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HEAT KERNEL BOUNDS FOR PARABOLIC EQUATIONS WITH SINGULAR

(FORM-BOUNDED) VECTOR FIELDS

D.KINZEBULATOV AND YU.A. SEMËNOV

Abstract. We consider Kolmogorov operator −∇·a ·∇+ b ·∇ with measurable uniformly elliptic

matrix a and prove Gaussian lower and upper bounds on its heat kernel under minimal assumptions

on the vector field b and its divergence div b. More precisely, we prove:

(1) Gaussian lower bound, provided that div b ≥ 0, and b is in the class of form-bounded vector

fields (containing e.g. the class L
d, the weak L

d class, as well as some vector fields that are not

even in L
2+ε
loc , ε > 0); in these assumptions, the Gaussian upper bound is in general invalid;

(2) Gaussian upper bound, provided that b is form-bounded, and the positive part of div b is in

the Kato class; in these assumptions, the Gaussian lower bound is in general invalid;

(3) Gaussian upper and lower bounds, provided that b is form-bounded, div b is in the Kato

class;

(4) A priori Gaussian upper and lower bounds, provided that b is in a large class containing the

class of form-bounded vector fields, div b is in the Kato class.

1. Introduction and main results

1. The subject of this paper is Gaussian lower and upper bounds on the heat kernel u(t, x; s, y),

t > s, of the parabolic equation

(∂t −∇x · a · ∇x + b · ∇x)u(t, x) = 0 on [0,∞[×Rd, d ≥ 3, (1)

a = a∗ : Rd → Rd ⊗ Rd,

σI ≤ a(x) ≤ ξI for a.e. x ∈ Rd for constants 0 < σ < ξ <∞,
(Hσ,ξ)

under general assumptions on

b = (bi)
d
i=1 : R

d → Rd and div b =
d

∑

i=1

∇xibi

that admit critical-order singularities.

The problem of existence of sharp elementary bounds on the heat kernel of the parabolic equation

(1), and the ensuing regularity properties of the heat kernel, have been studied for several decades,

with the principal breakthrough due to E.De Giorgi [DG] and J.Nash [N] who treated the case

b = 0. D.G.Aronson [A] established a two-sided Gaussian bound on u of (1) in the case b = b1+b2
with |b1| ∈ Lp, p > d and b2 ∈ L∞. It was demonstrated in [S, KiS], that the Gaussian bounds on

u depend, in fact, on a much finer integral characteristics of b than ‖b1‖p, p > d and ‖b2‖∞, that

is, on the Nash norm of b, which allows to treat vector fields that may not even be in L2+ε
loc for a

given ε > 0. This line of research is motivated, in particular, by the desire to find the quantitative
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relationship between the integral characteristics of a, b and the regularity properties of u. Another

motivation for studying discontinuous a and singular (i.e. locally unbounded) b comes from physical

applications. These applications make relevant assumptions on the integral properties of div b. In

presence of such assumptions, as is well known, one should be able to treat considerably more

singular b. This is the subject of this paper. More precisely, below we show that the heat kernel

of (1) satisfies:

1) a Gaussian lower bound, provided that

b ∈ Fδ (the class of form-bounded vector fields, see below) for some δ ∈]0, 4σ2[
and

div b ≥ 0

(let us note that in general a Gaussian upper bound is not valid under these assumptions);

2) a Gaussian upper bound, provided that b ∈ Fδ for some δ <∞, and

(div b)+ ∈ Kd
ν (the Kato class, see below) for ν sufficiently small

(in general, there is no Gaussian lower bound under these assumptions);

3) two-sided Gaussian bound, provided that

b ∈ Fδ for some δ <∞,

and

div b ∈ Kd
ν for ν sufficiently small.

4) a priori two-sided Gaussian bound, provided that

b ∈ MFδ (the multiplicative class of form-bounded vector fields, see below)

for some δ <∞, and div b ∈ Kd
ν with ν sufficiently small.

The closest to ours results were obtained in the case a = I in [LZ], see detailed comparison

below. It should be added that in the case div b = 0 one can relax the assumptions on b even

further (although then the corresponding bounds become, in general, non-Gaussian), see [Z1]. See

also [Z2, QX, QX2].

In what follows, Lp ≡ Lp(Rd, dx), Lp
loc ≡ Lp

loc(R
d, dx).

Definition. A vector field b : Rd → Rd is said to be form-bounded if |b| ∈ L2
loc and there exist

constants δ > 0 and c(δ) ≥ 0 such that

‖bf‖22 ≤ δ‖∇f‖22 + c(δ)‖f‖22, f ∈W 1,2 ≡W 1,2(Rd)

or, shortly,

|b|2 ≤ δ(−∆) + c(δ) (in the sense of quadratic forms)

(written as b ∈ Fδ = Fδ(−∆)).

Definition. A vector field b : Rd → Rd is in the multiplicative class of form-bounded vector fields

if |b| ∈ L1
loc and there exist constants δ > 0 and c(δ) ≥ 0 such that

|〈bf, f〉| ≤ δ
√

‖∇f‖22 + c(δ)‖f‖22‖f‖2, f ∈W 1,2

(written as b ∈ MFδ).
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Here and below,

〈f〉 :=
∫

Rd

fdx, 〈f, g〉 := 〈f ḡ〉.

Definition. A potential V ∈ L1
loc is said to be in the Kato class if there exist constants ν > 0 and

λ ≡ λ(ν) ≥ 0 such that

‖(λ−∆)−1|V |‖∞ ≤ ν

(written as V ∈ Kd
ν).

We first comment on the classesKd
ν and Fδ. Both classes have been studied in the literature. The

class Kd
ν was introduced in 1961 by M.S. Birman [B, Sect. 2] as an elementary sufficient condition

for the form-boundedness:

if V ≡ |b|2 ∈ Kd
δ , then b ∈ Fδ.

Indeed, let f ∈ L2, then

‖(λ−∆)−
1
2V

1
2 f‖22 = 〈V 1

2 f, (λ−∆)−1V
1
2 f〉

= 〈〈V 1
2 (x)f(x)[(λ −∆)−1(y, x)]

1
2 [(λ−∆)−1(x, y)]

1
2V

1
2 (y)f(y)〉x〉y

≤
[

〈〈(λ−∆)−1(y, x)V (x)|f(y)|2〉x〉y
]
1
2
[

〈〈(λ −∆)−1(x, y)V (y)|f(x)|2〉y〉x
]
1
2

= 〈|f |2(λ−∆)−1V 〉 ≤ ‖(λ−∆)−1V ‖∞‖f‖22.
Let us mention some examples.

If V ∈ Lp + L∞, p > d
2 , then V ∈ Kd

ν with arbitrarily small ν. For every ε > 0 there exist

V ∈ Kd
ν such that V 6∈ L1+ε

loc .

If

|b| ∈ Ld + L∞,

then b ∈ Fδ with δ that can be chosen arbitrarily small (via the Sobolev Embedding Theorem).

The class Fδ also contains vector fields having critical-order singularities, e.g.

b(x) = ±
√
δ
d− 2

2
|x|−2x ∈ Fδ with c(δ) = 0

(by the Hardy inequality (d−2)2

4 ‖|x|−1f‖22 ≤ ‖∇f‖22, f ∈W 1,2). More generally, Fδ contains vector

fields b with |b| in the weak Ld space, the Campanato-Morrey class, the Chang-Wilson-Wolff class.

We refer to [KiS2, Sect. 4] for more examples of form-bounded vector fields and a detailed discussion

of class Fδ.

The class MFδ is the largest. It contains the class of weakly form-bounded fields F
1
2
δ , which

consists of the vector fields b such that |b| ∈ L1
loc and, for some λ = λ(δ) ≥ 0,

‖|b| 12 f‖22 ≤ δ‖(λ −∆)
1
4 f‖22, f ∈ W 1

2
,2 (the Bessel potential space).

(The class F
1
2
δ provides W1+ 1

q
,p
-regularity theory for the operator −∆+ b ·∇ for p large and q > p,

see [KiS2] for details.) Indeed, for f ∈W 1,2,

|〈bf, f〉| ≤ 〈|b|f, f〉 ≤ δ〈(λ −∆)
1
2 f, f〉 ≤ δ‖(λ −∆)

1
2 f‖2‖f‖2

= δ
√

‖∇f‖22 + λ‖f‖22‖f‖2.
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Note that, by interpolation, Fδ ( F
1
2
δ , furthermore, there exist b ∈ F

1
2
δ such that |b| 6∈ L1+ε

loc , ε > 0

(and so these vector fields are in MFδ). Another example is: if

b = ∇xif (in the sense of distributions) where f : Rd → Rd, |f| ∈ L∞,

then, using the integration by parts, one has b ∈ MFδ with δ = 2‖f‖∞, c(δ) = 0.

The class MFδ (with |b| in the LHS) was introduced in [S2] as a class providing two-sided

Gaussian bound on the heat kernel of −∇ · a · ∇+ b · ∇ in the case div b = 0.

2. First, we will establish a priori bounds on the heat kernel of −∇ · a · ∇ + b · ∇, i.e. assuming

additionally that a, b are C∞ smooth, |b| and div b are bounded. These bounds depend only on the

dimension d, the ellipticity constants σ, ξ, the form-bound δ of b (or the multiplicative form-bound

δ of b) and the Kato relative bound ν of div b, but not on the smoothness of a, b.

To treat general measurable a ∈ (Hσ,ξ) and b ∈ Fδ with div b ∈ Kd
ν , we fix the following smooth

approximations of a, b. Set

aε1 := Eε1a, ε1 > 0,

where Eεf := eε∆f (ε > 0), the De Giorgi mollifier of f . It is easily seen that aε1 are C∞ smooth

and belong to (Hσ,ξ) for all ε1 > 0. We define

bε := Eεb.

In Section 3.6 we show that the vector fields bε ∈ [L∞]d, C∞ smooth and are in Fδ with the same

c(δ). (The proof of an analogous result for b ∈ MFδ is given in Section 5.) Moreover, if div b ∈ Kd
ν ,

then, for all ε > 0, div bε ∈ L∞, C∞ smooth and

div bε = (div b)ε ∈ Kd
ν

with the same λ = λ(ν), see Section 4.1. This choice of a regular approximation of b is dictated

by the need to control both bε and div bε at the same time. (A straightforward approach of using

cut-off functions to construct bε leads to, generally speaking, loss of control over the Kato relative

bound of div bε. On the other hand, since b ∈ Fδ does not entail |b| ∈ L2 + L∞, the fact that

bε defined as above are bounded requires justification. A careful choice of appropriate smooth

approximation of b is needed even if a = I.

In what follows, we put

Λε1,ε := −∇ · aε1 · ∇+ bε · ∇
with domain D(Λε1,ε) =W 2,p for p that will be clear from the context.

3. We now state the main results of this paper in detail. Put

kµ(t, x, y) ≡ k(µt, x, y) := (4πµt)−
d
2 e

− |x−y|2
4µt , µ > 0.

Theorem 1 (Lower bound). Let d ≥ 3. Assume that b ∈ Fδ = Fδ(−∆) for some 0 < δ < 4σ2,

and

div b ≥ 0 (in the sense of tempered distributions).

Then, for each p ∈] 2
2−

√
σ−2δ

,∞[, the limit

s-Lp- lim
ε↓0

lim
ε1↓0

e−tΛε1,ε (locally uniformly in t ≥ 0)
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exists and determines in Lp a positivity preserving L∞-contraction, quasi contraction C0 semigroup,

say, e−tΛ. The operator Λ is an appropriate operator realization of the formal operator −∇ · a ·
∇+ b · ∇ in Lp.

The semigroup e−tΛ is a semigroup of integral operators. Its integral kernel u(t, x; s, y) =

e−(t−s)Λ(x, y) (≡ the heat kernel of Λ) satisfies the Gaussian lower bound

c1kc2(t− s;x− y)e−c0(t−s) ≤ u(t, x; s, y) (LGB)

for a.e. x, y ∈ Rd and 0 ≤ s < t <∞, with constants c0 ≥ 0 and ci > 0 (i = 1, 2) that depend only

of d, σ, ξ, δ, c(δ). If c(δ) = 0 then c0 = 0.

Remark. 1. In Theorem 1, the Gaussian lower bound holds without any integrability assumptions

on div b, while the Gaussian upper bound is invalid. To the best of our knowledge, this is the first

result of this type.

2. Let us illustrate the fact that in the assumptions of Theorem 1 the heat kernel in general does

not satisfy a Gaussian upper bound. Let u(t, x; s, y) be the heat kernel of the operator −∆+ b · ∇
with b(x) =

√
δ d−2

2 |x|−2x ∈ Fδ, so div b =
√
δ (d−2)2

2 |x|−2 is positive. If δ < 4, then u(t, x; s, y)

satisfies the two-sided bound

c1kc2(t− s;x− y)ϕt−s(y) ≤ u(t, x; s, y) ≤ c3kc4(t− s;x− y)ϕt−s(y),

where a positive singular weight ϕt ∈ C2(Rd − {0}) is uniformly bounded away from zero on Rd

and satisfies

ϕt(y) = |t− 1
2 y|−

√
δ d−2

2 for |y| ≤ t
1
2 , t > 0,

see [MeSS, MeNS], see also [MS, Sect. 4].

Set

div b+ := 0 ∨ div b, div b− := div b+ − div b.

In the next theorem we relax the assumptions “divb− = 0” and “δ < 4σ2” of Theorem 1, but

impose a condition on div b+.

Theorem 2A (Upper bound). Let d ≥ 3. Assume that

(1 ) b ∈ Fδ for some δ <∞.

(2 ) div b− ∈ L1
loc and eε∆div b− ∈ L∞ for each ε > 0.

