗

0

〈
|b− bm|E

[
|∇u|2

] 1

2E
[
|vm|2

] 1

2
〉
ds

≤
(∫ t∗

0

〈
ρ|b− bm|2

〉
ds

) 1

2
(∫ t∗

0

〈
(E

[
|∇u|2

]
)2
〉
ds

) 1

4
(∫ t∗

0

〈
ρ−2(E

[
|vm|2

]
)2
〉
ds

) 1

4

.

The first integral converges to 0 as m ↑ ∞ by Lemma 1(iii), the second integral is finite by the

definition of weak solution before Theorem 3, and the third integral is bounded from above uniformly

in m by
√
t∗‖ρ−1v0‖24 <∞, see Lemma 6. Thus, (••) follows.

Step 2. By Step 1, there exists a subset Ωt∗,v0 ⊂ Ω of probability 1 and a sequence mk ↑ ∞ such

that for every ω ∈ Ωt∗,v0 ,

∫ t∗

0
〈∇u, (b− bmk

)vmk
〉ds→ 0 as mk ↑ ∞.

Making the change of variable x 7→ x + σBt(ω) and using the fact that c−1
t∗,wρ(·) ≤ ρ(· + σBt(ω)) ≤

ct∗,wρ(·) for some constant ct∗,w > 1 we obtain that for every ω ∈ Ωt∗,v0 ,

I → 0 as mk ↑ ∞.



22 DAMIR KINZEBULATOV, YULIY A. SEMËNOV, AND RENMING SONG

Fix a countable dense subset D of C∞
c (Rd) and define

Ω̃ :=
⋂

t∗∈[0,T ]∩Q,v0∈D

Ωt∗,v0 ,

a full measure set in Ω. Applying the diagonal argument (and so passing to a subsequence of {εk}),
we obtain by (•) and Step 2 that for every ω ∈ Ω̃, ũω(t) = 0 for all t ∈ [0, T ]∩Q. Since t 7→ 〈ũω(t), ϕ〉,
ϕ ∈ C∞

c (Rd) is continuous, we obtain that ũω(t) = 0 for all t ∈ [0, T ] for all ω ∈ Ω̃, as needed.

The proof of Theorem 3 is complete. �
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