(3 ) div b+ ∈ Kd
ν for some small ν dependent on d, σ, ξ, δ.

Then the limit

s-L2- lim
ε↓0

lim
ε1↓0

e−tΛε1,ε (locally uniformly in t ≥ 0),

exists and determines a positivity preserving L∞-contraction, quasi bounded C0 semigroup of inte-

gral operators, say, e−tΛ. Its integral kernel u(t, x; s, y) satisfies the Gaussian upper bound

u(t, x; s, y) ≤ c3kc4(t− s;x− y)ec5(t−s) (UGB)

for a.e. x, y ∈ Rd and 0 ≤ s < t < ∞, with constants c3, c4 dependent on d, σ, ξ, δ, ν and c5 on

c(δ), λ(ν). If c(δ) = λ(ν) = 0, then c5 = 0.

Remark. 1. In the assumptions of Theorem 2A, the heat kernel in general does not satisfy

a Gaussian lower bound. For instance, the heat kernel u(t, x; s, y) of −∆ − b · ∇ with b(x) =√
δ d−2

2 |x|−2x ∈ Fδ satisfies

c1kc2(t− s;x− y)ψt−s(y) ≤ u(t, x; s, y) ≤ c3kc4(t− s;x− y)ψt−s(y)
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with positive bounded weight ψt(y) that vanishes at y = 0, see [MeSS, MeNS].

2. One can provide a number of sufficient conditions for the assumption “eε∆div b− ∈ L∞

for each ε > 0” to hold. For example, this assumption is satisfied if div b− ∈ L1 + L∞ or if

1Bc(0,R)div b− is form-bounded

〈1Bc(0,R)div b−, |f |2〉 ≤ κ〈|∇f |2〉+ c(κ,R)〈|f |2〉, f ∈W 1,2 for some κ,R <∞,

where Bc(0, R) := Rd − B(0, R). (Indeed, we represent div b− = 1B(0,R)div b− + 1Bc(0,R)div b−,
where the first term is in L1 and so clearly eε∆1B(0,R)div b− ∈ L∞∩C∞, while eε∆1Bc(0,R)div b− ∈
L∞ ∩ C∞ by repeating the proof of Claim 13 below.)

Theorem 2B (Upper bound). Let d ≥ 3. Assume that

(1 ) b ∈ MFδ for some δ <∞.

(2 ) div b− ∈ L1
loc and eε∆div b− ∈ L∞ for each ε > 0.

(3 ) div b+ ∈ Kd
ν for some small ν dependent on d, σ, ξ, δ.

Then uε1,ε(t, x; s, y) ≡ e−(t−s)Λε1,ε(x, y) satisfy, for all ε1, ε > 0, the Gaussian upper bound

uε1,ε(t, x; s, y) ≤ c3kc4(t− s;x− y)ec5(t−s) (UGB’)

for a.e. x, y ∈ Rd and 0 ≤ s < t < ∞, with constants c3, c4 dependent on d, σ, ξ, δ, ν and c5 on

c(δ), λ(ν) (but not on ε1, ε). If c(δ) = λ(ν) = 0, then c5 = 0.

Armed with the upper bound (UGB’), one can construct a limiting heat kernel using a standard

argument appealing to the weak compactness in the space of measures and the Radon-Nikodym

Theorem. If a = I, the semigroups converge strongly in L2 as in Theorem 2A (following closely

the corresponding part of the proof of Theorem 2A).

In the next theorem we impose a more restrictive condition on div b− than in Theorem 2A.

Theorem 3A (Two-sided bound). Let d ≥ 3. Assume that

(1 ) b ∈ Fδ for some δ <∞.

(2 ) |div b| ∈ Kd
ν for some small ν dependent on d, σ, ξ, δ.

Then the heat kernel u(t, x; s, y) satisfies the two-sided Gaussian bound

c1kc2(t− s;x− y)e−c0(t−s) ≤ u(t, x; s, y) ≤ c3kc4(t− s;x− y)ec5(t−s).

for a.e. x, y ∈ Rd and 0 ≤ s < t <∞, with constants ci > 0 (i = 1, 2, 3, 4) dependent on d, σ, ξ, δ, ν

and c0, c5 on c(δ), λ(ν). If c(δ) = λ(ν) = 0, then c0 = c5 = 0.

Corollary 1. In the assumptions of Theorem 3A the following is true.

(i) For every f ∈ L2, v(t, ·) := e−tΛf(·) is Hölder continuous (possibly after redefinition on a

measure zero set in Rd × Rd), i.e. for every 0 < α < 1 there exist constants C < ∞ and β ∈]0, 1[
such that for all z ∈ Rd, s > R2, 0 < R ≤ 1

|v(t, x)− v(t′, x′)| ≤ C‖v‖L∞([s−R2,s]×B̄(z,R))

( |t− t′| 12 + |x− x′|
R

)β

for all (t, x), (t′, x′) ∈ [s− (1− α2)R2, s]× B̄(z, (1 − α)R).

Furthermore, if v ≥ 0, then it satisfies the Harnack inequality: Let 0 < α < β < 1, then there

exists a constant K = K(d, σ, ξ, δ, ν, α, β) < ∞ such that for all (s, x) ∈]R2,∞[×Rd, 0 < R ≤ 1

one has

v(t, y) ≤ Kv(s, x)
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for all (t, y) ∈ [s− βR2, s− α2R2]× B̄(x, δR).

(ii) The conservation of probability property:

〈u(t, x; s, ·)〉 = 1 for all x ∈ Rd, t > s.

(iii)

e−(t−s)ΛCuf(x) := 〈u(t, x; s, ·)f(·)〉, t > s, f ∈ Cu

is a Feller semigroup on Cu, the space of bounded uniformly continuous functions on Rd.

We first establish (i) for vε1,ε(t, x) = e−tΛε1,εf(x), then apply the Arzelà-Ascoli Theorem and

use the convergence e−tΛ = s-L2- limε↓0 limε1↓0 e
−tΛε1,ε . In turn, the proof of (i) for vε1,ε repeats

the argument in [FS, Sect. 3], which appeals to the ideas of E.De Giorgi [DG] and uses (LGB),

(UGB). The proof of (ii) and (iii) is a standard consequence of (UGB), the approximation result

and the Hölder continuity of bounded solutions in (i).

Theorem 3B (Two-sided bound). Let d ≥ 3. Assume that

(1 ) b ∈ MFδ for some δ <∞.

(2 ) |div b| ∈ Kd
ν for some small ν dependent on d, σ, ξ, δ.

Then the heat kernel uε1,ε(t, x; s, y) ≡ e−(t−s)Λε1,ε(x, y) satisfies, for all ε1, ε > 0, the two-sided

Gaussian bound

c1kc2(t− s;x− y)e−c0(t−s) ≤ uε1,ε(t, x; s, y) ≤ c3kc4(t− s;x− y)ec5(t−s).

for a.e. x, y ∈ Rd and 0 ≤ s < t <∞, with constants ci > 0 (i = 1, 2, 3, 4) dependent on d, σ, ξ, δ, ν

and c0, c5 on c(δ), λ(ν) (but not on ε1, ε). If c(δ) = λ(ν) = 0, then c0 = c5 = 0.

In the assumptions of Theorem 3B an a priori analogue of Corollary 1 holds (i.e. with constants

independent of ε1, ε).

Remark 1. The proofs of heat kernel bounds in Theorems 1, 2A (at least at the a priori level)

can be extended, with minimal changes, to time-dependent coefficients. That is, let

a = a∗ : [0,∞[×Rd → Rd ⊗ Rd, σI ≤ a(t, x) ≤ ξI for a.e. (t, x) ∈ [0,∞[×Rd;

we replace Fδ by the class of time-dependent form-bounded vector fields b : [0,∞[×Rd → Rd,

i.e. |b| ∈ L2
loc([0,∞[×Rd) and there exists a constant δ > 0 such that

∫ ∞

0
‖b(t)f(t)‖22dt ≤ δ

∫ ∞

0
‖∇f(t)‖22dt+

∫ ∞

0
g(t)‖f(t)‖22dt

for some g = gδ satisfying
∫ t
s g(τ)dτ ≤ cδ

√
t− s (to obtain global in time bounds), for all f ∈

L1
loc([0,∞[,W 1,2); the Kato class condition in Theorem 2A is replaced with its time-dependent

counterpart, see [Z3]. Moreover, Theorem 2B also admits extension to time-dependent coefficients:
∫ ∞

0
|〈b(t)f(t), f(t)〉|dt ≤ δ

∫ ∞

0
‖∇f(t)‖2‖f(t)‖2dt+

∫ ∞

0
g(t)‖f(t)‖22dt

for all f ∈ L1
loc([0,∞[,W 1,2) for some constant δ and a function g satisfying the same assumptions

as above.
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4. Existing results. In [LZ] the authors constructed a weak heat kernel for −∆+b ·∇ satisfying

Gaussian upper or lower bound under the following assumptions:

a) For the Gaussian upper bound: b ∈ Fδ for some 0 < δ < ∞, div b+ ∈ Kd
ν for ν sufficiently

small, and |div b| is form-bounded,

〈|div b|, |f |2〉 ≤ κ〈|∇f |2〉+ c(κ)〈|f |2〉, f ∈W 1,2, (∗)
with form-bound κ < 2.

We emphasize that according to our Theorem 2A, even in the special case a = I, the Gaussian

upper bound on the heat kernel e−tΛ(x, y) is valid without the extra condition (∗).
b) For the Gaussian lower bound: b ∈ Fδ for some 0 < δ <∞ and div b = 0.

By Theorem 1, even in the case a = I, their condition “div b = 0” is relaxed to “div b ≥ 0”

albeit at expense of requiring δ < 4σ2.

c) They also proved the Gaussian lower bound on the heat kernel of −∆+ b · ∇ defined via the

Cameron-Martin-Girsanov formula, assuming that

|b|2 ∈ Kd
δ and b ∈ Kd+1

ν (≡ ‖(λ−∆)−
1
2 |b|‖∞ ≤ ν)

with some δ < ∞, c(δ) ≥ 0, and ν < ∞, λ = λ(ν) ≥ 0, thus refining the result in [Z4] where the

two-sided Gaussian bound on the heat kernel of −∆ + b · ∇ is proved assuming only b ∈ Kd+1
ν

but with sufficiently small ν (in this regard, see also [KiS]). Concerning semigroups defined via

Cameron-Martin-Girsanov formula, see [FK].

5. On the proof of Theorem 1. We first establish a priori Gaussian lower bound, i.e. for smooth

a, b. The proof is based on the method of J.Nash [N] and its development in [S]. The required a

posteriori Gaussian lower bound then follows using approximation results in [KiS2].

6. On the proof of Theorem 2A. First, we establish Gaussian upper bound on the heat kernel

of the auxiliary operator

H+ = −∇ · aε1 · ∇+ bε · ∇+ Eεdiv b+

using only Eεdiv b+ ∈ L∞ for every ε > 0 (rather than stronger condition div b+ ∈ Kd
ν), see

Theorem 5. The proof uses J.Moser’s iterations. Then the Gaussian upper bound on the heat

kernel of Λε1,ε = −∇ · aε1 · ∇+ bε · ∇ follows using the Duhamel formula, by considering Λε1,ε as

H+ perturbed by the potential −Eεdiv b+ ∈ Kd
ν , see Theorem 6. Finally, we obtain the required

(a posteriori) upper bound on the heat kernel of Λ = −∇ · a · ∇+ b · ∇ by passing to the limit in

ε1 ↓ 0 and then in ε ↓ 0 (Proposition 4).

7. On the proof of Theorem 2B. The proof is obtained by modifying the proof of Theorem

2A, which amounts to estimating differently one term in the proof of the a priori upper bound of

Theorem 2A.

8. On the proof of Theorem 3A. The Gaussian upper bound follows from Theorem 2A, so we

only need to prove the Gaussian lower bound. First, we establish the lower bound on the heat

kernel of the auxiliary operator

H− = −∇ · aε1 · ∇+ bε · ∇ − Eεdiv b−

using only Eεdiv b− ∈ L∞ for every ε > 0 (rather than div b− ∈ Kd
ν), see Theorem 7. The proof of

the auxiliary lower bound of Theorem 7 is obtained by modifying the proof of Theorem 1 (Nash’s
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method) to take advantage of the (a priori) Gaussian upper bound established in Theorem 6. Now,

the lower bound on the heat kernel of Λε1,ε = −∇ · aε1 · ∇+ bε · ∇ follows by considering Λε1,ε as

H− perturbed by Eεdiv b− ∈ Kd
ν , and appealing to a pointwise inequality between the heat kernels

of Λε1,ε, H
− and H−

p′ = −∇ · aε1 · ∇+ bε · ∇− p′Eεdiv b−, p ≥ 2. The required (a posteriori) lower

bound on the heat kernel of Λ = −∇ · a · ∇+ b · ∇ follows using Proposition 4.

9. On the proof of Theorem 3B. The Gaussian upper bound follows from Theorem 2B. To

prove the Gaussian lower bound, we work with rather sophisticated regularization of Nash’s G-

functions, as in [S2]. Once the bounds on the G-functions are established, we argue as in the proof

of Theorem 3A.
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2. Preliminaries

The following class of vector fields b arises naturally in the study of operator −∇ · a · ∇+ b · ∇.

Let a ∈ (Hσ,ξ). Let A be the self-adjoint operator associated with the Dirichlet form t[u, v] =

〈a · ∇u,∇v〉, u, v ∈W 1,2.

Given a vector field b : Rd → Rd, we set ba := b
|b|
√
b · a−1 · b.

Definition. A vector field b : Rd → Rd is said to be A-form-bounded if |b| ∈ L2
loc and there exist

constants δa > 0 and c(δa) ≥ 0 such that

‖baf‖22 ≤ δa‖A
1
2 f‖22 + c(δa)‖f‖22, f ∈ D(A

1
2 ) =W 1,2,

or, shortly,

|ba|2 ≤ δaA+ c(δa) (in the sense of quadratic forms).

(written as b ∈ Fδa(A)).

It is easily seen that

b ∈ Fδ ≡ Fδ(−∆) =⇒ b ∈ Fδa(A), δa = σ−2δ.

3. Proof of Theorem 1

Since b ∈ Fδ ≡ Fδ(−∆), δ < 4σ2, we have

b ∈ Fδa(A), δa < 4.

First, we assume that a ∈ (Hσ,ξ) and b are smooth, b is bounded.

Definition 1. A constant is said to be generic if it only depends on the dimension d, the ellipticity

constants σ, ξ, the form-bound δa and the constant c(δa).

The integral bound, the bounds on Nash’s moment, entropy and the first (i.e. Ĝ-) function

contained in Sections 3.1-3.3, which we use to prove the lower bound, appeared in [S2] although

there they were used for different purposes. Since they also play a crucial role in what follows, we

include their proofs.

3.1. Integral bound on the heat kernel of −∇ · a · ∇+ b · ∇ for b ∈ Fδa(A), δa < 4. Set

Λ = A+ b · ∇, A = −∇ · a · ∇.
Let U t,s denote the solution of

{ − d
dtU

t,sf = ΛU t,sf , 0 ≤ s < t <∞
0 ≤ f ∈ L1 ∩ L∞ (CPΛ)

in Lp = Lp(Rd), p ∈ [1,∞[.

Set u(t) := U t,sf. We have, for p ∈ [pc,∞[, pc =
2

2−
√
δa
,

〈( d

dt
+ Λ

)

u(t), u(t)p−1
〉

= 0.

Setting v := up/2, w := 〈v2〉 ≡ ‖u(t, ·)‖pp, J := ‖A1/2v‖22, we have by quadratic estimates,

− d

dt
w = 2

( 2

p′
‖A1/2v‖22 + 〈∇v, bv〉

)

, p′ = p/(p− 1),
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|〈∇v, bv〉| ≤ 〈b · a−1 · bv, v〉1/2‖A1/2v‖1/22

≤ (δaJ + c(δa)w)
1/2J1/2

(we are using b ∈ Fδa(A))

≤
√

δaJ + (2
√

δa)
−1c(δa)w.

− d

dt
w ≥ 4cpJ − 1√

δa
c(δa)w. (⋆)

where cp :=
1
p′ −

√

δa
4 = 1

pc
− 1

p ≥ 0.

From (⋆) we obtain − d
dtw ≥ − 1√

δa
c(δa)w, w(t) ≤ w(s)e

1√
δa

c(δa)(t−s)
, or

‖u(t, ·)‖p ≤ ‖u(s, ·)‖pe
1
p

c(δa)√
δa

(t−s)
. (⋆a)

In particular,

‖u(t, ·)‖∞ ≤ ‖u(s, ·)‖∞. (⋆b)

Using the Nash inequality

‖∇ψ‖22 ≥ cN‖ψ‖2+4/d
2 ‖ψ‖−4/d

1 ,

we obtain from (⋆) with p = 2pc, and so cp =
1
2pc

,

− d

dt
w ≥ cgw

1+2/d‖v‖−4/d
1 − δ−1/2

a c(δa)w, cg = 2σcNp
−1
c .

Therefore
d

2

d

dt

(

w−2/d
)

≥ cg‖u‖−4pc/d
pc − δ−1/2

a c(δa)w
−2/d.

This inequality is linear with respect to φ = w−2/d. Thus setting µ(t) = 2c(δa)

d
√
δa

(t − s), we have,

using (⋆a),

d

dr

(

eµ(r)φ(r)
)

≥ 2cg
d
eµ(r)‖u(r, ·)‖−4pc/d

pc

≥ 2cg
d
e−µ(r)‖u(s, ·)‖−4pc/d

pc ,

eµ(t)φ(t) ≥ 2cg
d

‖u(s, ·)‖−4pc/d
pc

∫ t

s
e−µ(r)dr

≥ 2cg
d

‖u(s, ·)‖−4pc/d
pc e−µ(t)(t− s), and so

‖u(t, ·)‖2pc ≤ (d/(2cg))
d/4pce

c(δa)(t−s)

pc
√

δa (t− s)−
d
2

(

1
pc

− 1
2pc

)

‖u(s, ·)‖pc . (⋆c)

Applying the Coulhon-Raynaud Extrapolation Lemma (Appendix A) to

∥

∥e
−c(δa)t

pc
√

δa u(t, ·)
∥

∥

2pc
≤ (d/(2cg))

d/4pc(t− s)−
d
2

(

1
pc

− 1
2pc

)

∥

∥e
−c(δa)s

pc
√

δa u(s, ·)
∥

∥

pc

and
∥

∥e
−c(δa)t

pc
√
δa u(t, ·)

∥

∥

∞ ≤
∥

∥e
−c(δa)s

pc
√

δa u(s, ·)
∥

∥

∞,

which is an immediate consequence of the inequalities (⋆c) and (⋆b), we obtain

‖u(t, ·)‖∞ ≤ ce
c(δa)(t−s)

pc
√

δa (t− s)
− d

2p ‖u(s, ·)‖p ∀p ∈ [pc,∞[ (⋆⋆)

with a generic constant c (although it does not depend on ξ).
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From (⋆⋆) we immediately obtain the following integral bound on the heat kernel u(t, x; s, y) of

Λ (≡ the integral kernel of U t,s):

sup
x∈Rd

〈up′(t, x; s, ·)〉 ≤ cp
′
e

p′c(δa)(t−s)

pc
√

δa (t− s)
− d

2(p−1) ∀p ∈ [pc,∞[, 0 ≤ s < t <∞. (◦)

3.2. Bounds on Nash’s moment and entropy. Our assumptions on b are as in Section 3.1.

In this section we assume 0 < t− s ≤ 1. (Let us note that if c(δa) = 0, then we can work over

0 ≤ s < t <∞.)

Following J.Nash, define the entropy

Q(s) ≡ Q(s; t, x) := −〈u(t, x; s, ·) log u(t, x; s, ·)〉
and the moment

M(s) ≡M(s; t, x) := 〈|x− ·|u(t, x; s, ·)〉.
The dynamic equation d

dsu(t, x; s, ·) = Λ∗u(t, x; s, ·) (where Λ∗ = A −∇ · b) and the conservation

law 〈u(t, x; s, ·)〉 = 1 yield

− d

ds
Q(s) = N (s) + 〈b(·) · ∇·u(t, x; s, ·)〉 ≡

〈

∇u · a
u
· ∇u

〉

+ 〈b · ∇u〉.

Proposition 1. There exist generic constants C1, c± > 0 such that, for all x ∈ Rd and 0 < t−s ≤
1,

|Q(s)− Q̃(t− s)| ≤ C1, (NEE)

c−
√
t− s ≤M(s) ≤ c+

√
t− s, (NMB)

where Q̃(τ) := d
2 log τ.

Proof of Proposition 1. We will repeatedly use 〈u(t, x; s, ·)〉 = 1 and (◦).

Claim 1. Q(s) ≥ Q̃(t− s)− Cpc where Cpc = (pc − 1) log ĉ, ĉ the constant from (◦).

Proof of Claim 1. By Jensen’s inequality and (◦) for r = pc,

Q(s) = −(r − 1)
〈

u log u
1

r−1
〉

≥ −(r − 1) log
〈

ur
′
(t, x; s, ·)

〉

≥ −(r − 1) log
(

ĉ(t− s)
− d

2(r−1)
)

.

�

Claim 2. N (s) ≤ pc
(

−Q′(s) + c(δa)/
√
δa
)

, where Q′(s) = d
dsQ(s).

Proof of Claim 2. Clearly, N (s) = −Q′(s)− 〈b · ∇u〉, and
|〈b · ∇u〉| ≤ 〈b · a−1 · bu〉1/2N 1/2

≤
(δa
4
N + c(δa)

)1/2N 1/2

≤
√

δa/4N + c(δa)/
√

δa.

�
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Claim 3.

M(s) ≤
√

ξ

{

√

2pc
(

1 +
√

δa/4
)

4
√
t− s

[

c(δa)√
δa

√
t− s−

∫ t

s

√
t− τQ′(τ)dτ

]1/2

+
√
t− s(c(δa))

1/2

}

.

Proof of Claim 3. Clearly,

−M ′(s) = −〈|x− ·|Λ∗(·)u(t, x; s, ·)〉
= −〈∇|x− ·| · a · ∇u〉 − 〈∇|x− ·|, bu〉

≤
〈

x− ·
|x− ·| · au · x− ·

|x− ·|

〉1/2
(

N 1/2 + 〈b · a−1 · bu〉1/2
)

.

By a ≤ ξI, 〈u〉 = 1 and 〈b · a−1 · bu〉 ≤ δa
4 N + c(δa),

−M ′(s) ≤
√

ξ

[

N 1/2 +
(δa
4
N + c(δa)

)1/2
]

≤
√

ξ

[

(1 +
√

δa/4)N 1/2(s) +
√

c(δa)

]

.

Since M(t) = 0 and 0 < t− s ≤ 1,

M(s) ≤
√

ξ

[

(1 +
√

δa/4)

∫ t

s
(
√
t− τN (τ))1/2

dτ
4
√
t− τ

+ (t− s)
√

c(δa)

]

≤
√

ξ

[

(1 +
√

δa/4)

(
∫ t

s

dτ√
t− τ

)1/2(∫ t

s

√
t− τN (τ)dτ

)1/2

+
√
t− s(c(δa))

1/2

]

=
√

ξ

[

(1 +
√

δa/4)
√
2 4
√
t− s

(
∫ t

s

√
t− τN (τ)dτ

)1/2

+
√
t− s(c(δa))

1/2

]

.

By Claim 2,
∫ t

s

√
t− τN (τ)dτ ≤ pc

∫ t

s

(√
t− τ√
δa

c(δa)−
√
t− τQ′(τ)

)

dτ

≤ pc

(√
t− s√
δa

c(δa)−
∫ t

s

√
t− τQ′(τ)dτ

)

.

�

Claim 4.

−
∫ t

s

√
t− τQ′(τ)dτ ≤

√
t− s

(

Q(s)− Q̃(t− s) + Cpc + d
)

.

Claim 4 follows easily from Claim 1 using integration by parts.

Claim 5.

M(s) ≤
√

ξ

(

K1

√

Q(s)− Q̃(t− s) + Cpc + d+K2(c(δa))
1/2

)√
t− s,

where K1 =
√
2pc(1 +

√

δa/4) and K2 = 1 + K1√
δa
.

Claim 5 is a simple corollary of Claim 3 and Claim 4.



14 D.KINZEBULATOV AND YU.A. SEMËNOV

Claim 6. There is a constant c(d) <∞ such that

eQ(s)/d ≤ c(d)M(s).

Claim 6 follows from 〈u〉 = 1 via the inequality u log u ≥ −µu− e−1−µ for all real µ.

Claim 5 and Claim 6 combined yield

Claim 7.

e
2
d
[Q(s)−Q̃(t−s)] ≤ 2c(d)2ξ

(

K2
1

[

Q(s)− Q̃(t− s) + Cpc + d
]

+K2
2c(δa)

)

.

Claim 7 implies that, for all 0 < t− s ≤ 1 and all x ∈ Rd there is a generic constant C such that

Q(s)− Q̃(t− s) ≤ C. Taking into account Claim 1, Claim 5 and Claim 6 we arrive at (NEE) and

(NMB). �

3.3. Ĝ-bound. In what follows, 0 < t− s ≤ 1. Define Nash’s Ĝ-function

Ĝ(s) := 〈kβ(t− s, o− ·) log u(t, x; s, ·)〉, o =
x+ y

2

for all x, y ∈ Rd such that 2|x− y| ≤
√

β(t− s), where β > ξ is a constant whose value we will be

specified below.

The proof of the next proposition works under more general assumptions than in Theorem 1,

i.e. we may assume that b satisfies the assumptions of Section 3.1.

Proposition 2. There exist generic constants β and C such that

Ĝ(ts) ≥ −Q̃(t− ts)− C, ts =
t+ s

2
.

Proof of Proposition 2. Our proof of the Ĝ-bound follows in general Nash’s original proof and

relies on the conservation law, the M -bound proved in Proposition 1, the Spectral gap inequality,

the geometry of the euclidean space (i.e. the rate of growth of the volume of euclidean ball) and

the integral bound (◦).
Let ε > 0. Set U(s) := u(t, x; s, ·) + ε, ε > 0 and put

G(τ) ≡ Gε(τ) := 〈kβ(t− s, o− ·) logU(τ)〉, τ ∈ [s, ts].

It suffices to carry out the proof for Gε since Ĝ(s) = infε>0Gε(s), Set

β∗ =
3

2

(

1 +
δa
4

)

ξ.

Claim 8. For all τ ∈ [s, ts] and β ≥ β∗

−
(

G(τ) + Q̃(t− τ)

)′
+

3

2
c(δa) ≥

σ

4β(t− s)

〈

kβ(t− s, o− ·)| logU(τ)−G(τ)|2
〉

.

Proof of Claim 8. Let N := 〈∇ logU · aΓ · ∇ logU〉, N0 := 〈∇ log Γ · aΓ · ∇ log Γ〉, where

Γ := kβ(t− s, o− ·),

the Gaussian density, and let b2a := b · a−1 · b.
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The dynamic equation yields

−G′(τ) = −〈Γ/U, u′〉 = −〈Γ/U,AU〉+ 〈Γ/U,∇ · bu〉
= N − 〈∇Γ · a · ∇ logU〉 − 〈b · ∇Γ, u/U〉+ 〈Γb · ∇ logU, u/U〉.

By quadratic inequalities,

|〈∇Γ · a · ∇ logU〉| ≤ N 1/2N 1/2
0 ,

|〈b · ∇Γ, u/U〉| ≤ N 1/2
0 〈b2aΓ〉1/2,

|〈Γb · ∇ logU, u/U〉| ≤ N 1/2〈b2aΓ〉1/2.
Therefore,

−G′(τ) ≥ 1

2
N − 3

2
N0 −

3

2
〈b2aΓ〉.

Note that N0 ≤ ξ〈(∇Γ)2/Γ〉 = ξd
2β(t−s) , and, since b ∈ Fδa(A),

〈b2aΓ〉 ≤ δa〈∇
√
Γ · a · ∇

√
Γ〉+ c(δa) ≤

δa
4
N0 + c(δa).

Thus,

−G′(τ) ≥ 1

2
N (τ)− 3

4

(

1 +
δa
4

)

ξd

β(t− s)
− 3

2
c(δa).

Noticing that − 1
t−s ≥ − 1

t−τ we have (for β ≥ β∗ ≡ 3
2(1 +

δa
4 )ξ)

−
(

G(τ) + Q̃(t− τ)

)′
+

3

2
c(δa) ≥

1

2
N .

At this point we use the Spectral gap inequality

〈

Γ|∇ψ|2
〉

≥ 1

2β(t− s)

〈

Γ|ψ − 〈Γψ〉|2
〉

obtaining

−
(

G(τ) + Q̃(t− τ)

)′
− 3

2
c(δa) ≥

σ

4β(t − s)

〈

Γ| logU −G(τ)|2
〉

.

�

Claim 9. Set Φ := | logU(t, x; τ, ·) − G(τ)|, τ ∈ [s, ts]. Let χ denote the indicator of the ball

B(o,
√

β(t− s)). There is a generic constant c(β) > 0 such that, for any r ≥ pc,

−
(

G(τ) + Q̃(t− τ)

)′
+

3

2
c(δa) ≥ c(β)(t− s)

−1+ d(2−r)
2(r−1)

〈

χur
′/2Φ

〉2
.

Proof of Claim 9. Clearly, χΓ ≥ cβ(t− s)−d/2χ, cβ = (4πβ)−d/2e−
1
4 . Thus

〈

ΓΦ2
〉

≥ cβ(t− s)−d/2
〈

χΦ2
〉

.

By Hölder’s inequality,
〈

χΦ2
〉

≥
〈

χur
′/2Φ

〉2
/
〈

ur
′〉
. By the integral bound (◦) in Section 3.1,

〈

ur
′
(t, x; τ, ·)

〉

≤ ĉ(t− τ)
− d

2(r−1) ,

and by the inequality t− τ ≥ t−s
2 ,

〈

ΓΦ2
〉

≥ 2
− d

2(r−1)
cβ
ĉ
(t− s)

d
2

2−r
r−1

〈

χur
′/2Φ

〉2
.
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Now Claim 9 with c(β) =
σcβ
4βĉ2

− d
2(r−1) follows from Claim 8. �

Claim 10. Set θ = r′/2. Then

〈

χuθΦ
〉

≥
〈

χuθ
〉

[

−G+ θ−1 log

〈

χuθ
〉

〈χ〉

]

.

Proof of Claim 10. By the definition of Φ,

〈

χuθΦ
〉

≥
〈

χuθ logU
〉

−
〈

χuθ
〉

G. (⋆)

Using the inequality v log v ≥ −mv − e−1−m, v ≥ 0, m real, we have

〈

χuθ logU
〉

≥
〈

χuθ log u
〉

≥ −mθ−1
〈

χuθ
〉

− θ−1e−1−m〈χ〉.

Putting here −1−m = log

〈

χuθ
〉

〈χ〉 , it is seen that

〈

χuθ logU
〉

≥ θ−1〈χuθ
〉

log

〈

χuθ
〉

〈χ〉 .

Substituting the latter in (⋆) ends the proof. �

Now, if 0 < δa ≤ 1, then pc = (1−
√

δa/4)
−1 ≤ 2 and we can take r = 2, in which case we can

proceed directly to Claim 12. In the more interesting case 1 < δa < 4, however, r ≥ pc > 2, and

the next claim plays a crucial role.

Claim 11. Let ĉ be the constant from the integral bound (◦) in Section 3.1:

〈

ur
′
(t, x; τ, ·)

〉

≤ ĉ(t− τ)
− d

2(r−1) , r > 2.

Then, for all τ ∈ [s, ts],
〈

χuθ
〉

≥ c′(t− s)
d(r−2)
4(r−1) 〈χu〉 r

2

and
〈

χuθΦ
〉

≥
〈

χuθ
〉[

−G(τ) − Q̃(t− τ) + (r − 1) log〈χu〉 − c′′
]

,

where c′ =
(

2
d

2(r−1) ĉ
)

2−r
2 and c′′ = (r−2)(r−1)

r log ĉ+ d(r−1)
r log

(

2βω
2/d
d

)

.

Proof of Claim 11. The first inequality follows from Hölder’s inequality

〈

χuθ
〉

≥ 〈χu〉r/2
〈

ur
′〉(2−r)/2

because r > 2 and
〈

ur
′〉(2−r)/2 ≥ ĉ

2−r
2 (t− s)

d(r−2)
4(r−1) 2

d(2−r)
4(r−1) .

The second inequality follows from the first one, Claim 10 and the equality 〈χ〉 = ωd(β(t −
s))d/2. �

Claim 12. Fix a β ≥ max(β∗, (4c+)2), where β∗ and c+ are defined before Claim 8 and in Propo-

sition 1, respectively. Then 〈χu(t, x; τ, ·)〉 ≥ 1
2 for all τ ∈ [s, t].
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Proof of Claim 12. Recalling that 2|x − y| ≤
√

β(t− s), and so |o − ·| ≤ 4−1
√

β(t− s) + |x − ·|,
we have

〈(1 − χ)u〉 =
∫

|o−z|≥
√

β(t−s)
u(t, x; τ, z)dz

≤
〈 |o− ·|
√

β(t− s)
u(t, x; τ, ·)

〉

≤
〈 |o− x|+ |x− ·|

√

β(t− s)
u(t, x; τ, ·)

〉

≤ 1

4
+

1
√

β(t− s)
M(τ)

≤ 1

4
+

c+
√
t− s

√

β(t− s)
≤ 1

2

and hence 〈χu〉 = 1− 〈(1 − χ)u〉 ≥ 1
2 . �

Claim 11 and Claim 12 combined yield
〈

χuθΦ
〉

≥
〈

χuθ
〉

[−G(τ) − Q̃(t− τ)− c1], (⋆⋆)

where c1 = c′′ + (r − 1) log 2 > 0 with r = max(2, pc).

Using last inequality and Claim 9, we end the proof of Proposition 2 as follows. Set

I0 := −G(τ)− Q̃(t− τ)− 3

2
c(δa)(t− τ).

If I0 ≥ 2c1 for all τ ∈ [s, ts], then I0 − c1 ≥ 1
2I0 > c1 > 0, and so by Claim 9 and then by Claim

11 and (⋆⋆),

d

dτ
I0 ≥ c(β)(t − s)−1+ d

2
2−r
r−1

〈

χuθ
〉2
[

I0 − c1 +
3

2
c(δa)(t− τ)

]2

≥ c(t− s)−1I20 with c = c(β)(c′)22−r−2,

or − d
dτ I

−1
0 ≥ c(t− s)−1. Integrating the latter over [s, ts] yields I

−1
0 (s) ≥ c

2 , or I0(s) ≤ 2
c , or

G(s) ≥ −Q̃(t− s)− 3

2
c(δa)(t− s)− 2

c
.

If I0 < 2c1 for some τ ∈ [s, ts], then by Claim 8, d
dτ I0 ≥ 0, and hence G(s)+Q̃(t−s)+ 3

2c(δa)(t−s) ≥
G(τ) + Q̃(t− τ) + 3

2c(δa)(t− τ) ≥ −2c1. �

3.4. G-bound for −∇ · a · ∇+∇ · b. Set Λ∗ = A+∇ · b. Let U t,s
∗ denote the solution of

{

− d
dtU

t,s
∗ f = Λ∗(t)U

t,s
∗ f , 0 < t− s ≤ 1,

0 ≤ f ∈ L1 ∩ L∞

in Lp = Lp(Rd), p ∈ [1,∞[.

Set u∗(t) := U t,s
∗ f and let u∗(t, x; s, y) denote the heat kernel of Λ∗. We introduce

Q(t) ≡ Q(t; s, y) := −〈u∗(t, ·; s, y)) log u∗(t, ·; s, y)〉,
M(t) ≡M(t; s, y) := 〈|y − ·|u∗(t, ·; s, y)〉, and

G(t) := 〈kβ(t− s, o− ·) log u∗(t, ·; s, y)〉.
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We will need the integral bound

〈up′∗ (t, ·; s, y)〉 ≤ cg(t− s)
− d

2(p−1) ∀p ∈ [pc,∞[, 0 < t− s ≤ 1. (•)

Proof of (•). Clearly, −〈 d
dtu∗(t), u

q−1
∗ (t)〉 = 〈(A + ∇ · b)u∗(t), uq−1

∗ (t)〉, 1 < q ≤ p′c = 2√
δa
. Thus,

setting w := 〈u∗q〉, v := u
q
2∗ , J := ‖A 1

2 v‖22, we have

−1

q

d

dt
w =

2

q′
(2

q
J − 〈bv,∇v〉

)

.

Using assumption b ∈ Fδa(A), δa < 4 we have by quadratic estimates, |〈bv,∇v〉| ≤ J
1
2 (δaJ+gw)

1
2 ,

and so

− d

dt
w ≥ 2(q − 1)

[(2

q
−

√

δa
)

J − 1

2
√
δa
c(δa)w

]

. (∗)

From (∗) we have ‖u∗(t)‖q ≤ ‖f‖qe
‖g‖1
q′

√
δa . In particular, ‖u∗(t)‖1 ≤ ‖f‖1. Also from (∗) we obtain

‖u∗(t)‖q ≤ cg(t−s)−
d

2q′ ‖f‖1, and by duality, ‖(U t,s
∗ )∗‖q′→∞ ≤ cg(t−s)−

d
2q′ . Now, (•) is evident. �

Armed with (•), we repeat word by word the arguments from the previous section, arriving at

the following proposition.

Proposition 3. Let β and C be (generic) constants defined in Proposition 2 and Proposition 1,

respectively.

G(ts) ≥ −Q̃(ts − s)− C, ts =
t+ s

2

for all 0 ≤ t− s ≤ 1 and x, y ∈ Rd such that 2|x− y| ≤
√

β(t− s).

Similarly to Proposition 2, the proof works under more general assumptions than in Theorem

1, i.e. we may assume that b is as in Section 3.1.

3.5. A priori lower bound. Recall that a ∈ (Hσ,ξ) and b are smooth, b is bounded, div b ≥ 0.

It is seen from the Duhamel formula that, since div b ≥ 0,

u∗(t, x; s, y) ≤ u(t, x; s, y), 0 < t− s ≤ 1.

We have

u(t, x; s, y) ≥ (4πβ(t − ts))
d/2〈kβ(t− ts, o− ·)u(t, x; ts, ·)u(ts, ·; s, y)〉,

and, for all 2|x− y| ≤
√

β(t− ts), due to Proposition 2 and Proposition 3,

log u(t, x; s, y) ≥ log(4πβ)d/2 + Q̃(t− ts)

+ 〈kβ(t− ts, o− ·) log u(t, x; ts, ·)〉+ 〈kβ(t− ts, o− ·) log u∗(ts, ·; s, y)〉
≥ log(4πβ)d/2 − Q̃(t− ts)− 2C

= −Q̃(t− s)− 2C + log(8πβ)d/2,

so a Gaussian lower bound for u(t, x; s, y) follows but only for 2|x−y| ≤
√

β(t− ts). Now, the stan-

dard argument (“’small gains yield large gain’), see e.g. [D, Theorem 3.3.4], and the reproduction

property of u(t, x; s, y) give
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Theorem 4. There exist generic constants c0 ≥ 0 and c1, c2 > 0 such that, for all x, y ∈ Rd

c1kc2(t− s, x− y)e−c0(t−s) ≤ u(t, x; s, y)

for all 0 ≤ s < t <∞.

We emphasize that the constants c1, c2 are generic, and thus do not depend on the smoothness

of a, b, and the boundedness of b.

3.6. A posteriori lower bound. We now exclude the assumption of the smoothness of a, b, and

the boundedness of b by constructing a smooth bounded approximation of b ∈ Fδ ≡ Fδ(−∆) that

preserves the relative bound δ and the constant c(δ).

Define

bε := Eεb,

where, recall, Eεf := eε∆f (ε > 0) denotes the De Giorgi mollifier of f .

Claim 13. The following is true:

1. bε ∈ [L∞ ∩ C∞]d.

2. bε ∈ Fδ with the same c(δ) (thus, independent of ε).

Proof of Claim 13. 1. Since bε = Eε/2Eε/2b, it suffices to only prove that |bε| ∈ L∞. We have by

Fatou’s Lemma,

|bε(x)| ≤ lim inf
n

〈

eε∆(x, ·)1B(0,n)(·)|b(·)|
〉

≤ lim inf
n

〈

eε∆(x, ·)1B(0,n)(·)|b(·)|2
〉

1
2 ≤

(

δ
〈
∣

∣∇
√

eε∆(x, ·)
∣

∣

2〉
+ c(δ)

)
1
2 ,

where
∣

∣∇y

√

eε∆(x, y)
∣

∣ = (4πε)−
d
4
|x−y|
4ε e−

|x−y|2
8ε ≤ Cε−

d
4
− 1

2 e−
c|x−y|2

ε , and so |bε| ∈ L∞ for each

ε > 0.

2. Indeed, |bε| ≤
√

Eε|b|2, and so

‖bεf‖22 ≤ 〈Eε|b|2, |f |2〉 = ‖b
√

Eε|f |2‖22
≤ δ‖∇

√

Eε|f |2‖22 + c(δ)‖f‖22, f ∈W 1,2,

where

‖∇
√

Eε|f |2‖2 =
∥

∥

Eε(|f ||∇|f |)
√

Eε|f |2
∥

∥

2

≤ ‖
√

Eε|∇|f ||2‖2 = ‖Eε|∇|f ||2‖
1
2
1

≤ ‖∇|f |‖2 ≤ ‖∇f‖2,

i.e. bε ∈ Fδ. [The fact that ‖b
√

Eε|f |2‖2 < ∞ follows from 1{|b|≤n}b ∈ Fδ, the inequality

‖1{|b|≤n}b
√

Eε|f |2‖22 ≤ δ‖∇f‖22 + c(δ)‖f‖22 and Fatou’s Lemma]. �

Claim 14. div bε ≥ 0.

Proof. Indeed, since div b ≥ 0 in the sense of tempered distributions, i.e. 〈b,∇ϕ〉 ≤ 0 for every

0 ≤ ϕ ∈ S, we have 〈bε,∇ϕ〉 = 〈b,∇Eεϕ〉 ≤ 0, as needed. �
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We are in position to complete the proof of Theorem 1.

By Claim 13, bε ∈ Fδ, δ < 4σ2, and so bε ∈ Fδa(A), δa = σ−2δ < 4. Thus, [KiS2, Theorems 4.2,

4.3] apply and yield that the limit

s-Lp- lim
ε↓0

lim
ε1↓0

e−tΛε1,ε (locally uniformly in t ≥ 0), p >
2

2−
√
σ−2δ

,

where

Λε1,ε := −∇ · aε1 · ∇+ bε · ∇, aε1 := Eε1a ∈ (Hσ,ξ), D(Λε1,ε) =W 2,p

exists and determines in Lp a positivity preserving L∞-contraction, quasi contraction C0 semigroup

of integral operators, say, e−tΛ.

Next, by Claim 13 and Claim 14, Theorem 4 applies to the heat kernel e−tΛε1,ε with constants

c0-c2 independent of ε1, ε. Therefore, for every pair of balls B1, B2 ⊂ Rd we have

c1e
−c0t〈1B1 , e

tc2∆1B2〉 ≤ 〈1B1 , e
−tΛε,ε11B2〉.

Now, passing to the limit in ε1 and then in ε, we obtain

c1e
−c0t〈1B1 , e

tc2∆1B2〉 ≤ 〈1B1 , e
−tΛ1B2〉.

Applying the Lebesgue Differentiation Theorem, we complete the proof of Theorem 1.

4. Proof of Theorem 2A

Recall that, by the assumption of Theorem 2A, b ∈ Fδ, 0 < δ <∞, and so

b ∈ Fδa(A), δa = σ−2δ <∞.

Recall that a constant is called generic if it only depends on the dimension d, the ellipticity

constants σ, ξ, the form-bound δa and the constants c(δa).

We will first prove Theorem 2A for the smoothed out coefficients aε1 , bε (see Theorem 6 below).

By Claim 13, bε are bounded and are in Fδ with the same c(δ) (thus, independent of ε).

4.1. A remark on the approximation of Kato class potentials. Let V ∈ Kd
ν . Define

Vε = EεV, ε > 0,

where, recall, Eεf := eε∆f (ε > 0) denotes the De Giorgi mollifier of f . Below we will be interested

in the case

V = div b+, so Vε = Eεdiv b+.

Claim 15. 1. Vε ∈ Kd
ν with the same λ = λ(ν) (independent of ε),

2. Vε ∈ L∞ ∩ C∞.

Proof of Claim 15. 1. By duality, it suffices to prove that ‖|Vε|(λ−∆)−1f‖1 ≤ ν‖f‖1, f ∈ L1. We

have |Vε| ≤ |V |ε, and
‖|V |ε(λ−∆)−1f‖1 = ‖|V |(λ−∆)−1Eεf‖1

≤ ν‖Eεf‖1 ≤ ν‖f‖1.
2. Since Vε, ε > 0 are form-bounded,

〈|Vε|, |f |2〉 ≤ ν〈|∇f |2〉+ cν〈|f |2〉, f ∈W 1,2, cν = λν,

see the introduction, we can argue as in the proof of assertion 1 of Claim 13. �
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4.2. Upper bound for the auxiliary operator −∇ · aε1 · ∇+ bε · ∇+ Eεdiv b+. Set

Aε1 = −∇ · aε1 · ∇,

and

H+ = Aε1 + bε · ∇+ Eεdiv b+.

Let Ht,sf denote the solution of
{ − d

dtH
t,sf = H+Ht,sf , 0 ≤ s < t <∞

0 ≤ f ∈ L1 ∩ L∞ (CPH+)

in Lp = Lp(Rd), p ∈ [1,∞[.

Let h(t, x; s, y) denote the heat kernel of H+, that is, Ht,sf = 〈h(t, x; s, ·)f(·)〉.

Theorem 5. There exist generic constants c3, c4 > 0, ω ≥ 0 such that

h(t, x; s, y) ≤ c3kc4(t− s, x− y)e−(t−s)ω (UGBh+)

for all 0 ≤ s < t <∞.

Proof of Theorem. 1. Since Aε1 + bε · ∇ + Eεdiv b+ = Aε1 +∇ · bε + Eεdiv b− (where Eεdiv b−(x)
and Eεdiv b+(x) are uniformly bounded in x ∈ Rd and smooth by the assumptions of Theorem 2A

and Claim 15, respectively),

〈ĥ〉 := 〈h(t, x; s, ·)〉 ≤ 1 and 〈h〉 := 〈h(t, ·; s, y)〉 ≤ 1.

Also, since div bε = Eεdiv b = Eεdiv b+ − Eεdiv b−,

〈H+h, h〉 = J +
1

2
〈Eε|div b|, h2〉 ≥ J, J := 〈∇h · aε1 · ∇h〉,

〈(H+)∗(s)ĥ, ĥ〉 = Ĵ +
1

2
〈Eε|div b|, ĥ2〉 ≥ Ĵ , Ĵ := 〈∇ĥ · aε1 · ∇ĥ〉,

and so estimating ‖Ht,s‖L1→L2 and ‖
(

Ht,s
)∗‖L1→L2 by means of the Nash inequality, we obtain

h(t, x; s, y) ≤ c(t− s)−d/2, c = c(d, σ). (NIEh+)

Here x, y ∈ Rd and 0 ≤ s < t <∞.

2. In order to prove (UGBh+) we consider
{

− d
dtH

t,s
α f = H+

αH
t,s
α f , 0 ≤ s < t <∞,

0 ≤ f ∈ L1 ∩ L∞ (CPH+
α
)

in Lp = Lp(Rd), p ∈ [1,∞[, where Ht,s
α := eα·xHt,se−α·x and

H+
α := eα·x(ω +H+)e−α·x = ω +H+ − α · bε − α · aε1 · α+ α · aε1 · ∇+∇ · aε1 · α,

ω =
c(δa)

2δa
.

To shorten notation, in the rest of this section we write A ≡ Aε1 .

Moser’s Lemma. There are generic constants c, c4 such that, for all 0 ≤ s < t <∞,

‖Ht,s
α ‖2→∞, ‖Ht,s

α ‖1→2 ≤ c(t− s)−d/4ec4α
2(t−s).
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Proof of Lemma. We follow [FS, Sect. 1]. Set uα(t) := Ht,s
α f , v(t) := u

p/2
α (t), p ≥ 2. Noticing that

〈bε · ∇uα, up−1
α 〉 = 2

p〈∇v, bεv〉 = −1
p〈v2, Eεdiv b〉, we have by the dynamic equation

−1

p

d

dt
〈v2(t)〉 = ω‖v(t)‖22 +

4

pp′
‖A1/2v(t)‖22 +

1

p′
〈v2(t), Eεdiv b+〉+

1

p
〈v2(t), Eεdiv b−〉

− 2(p − 2)

p
〈α · aε1 · ∇v(t), v(t)〉 − 〈α · bε, v2(t)〉 − 〈α · aε1 · α, v2(t)〉.

By quadratic estimates and by (bε ∈ Fδ, see Claim 13 ⇒ bε ∈ Fδa(A), δa = σ−2δ),

−1

p

d

dt
‖v‖22 ≥ 4

pp′
(1− κ− γδa)‖A1/2v‖22 +

[

ω − 4

pp′
γc(δa)

]

‖v‖22

−
[

1 +
1

4γ

pp′

4
+

1

4κ

pp′

4
4

(

p− 2

p

)2]

ξα2‖v‖22.

Choosing here γ = κ/δa, κ = 1
2 we obtain

−1

p

d

dt
‖v‖22 ≥

[

ω − 2

pp′
c(δa)

δa

]

‖v‖22 −
[

1 +
pp′

8

(

δa + 4

(

p− 2

p

)2)]

ξα2‖v‖22.

In particular d
dt‖uα‖2 ≤ 2+δa

2 ξα2‖uα‖2, and so

‖uα(t)‖2 ≤ e
2+δa

2
ξα2(t−s)‖f‖2. (⋆)

Choosing γ = κ/δa, κ = 1
4 we obtain

−1

p

d

dt
‖v‖22 ≥ 2

pp′
‖A1/2v‖22 +

[

ω − 1

pp′
c(δa)

δa

]

‖v‖22 −
[

1 +
pp′

4

(

δa + 4

(

p− 2

p

)2)]

ξα2‖v‖22.

Let p ≥ 4. Then

[

ω− 1
pp′

c(δa)
δa

]

≥ 0 and

[

1+ pp′

4

(

δa+4

(

p−2
p

)2)]

≤ pCδa , Cδa = 1+ δa
4 . Therefore

− d

dt
‖v‖22 ≥ ‖A1/2v‖22 − Cδap

2ξα2‖v‖22 (⋆⋆)

Using the Nash inequality ‖A1/2v‖22 ≥ σCN‖v‖2+
4
d

2 ‖v‖−
4
d

1 , we obtain from (⋆⋆)

−2
d

dt
‖v‖2 ≥ σCN‖v‖1+

4
d

2 ‖v‖−
4
d

1 − Cδap
2ξα2‖v‖2, or

d

dt
‖v‖−4/d

2 ≥ 2σCN

d
‖v‖−4/d

1 − 2

d
Cδap

2ξα2‖v‖−4/d
2 .

The last inequality is linear with respect to wp = ‖v‖−4/d
2 . Therefore, setting cg :=

2σCN
d and

µp(t) :=
2

d
Cδap

2ξα2(t− s),

we have

wp(t) ≥ cge
−µp(t)

∫ t

s
eµp(r)w p

2
(r)dr

≥ cge
−µp(t)

∫ t

s
eµp(r)(r − s)qdr V p

2
(t),
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where q = p
2 − 2 and

V p
2
(t) := inf[(r − s)−qw p

2
(r) | s ≤ r ≤ t]

=

{

sup

[

(r − s)
qd
2p ‖uα(r)‖p/2 | s ≤ r ≤ t

]}− 2p
d

.

Set β = 2d−1Cδaξα
2. Since e−µp(t)

∫ t
s e

µp(r)(r − s)qdr ≥ e−βp2(t−s)
∫ t
s e

βp2(r−s)(r − s)qdr and

∫ t

s
eβp

2(r−s)(r − s)qdr =

(

t− s

βp2

)q+1 ∫ βp2

0
e(t−s)rrqdr

≥
(

t− s

βp2

)q+1

eβ(p
2−1)(t−s)

∫ βp2

βp2(1−p−2)
rqdr

=
(t− s)

p−2
2

p− 2
2
[

1− (1− p−2)p−1
]

eβ(p
2−1)(t−s)

≥ Kp−2(t− s)
p−2
2 eβ(p

2−1)(t−s),

where K := 2 inf
{

p
[

1− (1− p−2)p−1
]

| p ≥ 2
}

> 0, we obtain

wp(t) ≥ c̃gKp
−2e−β(t−s)(t− s)

p−2
2 V p

2
(t),

or, setting Wp(t) := sup
[

(r − s)
d(p−2)

4p ‖uα(r)‖p | s ≤ r ≤ t
]

,

Wp(t) ≤ (c̃gK)−
d
2p p

d
p e

Cδa
ξα2

p
(t−s)Wp/2(t), p = 2k, k = 1, 2, . . . .

Iterating this inequality, starting with k = 2, yields (t − s)
d
4 ‖uα(t)‖∞ ≤ Cge

Cδa ξα
2(t−s)W2(t).

Finally, taking into account (⋆), we arrive at

‖Ht,s
α ‖2→∞ ≤ (t− s)−d/4Cge

Cδaξα
2(t−s).

The same bound holds for ‖Ht,s
α ‖1→2. To see this it is enough to note that, for H+ ≡ H+(b),

(H+
α (b))∗ = H+

−α(−b). �

We obtain e−tH+
(x, y) ≤ Ceωtt−

d
2 eα·(y−x)+c4α2t, c4 = Cδaξ. The proof of (UGBh+) is completed

upon putting α = x−y
2c4

. �

4.3. Upper bound for −∇ · aε1 · ∇+ bε · ∇.

Theorem 6. In the assumptions of Theorem 2A, there exist generic constants ci (i = 3, 4, 5) such

that the heat kernel u(t, x; s, y) = e−(t−s)Λε1,ε(x, y) of Λε1,ε = −∇ · aε1 · ∇+ bε · ∇ satisfies

u(t, x; s, y) ≤ c3kc4(t− s;x− y)ec5(t−s)

for all x, y ∈ Rd and 0 ≤ s < t <∞.

Proof. We have Λ = H+−Eεdiv b+, so the proof follows from Theorem 5 and a standard argument

using the Duhamel formula and the fact that Eεdiv b+ ∈ Kd
ν (Claim 15). (If c(δa) = 0 and λ(ν) = 0,

then we arrive at global in time Gaussian upper bound.) �
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4.4. A posteriori upper bound. We are in position to complete the proof of Theorem 2A.

In Theorem 6 we have established the upper bound on the heat kernel of

Λε1,ε := −∇ · aε1 · ∇+ bε · ∇, D(Λε1,ε) =W 2,2,

where aε1 := Eε1a ∈ (Hσ,ξ), ε1 > 0, with constants independent of ε1, ε. It remains to pass to

the limit ε1 ↓ 0 and then ε ↓ 0. Since b ∈ Fδ with δ that is assumed to be only finite, we can not

appeal to [KiS2, Theorems 4.2, 4.3] as in the proof of Theorem 1. Instead, we will use

Proposition 4. In the assumptions of Theorem 2A, the limit

s-L2- lim
ε↓0

lim
ε1↓0

e−tΛε1,ε (locally uniformly in t ≥ 0)

exists and determines a positivity preserving L∞-contraction quasi contraction C0 semigroup in

L2, say, e−tΛ.

Proof. Since bε ∈ [L∞ ∩ C∞]d, the limit

e−tΛε = s-L2- lim
ε1↓0

e−tΛε1,ε

exists and determines a quasi contraction C0 semigroup (positivity preserving L∞-contraction),

and Λε = A+ bε · ∇, D(Λε) = D(A).

Thus, it remains to pass to the limit ε ↓ 0. It suffices to prove that e−tΛεf converges strongly

in L2 for every 0 ≤ f ∈ C∞
c , and then apply a density argument.

In what follows, the constant ν is from Theorem 6 but possibly taken smaller, if needed, so that

ν < 2σ. We have

div bε = Eεdiv b = Eε(div b+ − div b−) = Eεdiv b+ − Eεdiv b−, (⋆)

where 0 ≤ Eεdiv b− ∈ L∞ ∩C∞ by assumption (2) of Theorem 2A, and 0 ≤ Eεdiv b+ ∈ L∞ ∩C∞

by Claim 15.

1. Set u ≡ uε = e−tΛεf . Using the equation for u, we have

1

2

d

dt
〈u2〉+ 〈a · ∇u,∇u〉+ 〈bε · ∇u, u〉 = 0.

Since u satisfies a qualitative Gaussian upper bound (i.e. with constants that a priori depend on

the smoothness of the coefficients), we find that

−〈bε · ∇u, u〉 =
1

2
〈div bε, u2〉

(we are using (⋆))

≤ 1

2
〈eε∆div b+, u2〉.

Since Eεdiv b+ ∈ Kd
ν by Claim 15, Eεdiv b+ is form-bounded: 〈Eεdiv b+, u

2〉 ≤ ν〈|∇u|2〉+ cν〈u2〉,
cν = λν (see the introduction). Hence

d

dt
〈u2〉+ 2〈a · ∇u,∇u〉 − ν〈|∇u|2〉 − cν〈u2〉 ≤ 0.

Thus, for t ∈ [0, T ],

e−cν t〈u2(t)〉+ (2σ − ν)

∫ t

0
e−cντ‖∇u‖22dτ ≤ ‖f‖22,
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so

sup
τ∈[0,T ]

〈u2(τ)〉 + c

∫ T

0
‖∇u‖22dτ ≤ ecνT ‖f‖22

for positive constant c := 2σ − ν.

2. Fix some εn ↓ 0 and put g = uεn −uεm. Then, subtracting the equations for uεn , uεm arguing

as above, multiplying by g and integrating, we obtain

sup
t∈[0,T ]

‖g(t)‖22 + c

∫ T

0
‖∇g‖22dτ ≤ ecνT

∫ T

0
|〈(bεn − bεm) · ∇uεm, g〉|dτ,

where we estimate the RHS as
∫ T

0
|〈(bεn − bεm) · ∇uεm , g〉|dτ ≤

(
∫ T

0
‖(bεn − bεm)g‖22dτ

)
1
2
(
∫ T

0
‖∇uεm‖22dτ

)
1
2

. (∗)

By Step 1, the second multiple in the RHS of (∗) is uniformly (in m) bounded. To estimate the

first multiple, we can appeal to the a priori Gaussian upper bound on the heat kernel of Λε1,ε

(Theorem 6) to obtain pointwise estimate

|g(t, x)| ≤ 2ĉ3〈kc4(t, x− ·)f(·)〉 (=: F (t, x)) (∗∗)
on [0, T ]× Rd. We write (R > 0)

∫ T

0
‖(bεn − bεm)g‖22dτ ≤

∫ T

0
‖ηR(bεn − bεm)g‖22dτ +

∫ T

0
‖(1 − ηR)(bεn − bεm)g‖22dτ,

where 0 ≤ ηR ∈ C∞
c , 0 ≤ η ≤ 1, ηR ≡ 1 on B(0, R). Now, for every R > 0, the first term converges

to 0 as n, m → ∞ since |bεn − bεm | → 0 in L2
loc and, by (∗∗), g is uniformly in n, m bounded on

[0, T ]× Rd. In turn, the second term is estimated using (∗∗) and bε ∈ Fδ:

‖(1− ηR)(bεn − bεm)g(τ)‖22 ≤ ‖(1 − ηR)(bεn − bεm)F (τ)‖22
≤ 2δ

∥

∥∇[(1− ηR)F (τ)]
∥

∥

2

2
+ 2c(δ)‖(1 − ηR)F (τ)‖22, τ ∈ [0, T ].

Taking into account that f ∈ C∞
c , it is easily seen that the last expression can be made as small

as needed, uniformly in τ , by selecting R sufficiently large.

It follows that the first multiple in (∗) tends to 0 as n,m→ ∞.

Thus, {uεn ≡ e−tΛεnf}∞n=1 is a Cauchy sequence in L∞([0, T ], L2(Rd)). We set

U tf := s-L2- lim
εn↓0

e−tΛεnf, 0 < t ≤ T.

Next, we extend U t, 0 < t ≤ T by continuity to whole L2, and then, using the reproduction

property of e−tΛεn , extend it to all 0 < t <∞. The strong continuity of U t and the other claimed

properties now follow from the corresponding properties of e−tΛεn . Set e−tΛ := U t.

The proof of Proposition 4 is completed. �

Remark. The proof of Proposition 4 can be made independent of Theorem 6 by working with

appropriate weights, essentially repeating the proof of [KiS2, Theorem 4.3].

Proof of Theorem 2A. Theorem 6 and Proposition 4 yield

‖e−tΛ‖1→∞ ≤ c3e
c5tt−

d
2 , t > 0.

Hence, by the Dunford-Pettis Theorem, e−tΛ is an integral operator for every t > 0.
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Next, for every pair of balls B1, B2 ⊂ Rd we have, using again Theorem 6 and Proposition 4:

〈1B1 , e
−tΛ1B2〉 ≤ c3e

c5t〈1B1 , e
tc4∆1B2〉.

Since for every t > 0 e−tΛ is an integral operator, the a posteriori Gaussian upper bound in

Theorem 2A follows by applying the Lebesgue Differentiation Theorem.

5. Proof of Theorem 2B

Since b ∈ MFδ, the vector fields bε = eε∆b are C∞ smooth are bounded (following the proof of

Claim 13 in Section 3.6) and are in class MFδ with the same constants δ and c(δ). Indeed,

〈bεf, f〉 = 〈beε∆|f |2〉 = 〈b(hε)2〉,
where hε =

√

Eε|f |2 so ∇hε = h−1
ε Eε(|f |∇|f |,

‖∇hε‖22 ≤ ‖
√

Eε(∇|f |)2‖22 = ‖Eε(∇|f |)2‖1 ≤ ‖∇f‖22
and ‖hε‖2 ≤ ‖f‖2, which clearly yields the required.

Thus, in what follows, we assume that b ≡ bε ∈ MFδ is bounded and C∞ smooth. The

assumption (2) of Theorem 2B ensures that div b− ≡ Eεdiv b− ∈ L∞ ∩ C∞. Further, assumption

(3) and Claim 15 in Section 4.1 ensure that div b+ ≡ Eεdiv b+ ∈ Kd
ν with the same constants ν

and λ.

The rest of the proof follows closely Sections 4.2 and 4.3 of the proof of Theorem 2A with the

following modification. We need to estimate differently the term 〈α · b, v2〉. By b ∈ MFδ,

|〈α · b, v2〉| = |α ·
〈

bv, v
〉

| ≤ |α||〈bv, v〉|
≤ |α|

(

δσ−
1
2‖A1/2v‖2‖v‖2 + c(δ)

1
2‖v‖22

)

≤ 4γδ

pp′
‖A1/2v‖22 +

(

c(δ) + α2

(

1

4
+

δ

4σγ

pp′

4

))

‖v‖22,

and so

−1

p

d

dt
‖v‖22 ≥ 4

pp′
(1− κ− γδ)‖A1/2v‖22 − [ω − c(δ)]‖v‖22

−
[

1

4
+ ξ +

δ

4σγ

pp′

4
+

1

4κ

pp′

4
4

(

p− 2

p

)2

ξ

]

α2‖v‖22.

Take ω = c(δ). Choosing first γ = κ
δ , κ = 1

2 , p = 2, and then γ = κ
δ , κ = 1

4 , p ≥ 4, we have

‖uα(t)‖2 ≤ ‖f‖2 exp
[

2(14 + ξ)σ + δ2

2σ
α2(t− s)

]

(⋆a)

and

−1

p

d

dt
‖v‖22 ≥ 2

pp′
‖A1/2v‖22 −

[

1

4
+ ξ +

δ2

σ

pp′

4
+
pp′

4
4

(

p− 2

p

)2

ξ

]

α2‖v‖22

≥ 2

pp′
‖A1/2v‖22 − Cδ,σ,ξpα

2‖v‖22.
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Therefore,

− d

dt
‖v‖22 ≥ ‖A1/2v‖22 − Cδ,ξ,σp

2α2‖v‖22

≥ σCN‖v‖2+
4
d

2 ‖v‖−
4
d

1 − Cδ,σ,ξp
2α2‖v‖22,

so

d

dt
‖v‖−4/d

2 ≥ 2σCN

d
‖v‖−

4
d

1 − 2

d
Cδ,σ,ξp

2α2‖v‖−4/d
2 .

Now we iterate the last inequality in the same way as in the proof of Theorem 2A, arriving at

(t− s)
d
4 ‖uα(t)‖∞ ≤ Cge

Cδ,σ,ξα
2(t−s)W2(t),

where Wp(t) := sup
[

(r − s)
d(p−2)

4p ‖uα(r)‖p | s ≤ r ≤ t
]

. Taking into account (⋆a), we arrive at

‖Ht,s
α ‖2→∞ ≤ (t − s)−d/4C ′

ge
C′

δ,σ,ξα
2(t−s). The same bound holds for ‖Ht,s

α ‖1→2. To see this it is

enough to note that, for H+ ≡ H+(b), (H+
α (b))∗ = H+

−α(−b).

We obtain e−tH+
(x, y) ≤ Ceωtt−

d
2 eα·(y−x)+c4α2t, c4 = C ′

δ,σ,ξ. Putting α = x−y
2c4

, we obtain

(UGBh+). Now argue as in Section 4.3.

6. Proof of Theorem 3A

In the assumptions of Theorem 3A the upper bound of Theorem 2A is valid, so we only need

to prove the lower bound.

We will prove the lower bound in Theorem 3A first for the smoothed out coefficients aε1 , bε
(Theorem 8 below). Recall that bε are bounded and are in Fδ with the same c(δ) (thus, independent

of ε), see Claim 13.

First, we assume 0 < t− s ≤ 1.

Write

Aε1 = −∇ · aε1 · ∇, Λε1,ε = Aε1 + bε · ∇, div bε = Eεdiv b+ − Eεdiv b−.

We have div bε ∈ Kd
ν with the same constants ν, λ(ν) (see the beginning of the proof of Theorem

2A for details).

By Theorem 6, the heat kernel u(t, x; s, y) of Λε1,ε satisfies, for all x, y ∈ Rd, the Gaussian upper

bound

u(t, x; s, y) ≤ ĉ3kc4(t− s;x− y), 0 < t− s ≤ 1,

for generic constants ĉ3, c4. The latter trivially yields the integral bound

sup
x∈Rd

〈u2(t, x; s, ·)〉 ≤ ĉ(t− s)−
d
2 , 0 < t− s ≤ 1 (◦◦)

with generic ĉ. We will use this integral bound below.
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6.1. Ĝ-bound. Let us define Nash’s function

Ĝ(s) := 〈kβ(t− s, o− ·) log u(t, x; s, ·)〉, o =
x+ y

2

for all 0 < t− s ≤ 1 and x, y ∈ Rd such that 2|x− y| ≤
√

β(t− s).

Proposition 5. There exist generic constants β and C such that

Ĝ(ts) ≥ −Q̃(t− ts)− C, ts =
t+ s

2
,

where, recall, Q̃(t− ts) :=
d
2 log(t− ts).

Proof. In the proof of Proposition 2 take r = 2 and instead of (◦) from Section 3.1 use integral

bound (◦◦). �

6.2. G-bound for −∇·aε1 ·∇+∇·bε. Let u∗(t, x; s, y) denote the heat kernel of Λ∗ = Aε1+∇·bε.
Set

G(t) := 〈kβ(t− s, o− ·) log u∗(t, ·; s, y)〉,
where 0 ≤ s < t <∞ and x, y ∈ Rd such that 2|x− y| ≤

√

β(t− s).

Proposition 6. Let β and C be (generic) constants defined in Proposition 5 and Proposition 1,

respectively. Then

G(t) ≥ −Q̃(t− s)− C.

Proof. We repeat the proof of Proposition 3 with p = 2. �

6.3. Lower bound for the auxiliary operator −∇ · aε1 · ∇+ bε · ∇ −Eεdiv b−. Set

H− := Λε1,ε − Eεdiv b−.

Let Ht,sf denote the solution of
{ − d

dtH
t,sf = H−Ht,sf , 0 < t− s ≤ 1,

0 ≤ f ∈ L1 ∩ L∞.
(CPH−)

Let h(t) := Ht,sf. It is seen (for example from the Duhamel formula) that u(t, x; ts, y) ≤ h(t, x; ts, y)

and u∗(ts, x; s, y) ≤ h(ts, x; s, y), where u(t), u∗(t) solve (CPΛ), (CPΛ∗) respectively. It is seen that

h(t, x; s, y) ≥ (4πβ(t − ts))
d/2〈kβ(t− ts, o− ·)h(t, x; ts, ·)h(ts, ·; s, y)〉,

kβ(t− ts, o− ·) = kβ(ts − s, o− ·),
and, for all 2|x− y| ≤

√

β(t− ts) , due to Proposition 5 and Proposition 6,

log h(t, x; s, y) ≥ log(4πβ)d/2 + Q̃(t− ts)

+ 〈kβ(t− ts, o− ·) log u(t, x; ts, ·)〉+ 〈kβ(t− ts, o− ·) log u∗(ts, ·; s, y)〉
≥ log(4πβ)d/2 − Q̃(t− ts)− 2C

= −Q̃(t− s)− 2C+ log(8πβ)d/2,

i.e. we have proved a lower Gaussian bound for h(t, x; s, y) but only for 2|x − y| ≤
√

β(t− ts).

Now, the standard argument (see e.g. [D, Theorem 3.3.4]) gives
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Theorem 7. There exist generic constants c1, c2 > 0 such that, for all x, y ∈ Rd

c1kc2(t− s, x− y) ≤ h(t, x; s, y) (LGBh−)

for all 0 < t− s ≤ 1.

6.4. Lower bound for −∇ · aε1 · ∇+ bε · ∇. Let u(t, x; s, y) be the heat kernel of Λε1,ε.

Theorem 8. There exist generic constants c0 ≥ 0 and ci > 0 (i = 1, 2) such that, for all x, y ∈ Rd

and 0 ≤ s < t <∞,

c1kc2(t− s;x− y)e−c0(t−s) ≤ u(t, x; s, y).

Proof. Let h1(t, x; s, y), hp′(t, x; s, y) denote the heat kernels of H
− = −∇·aε1 ·∇+bε ·∇−Eεdiv b−,

H−
p′ = −∇ · aε1 · ∇+ bε · ∇ − p′Eεdiv b−, respectively. The pointwise inequality

h1(t, x; s, y) ≤
[

u(t, x; s, y)
]1/p[

hp′(t, x; s, y)
]1/p′

, p > 1, (⋆)

is a standard consequence of the Lie-Trotter Product Formula (for the proof, if needed, see [HS]).

1. In the RHS of (⋆), we bound hp′(t, x; s, y) from above as follows. We write the Duhamel

series for hp′(t, x; s, y), with H
−
p′ viewed as H+

p′ = Λε1,ε + p′Eεdiv b+ perturbed by −p′
(

Eεdiv b+ +

Eεdiv b−
)

, and estimate its terms from above using a straighforward modification of Theorem 5

and appealing to |div b| ∈ Kd
ν . We obtain

hp′(t, x; s, y) ≤ c̃3kc̃4(t− s;x− y)

for all x, y ∈ Rd and 0 ≤ s < t ≤ T , for generic constants c̃i (i = 3, 4, 5).

2. In the LHS of (⋆), we bound h1(t, x; s, y) from below using Theorem 7.

Now, 1-2 yield the required lower bound on u(t, x; s, y) for x, y ∈ Rd, 0 < t − s ≤ 1. Next,

the reproduction property of u(t, x; s, y) gives the required lower bound for all x, y ∈ Rd and

0 ≤ s < t <∞.

If c(δa) = λ(ν) = 0, then we work over 0 ≤ t < ∞ from the beginning, obtaining a global in

time lower bound. �

6.5. A posteriori lower bound. We are in position to prove Theorem 3A. Theorem 8 and

Proposition 4 yield for every pair of balls B1, B2 ⊂ Rd

c1e
−c0t〈1B1 , e

tc2∆1B2〉 ≤ 〈1B1 , e
−tΛ1B2〉,

so an application of the Lebesgue Differentiation Theorem gives the a posteriori Gaussian lower

bound in Theorem 3A.
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7. Proof of Theorem 3B

The upper bound follows from Theorem 2B. The proof of the lower bound under the assumption

div b = 0 was given [S2]. Below we relax that assumption to “div b ∈ Kd
ν for ν sufficiently small”

by modifying the proof in [S2] and then arguing as in the proof Theorem 3A.

Few remarks are in order.

For every ε > 0, bε ∈ MFδ with the same constants δ, c(δ), and div bε ∈ Kd
ν with the same

constants ν, λ(ν) (for details, see the beginning of the proof of Theorem 2B and of Theorem 2A,

respectively). In particular,

‖|div bε|
1
2 f‖22 ≤ ν‖∇f‖22 + λν‖f‖22, f ∈W 1,2. (⋆)

In what follows, we put

b ≡ bε, div b ≡ div bε = Eεdiv b+ − Eεdiv b−.

We denote Eεdiv b±, with some abuse of notation, by div b±.
We will establish the lower bound for 0 < t− s ≤ 1. Then the reproduction property will yield

the lowe bound for all 0 < t− s <∞.

7.1. Ĝ-bound for −∇ · a · ∇ + b · ∇. By Theorem 2B, the heat kernel u(t, x; s, y) of Λε1,ε =

−∇ · aε1 · ∇+ bε · ∇ satisfies, for all x, y ∈ Rd, the Gaussian upper bound

u(t, x; s, y) ≤ ĉ3kc4(t− s;x− y), 0 < t− s ≤ 1, (UGBu)

for generic constants ĉ3, c4.

The next proposition is valid under weaker assumptions than those of Theorem 3B, namely, it

suffices to assume that (UGBu) holds, and

‖(div b−)
1
2 f‖22 ≤ ν‖∇f‖22 + λν‖f‖22, f ∈W 1,2

with e.g. ν ≤ σ
8 .

Proposition 7. Let x, y ∈ Rd, o = x+y
2 , ts = t+s

2 . There exist generic constants β and C such

that

Ĝ(ts) := 〈kβ(t− ts, o− ·) log u(t, z; ts, ·)〉 ≥ −Q̃(t− ts)− C, for all z ∈ B(o,
√
t− ts),

where, recall, Q̃(t− ts) :=
d
2 log(t− ts).

Proof of Proposition 7. Fix ǫ > 0 and define

Gǫ(τ) := 〈kβ(t− ts, o− ·) log
[

ǫkβ(t− ts, o− ·) + u(t, z; τ, ·)
]

〉,
where τ ∈ [ts,

t+ts
2 ]. Then

Ĝ(ts) = inf
ǫ>0

Gǫ(ts).

Below we write for brevity:

Gǫ(τ) ≡
〈

Γ log
[

ǫΓ + U
]〉

≡
〈

Γ log
[

ǫΓ + U(τ)
]〉

,

where Γ ≡ Γβ ≡ kβ(t− ts, o− ·), U ≡ U(τ) ≡ u(t, z; τ, ·).
Also, set

V := c0(t− ts)
d/2

[

ǫΓ + U
]

, c0 = (4πc4)
d/2e−1

[

ǫ+ ĉ3e
1

4c4

]−1
.
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If β ≥ 2c4, then clearly

V (τ, y) exp
|o− y|2

4β(t− ts)
≤ e−1 for all y ∈ Rd, ǫ ∈]0, 1] and τ ∈

[

ts,
t+ ts
2

]

.

In particular, − log V ≥ 1.

Let us calculate −∂τGǫ(τ). We have

−∂τGǫ(τ) =

〈

Γ
−∂τU
ǫΓ + U

〉

=

〈

Γ

ǫΓ + U
(∇ · a · ∇+∇ · b)U

〉

=

〈

∇ log V · aΓ · ∇U
ǫΓ + U

〉

−
〈

∇Γ · a · ∇U
ǫΓ + U

〉

+

〈

Γ
b · ∇U
ǫΓ + U

〉

+

〈

Γ
divb U

ǫΓ + U

〉

=
〈

∇ log V · aΓ · ∇ log V
〉

−
〈

∇ log V · aΓ · ǫ∇Γ

ǫΓ + U

〉

−
〈

∇Γ · a · ∇ log V
〉

+

〈

∇Γ · a · ǫ∇Γ

ǫΓ + U

〉

+
〈

Γb · ∇ log V
〉

−
〈

Γ
b · ǫ∇Γ

ǫΓ + U

〉

+

〈

Γ
Udivb

ǫΓ + U

〉

.

All the terms except for
〈

ΓUdivb
ǫΓ+U

〉

will be treated as in [S2]. Setting N :=
〈

∇ log V · aΓ · ∇ log V
〉

,

applying quadratic inequality and estimating
〈

ΓUdivb
ǫΓ+U

〉

≥ −
〈

Γdivb−
〉

, we have

−∂τGǫ(τ) ≥ N − 2N 1/2

〈

∇Γ · a
Γ
· ∇Γ

〉1/2

+
〈

Γb · ∇ log V
〉

− 〈|b · ∇Γ|〉 −
〈

Γdivb−
〉

Remark 2. Note that now we cannot estimate the term
〈

Γb ·∇ log V
〉

as in the proof of Theorem

1 or Theorem 3A since for any p > 1 (close to 1) there are b ∈ MFδ with |b| /∈ Lp
loc.

Hence

−∂τGǫ(τ) ≥ (1− γ)N − ξ

γ

〈

(∇Γ)2

Γ

〉

+
〈

b · ∇Γ,− log V
〉

− 〈Γdivb−,− log V 〉 − 〈|b||∇Γ|〉 −
〈

Γdivb−
〉

,

where 0 < γ < 1 will be chosen later.

We have:
〈(∇Γ)2

Γ

〉

=
d

2β

1

t− ts
, 〈|b||∇Γ|〉 ≤

√
2

√

β(t− ts)
〈|b|Γ2β〉.

Further, applying b ∈ MFδ and (⋆), we estimate

〈|b|Γ2β〉 ≤ δ

√

‖∇
√

Γ2β‖22 + c(δ)‖
√

Γ2β‖22‖
√

Γ2β‖2
= δ‖∇

√

Γ2β‖22‖
√

Γ2β‖2 +
√

c(δ)‖
√

Γ2β‖22

=
δ

4

√
d

√

β(t− ts)
+

√

c(δ)

≤
√
dδ +

√
2
√
β
√

c(δ)

4
√

β(t− ts)
(we used 0 < t− ts ≤

1

2
),

〈Γdiv b−〉 ≤
ν

4

d

2β

1

t− ts
+ λν ≤

dν
2 + 2βλν

4β(t− ts)
,
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|
〈

b · ∇Γ,− log V
〉

|+ 〈Γdivb−,− log V 〉

≤ 1
√

β(t− ts)

〈

|b|Γ,− log V
〉1/2

〈

|b| |o− ·|2
4β(t − ts)

Γ,− log V

〉1/2

+ 〈Γdivb−,− log V 〉

≡ 1
√

β(t− ts)
A

1/2
0 A

1/2
2 +A3 ≤

1

2
√

β(t− ts)
(A0 +A2) +A3,

where

A0(τ) :=
〈

|b|Γ(− log V )
〉

=: 〈|b|, ϕ〉,

A2(τ) :=

〈

|b| |o− ·|2
4β(t − ts)

Γ(− log V )

〉

=: 〈|b|, ψ〉,

A3(τ) := 〈Γdivb−,− log V 〉.
Denoting

Y (τ) := Gǫ(τ) + Q̃(t− τ)

and gathering the above estimates, we obtain

−∂τY (τ) ≥ (1− γ)N − K0

4β(t− ts)
− 1

2
√

β(t− ts)

[

A0(τ) +A2(τ)
]

−A3(τ),

where K0 :=
√
2dδ + 2

√
β
√

c(δ) + 2ξd
γ + dν

2 + 2βλν. Multiplying this inequality by eµ(τ),

µ(τ) := −K(t− τ)

β(t− ts)
,

where constant K will be chosen later, we obtain

−∂τ
(

eµ(τ)Y (τ)
)

≥ eµ(τ)
[

(1− γ)N (τ) − Y (τ)∂τµ(τ)−
K0

4β(t − ts)

− 1

2
√

β(t− ts)

[

A0(τ) +A2(τ)
]

−A3(τ)

]

.

We note that

Y (τ) < c, τ ∈ [ts, (t+ ts)/2],

where the constant c = log(1+ ĉ3) with ĉ3 from u(t, x; τ, ·) ≤ ĉ3(t− τ)−d/2. Indeed, for ǫ ≤ (4πβ)
d
2 ,

Gǫ(τ) =
〈

Γ log(ǫΓ + U)
〉

≤
〈

Γ
〉

log
[

(1 + c̃)(t− τ)−/2] < −Q̃(t− τ) + log(1 + c̃).

Thus, avoiding division on possible zero, we obtain

∂τ
(

eµ(τ)(Y (τ)− c)
)−1 ≥

[

(1− 4γ)N (τ) +M(τ)
]

e−µ(τ)(Y (τ)− c)−2, (∗)

where

M(τ) := 3γN (τ)− (Y (τ)− c)∂τµ(τ)−
K0

4β(t− ts)
− 1

2
√

β(t− ts)

[

A0(τ) +A2(τ)
]

−A3(τ).

Take γ := 1
8 .

Lemma 1. M(τ) ≥ 0 for all τ ∈ [ts, (t+ ts)/2], for c sufficiently large, ν ≤ σ
8 .
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Proof of Lemma. Recall ϕ = Γ(− log V ). Then

∇ϕ =

(∇Γ

Γ
+

∇ log V

log V

)

ϕ,

and so

(∇ϕ)2
ϕ

=

(∇Γ

Γ
+

∇(− log V )

− log V

)2

ϕ

≤ 2

(

(∇Γ)2

Γ
(− log V ) +

(∇ log V )2

− log V
Γ

)

≤ 2

( |o− ·|2
(2β(t − ts))2

Γ(− log V ) + Γ(∇ log V )2
)

(since − log V > 1).

Using the identity |o−·|2
4β(t−ts)

Γ = β(t− ts)∆Γ + d
2Γ, we obtain

1

2

〈

(∇ϕ)2
ϕ

〉

≤
〈

Γ(∇ log V )2
〉

+
1

β(t− ts)

〈(

β(t− ts)∆Γ +
d

2
Γ
)

(− log V )
〉

≤ σ−1N +
〈

∇Γ,∇ log V
〉

+
d

2β(t− ts)
〈ϕ〉

≤ 2σ−1N +
1

4

〈

(∇Γ)2

Γ

〉

+
d

2β(t− ts)
〈ϕ〉

≤ 2σ−1N +
d

8β(t− ts)
+

d

2β(t− ts)
〈ϕ〉.

Thus, by (⋆),

A3(τ) ≤
ν

4

〈

(∇ϕ)2
ϕ

〉

+ λν〈ϕ〉

≤ σ−1νN +
dν

16β(t− ts)
+
dν + 2βλν

4β(t − ts)
〈ϕ〉.

We estimate A0(τ) and A2(τ) as in [S2]. For the sake of completeness, we provide the details.

Using the inequalities (B+C+D)1/2 ≤ (B+D)1/2+C1/2 and E1/2(B+D)1/2M1/2 ≤ (B+D)ε+

(4ε)−1EM for positive numbers with ε = σγ/2, we obtain

A0(τ)

2
√

β(t− ts)
≤ δ

4
√

β(t− ts)

(

2σ−1N (τ) +
d

8β(t− ts)
+

d

2β(t− ts)
〈ϕ〉

)1/2

〈ϕ〉1/2 +
√

c(δ)

2
√

β(t− ts)
〈ϕ〉

≤ γN (τ) +
c∗0

2β(t− ts)
〈ϕ〉 + σνd

16β(t− ts)
,

where c∗0 = c∗0(d, σ, ξ, δ, c(δ), γ) > 0.

Analogous calculation shows

A2(τ)

2
√

β(t− ts)
≤ γN (τ) +

c∗2
2β(t− ts)

〈ϕ〉+ σγd

16β(t− ts)
,

where c∗2 = c∗2(d, σ, ξ, δ, c(δ), γ) > 0. Let us only note that in order to estimate
〈

(∇ψ)2/ψ
〉

in the

same way as
〈

(∇ϕ)2/ϕ
〉

we need the inequality
〈

(∇ log V )2

− log V

|o− ·|2
4β(t− ts)

Γ

〉

≤
〈

Γ(∇ log V )2
〉



34 D.KINZEBULATOV AND YU.A. SEMËNOV

which is valid since − log V > |o−·|2
4β(t−ts)

(the inequality − log V ≥ 1 would not be enough). The

latter is the reason why in the definition of Gǫ(τ) we have “ǫΓ” rather than simply “ǫ” (as in the

proofs of Theorems 1 and 3A).

Thus, we obtain

1

2
√

β(t− ts)

[

A0(τ) +A2(τ)
]

+A3(τ)

≤ (2γ + σ−1ν)N (τ) +
σγd+ dν

2

8β(t− ts)
+

(

c∗0 + c∗2 +
dν
4 + βλν

2

β(t− ts)

)

〈ϕ〉.

By our assumption, ν ≤ σγ. Thus,

M(τ) ≥− 2K0 + σγd+ dν
2

8β(t− ts)
− (Y (τ)− c)∂τµ(τ)

−
(

c∗0 + c∗2 +
dν
4 + βλν

2

β(t− ts)

)

〈ϕ〉.

Set c∗ =
2K0+σγd+ dν

2
8 . Recalling that ∂τµ(τ) =

K
β(t−ts)

and fixing K by K = c∗0 + c∗2 +
dν
4 + βλν

2 , we

conclude that

M(τ) ≥ c

2

K − 2
c c

∗

β(t− ts)
+

(

c

2
− Y (τ)− 〈ϕ〉

)

K

β(t− ts)
.

Now,

〈ϕ〉 =
〈

Γ(− log V )
〉

= −
〈

Γ log
[

ǫΓ + U
]〉

−
〈

Γ
〉

log

[

c0(t− ts)
d/2

]

= −Gǫ(τ)− log

[

c0(t− ts)
d/2

]

,

or 〈ϕ〉 = −Y (τ) + d
2 log

t−τ
t−ts

− log c0, and so −Y (τ)− 〈ϕ〉 ≥ log c0 ≥ log (4πc4)d/2

2eĉ3
− 1

4c4
. To end the

proof, it remains to select c sufficiently large. �

We now return to (∗). Recall that γ = 1/8. Since N ≥ σN1,N1 :=
〈

Γ|∇ log V |2
〉

, Lemma yields

∂τ
(

eµ(τ)(Y (τ)− c)
)−1 ≥ σ

2
N1(τ)e

−µ(τ)(Y (τ)− c)−2. (∗∗)

By the Spectral gap inequality,

N1 ≥
1

2β(t− ts)

〈

Γ| log V − 〈Γ log V 〉|2
〉

=
1

2β(t− ts)

〈

Γ| log
[

ǫΓ + U
]

− 〈Γ log
[

ǫΓ + U
]

〉|2
〉

≡ 1

2β(t− ts)

〈

Γ| log
[

ǫΓ + U
]

−Gǫ|2
〉

.

Note that 1
2 |o− ·|2 ≤ |z − ·|2 + |o− z|2. Clearly, 1

t−ts
≤ 1

t−τ ≤ 2
t−ts

and |z − o| ≤ √
t− ts combined

imply that − |z−·|2
4c4(t−τ) ≤ − |o−·|2

8c4(t−ts)
+ |o−z|2

2c4(t−ts)
, and hence

kc4(t, z; τ, ·) ≤ 2
d
2 e

1
2c4 k2c4(t, o; ts, ·).
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Therefore, by (UGBu), U ≤ ĉ3kc4(t, z; τ, ·) and β = 2c4,

Γ ≥ CU, C−1 = ĉ32
de

1
β ,

N1 ≥
C

2β(t− ts)

〈

U | log
[

ǫΓ + U
]

−Gǫ|2
〉

,

and so, by 〈U〉 = 1,

N1 ≥
C

2β(t− ts)

〈

U | log
[

ǫΓ + U
]

−Gǫ|
〉2
.

Now,
〈

U | log
[

ǫΓ + U
]

−Gǫ|
〉

≥
〈

U log
[

ǫΓ + U
]〉

−Gǫ

〈

U
〉

≥
〈

U logU
〉

−Gǫ

〈

U
〉

≥ −Gǫ(τ)− Q̃(t− τ)− C
≡ −Y (τ)− C.

Here we again have used 〈U〉 = 1 and the Nash entropy estimate −
〈

U logU
〉

≤ Q̃(t− τ) + C. (We

note that this simple estimate requires a proof: use e
Q
d ≤ CM , see Claim 6 in Section 3.2 and, by

(UGBu∗), M ≤ C
√
t− ts.)

Case (a): For all τ ∈
[

ts,
t+ts
2

]

,

−Y (τ)− c− 2C ≥ 0.

Here c is from (∗∗). Then −Y (τ)− C ≥ 1
2(−Y (τ) + c) > C > 0 and hence

N1(τ) ≥
C

8β(t− ts)

(

− Y (τ) + c
)2
.

Thus, by (∗∗),
(

c− Y (ts)
)−1 ≥ σC

16(t − ts)
e−µ(ts)

∫ (t+ts)/2

ts

e−µ(τ)dτ ≥ σCe3K/(4β)

16(t − s)

∫ (t+ts)/2

ts

dτ,

and so

c− Y (ts) ≤
32

σCe3K/(4β)
≤ 2d+5ĉ3

σ
,

or Gǫ(ts) ≥ −Q̃(t− ts) + c− 2d+5ĉ3
σ .

Case (b): For some τ ∈
[

ts,
t+ts
2

]

,

−Y (τ)− c− 2C < 0.

By (∗∗),
(

eµ(τ)(Y (τ)− c)
)−1 ≥

(

eµ(ts)(Y (ts)− c)
)−1

,

or

c− Y (ts) ≤ eµ(τ)−µ(ts)(c− Y (τ)).

Therefore,

c− Y (ts) ≤ eµ(τ)−µ(ts)2(c+ C) ≤ e
K
4β 2(c+ C),

or Gǫ(ts) ≥ −Q̃(t− ts) + c− e
K
4β 2(c + C). �
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7.2. G-bound for −∇ · a · ∇+∇ · b. Set Λ∗ = A+∇ · b, A = −∇ · a · ∇. Let u∗(t, x; s, y) denote
the heat kernel of Λ∗. By Theorem 2B, by duality, u∗(t, x; s, y) satisfies the Gaussian upper bound

u∗(t, x; s, y) ≤ ĉ3kc4(t− s;x− y), 0 < t− s ≤ 1, (UGBu∗)

for generic constants ĉ3, c4.

The next proposition is valid under weaker assumptions than those in Theorem 3B, that is, it

suffices to assume (UGBu∗) and

‖(div b+)
1
2 f‖22 ≤ ν‖∇f‖22 + λν‖f‖22, f ∈W 1,2.

Proposition 8. Let β and C be (generic) constants defined in Proposition 7. Set o = x+y
2 ,

x, y ∈ Rd, ts =
t+s
2 . Then

G(ts) := 〈kβ(ts − s, o− ·) log u∗(ts, ·; s, z) ≥ −Q̃(ts − s)− C, z ∈ B(o,
√
ts − s).

Proof. The proof repeats the proof of Proposition 7, except that we have to deal with the positive

part div b+ of the divergence of b. �

Armed with Propositions 7 and 8, we can repeat the argument in Sections 6.3 and 6.4, using

the assumption div b ∈ Kd
ν . This ends the proof of Theorem 3B.

Appendix A. Extrapolation Theorem

Theorem 9 (T. Coulhon-Y.Raynaud). Let U t,s : L1∩L∞ → L1+L∞ be a two-parameter evolution

family of operators:

U t,s = U t,τU τ,s, 0 ≤ s < τ < t ≤ ∞.

Suppose that, for some 1 ≤ p < q < r ≤ ∞, ν > 0, M1 and M2, the inequalities

‖U t,sf‖p ≤M1‖f‖p and ‖U t,sf‖r ≤M2(t− s)−ν‖f‖q
are valid for all (t, s) and f ∈ L1 ∩ L∞. Then

‖U t,sf‖r ≤M(t− s)−ν/(1−β)‖f‖p,

where β = r
q
q−p
r−p and M = 2ν/(1−β)2M1M

1/(1−β)
2 .

For the proof see e.g. [KiS2, Appendix F].
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Mem.Acc. Sci. Torino 3 (1957), 25-43.

[FS] E. B. Fabes and D.W. Stroock, “A new proof of Moser’s parabolic Harnack inequality via the old ideas of Nash”,

Arch. Ratl. Mech. and Anal. 96 (1986), 327-338.

[FK] P. J. Fitzsimmons, K.Kuwae, “Non-symmetric perturbations of symmetric Dirichlet forms”, J. Funct. Anal. 208

(2004) 140-162.



PARABOLIC EQUATIONS WITH SINGULAR (FORM-BOUNDED) VECTOR FIELDS 37

[HS] I. Herbst, A. Sloan, “Perturbation of translation invariant positivity preserving semigroups on L
2(Rn)”, Trans.

Amer. Math. Soc. 236 (1978), 325-360.

[KiS] D.Kinzebulatov and Yu.A. Semënov, “Kolmogorov operator with the vector field in Nash class”, Preprint,

arXiv:2012.02843 (2020).

[KiS2] D.Kinzebulatov and Yu.A. Semënov, “On the theory of the Kolmogorov operator in the spaces Lp and C∞”,

Ann. Sc. Norm. Sup. Pisa (5) 21 (2020), 1573-1647.

[LZ] V.Liskevich and Q. S. Zhang, “Extra regularity for parabolic equations with drift terms”, Manuscripta Math.

113 (2004), 191-209.

[MeSS] G.Metafune, M. Sobajima and C. Spina, “Kernel estimates for elliptic operators with second order discon-

tinuous coefficients”, J. Evol. Equ. 17 (2017), p. 485-522.

[MeNS] G.Metafune, L.Negro and C. Spina, “Sharp kernel estimates for elliptic operators with second-order discon-

tinuous coefficients”, J. Evol. Equ. 18 (2018), p. 467-514.
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