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HEAT KERNEL BOUNDS FOR PARABOLIC EQUATIONS WITH SINGULAR
(FORM-BOUNDED) VECTOR FIELDS

D.KINZEBULATOV AND YU. A. SEMENOV

ABSTRACT. We consider Kolmogorov operator —V -a-V +b-V with measurable uniformly elliptic
matrix a and prove Gaussian lower and upper bounds on its heat kernel under minimal assumptions
on the vector field b and its divergence divb. More precisely, we prove:

(1) Gaussian lower bound, provided that divb > 0, and b is in the class of form-bounded vector
fields (containing e.g.the class L%, the weak L% class, as well as some vector fields that are not
even in leots, € > 0); in these assumptions, the Gaussian upper bound is in general invalid,

(2) Gaussian upper bound, provided that b is form-bounded, and the positive part of div b is in
the Kato class; in these assumptions, the Gaussian lower bound is in general invalid;

(3) Gaussian upper and lower bounds, provided that b is form-bounded, divb is in the Kato
class;

(4) A priori Gaussian upper and lower bounds, provided that b is in a large class containing the
class of form-bounded vector fields, div b is in the Kato class.

1. INTRODUCTION AND MAIN RESULTS

1. The subject of this paper is Gaussian lower and upper bounds on the heat kernel u(t, z;s,y),

t > s, of the parabolic equation
(O —Va-a-Vo+b-Vo)ult,z) =0 on [0,00[xR%, d > 3, (1)

a=a":R¢Y> RIQRY, (H,c)

ol <a(x) <& forae x€R?  for constants 0 < o < & < o0, o

under general assumptions on

d
b=(b)l, R >R and divb=> Vb
i=1
that admit critical-order singularities.

The problem of existence of sharp elementary bounds on the heat kernel of the parabolic equation
(), and the ensuing regularity properties of the heat kernel, have been studied for several decades,
with the principal breakthrough due to E.De Giorgi [DG] and J.Nash [N] who treated the case
b= 0. D.G. Aronson [A] established a two-sided Gaussian bound on u of () in the case b = by + by
with |b1] € LP, p > d and by € L. It was demonstrated in [S, [KiS], that the Gaussian bounds on

u depend, in fact, on a much finer integral characteristics of b than ||b1||p, p > d and ||b2]|c, that

2+¢
loc

given € > 0. This line of research is motivated, in particular, by the desire to find the quantitative

is, on the Nash norm of b, which allows to treat vector fields that may not even be in Ly "¢ for a
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relationship between the integral characteristics of a, b and the regularity properties of u. Another
motivation for studying discontinuous a and singular (i.e.locally unbounded) b comes from physical
applications. These applications make relevant assumptions on the integral properties of divb. In
presence of such assumptions, as is well known, one should be able to treat considerably more
singular b. This is the subject of this paper. More precisely, below we show that the heat kernel
of () satisfies:

1) a Gaussian lower bound, provided that

b € Fs (the class of form-bounded vector fields, see below)  for some § €]0, 40?|

and
divb >0

(let us note that in general a Gaussian upper bound is not valid under these assumptions);

2) a Gaussian upper bound, provided that b € Fs for some § < oo, and
(divb); € K¢ (the Kato class, see below)  for v sufficiently small
(in general, there is no Gaussian lower bound under these assumptions);
3) two-sided Gaussian bound, provided that
beFs for some d < oo,

and
divb € K¢ for v sufficiently small.

4) a priori two-sided Gaussian bound, provided that
b € MF;s (the multiplicative class of form-bounded vector fields, see below)
for some ¢ < 0o, and divb € K¢ with v sufficiently small.

The closest to ours results were obtained in the case a = I in [LZ], see detailed comparison
below. It should be added that in the case divb = 0 one can relax the assumptions on b even
further (although then the corresponding bounds become, in general, non-Gaussian), see [Z1]. See
also |22, QX [QX2].

In what follows, LP = LP(R?, dx), L} = LP

loc loc

(R, dz).
Definition. A vector field b : R? — R is said to be form-bounded if |b| € L . and there exist
constants ¢ > 0 and ¢(d) > 0 such that

IbA1I3 < SIVfIZ +c@)IFIZ,  fewh? =W RY)

or, shortly,

|b]2 < 6(—A) + ¢(6) (in the sense of quadratic forms)
A)).

Definition. A vector field b : R4 — R? is in the multiplicative class of form-bounded vector fields
if |b] € Ll and there exist constants § > 0 and ¢(J) > 0 such that

[(bf, )] < 5\/\|Vf\|§ + O3l fewh?

(written as b € Fs = Fs(—

(written as b € MFy).
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Here and below,

)= [ fde. (fg) = (f).

Definition. A potential V € LllOC is said to be in the Kato class if there exist constants v > 0 and
A= A(v) > 0 such that
I =) V][loo < v

(written as V € K%).
We first comment on the classes K¢ and Fs. Both classes have been studied in the literature. The

class K¢ was introduced in 1961 by M.S. Birman [B] Sect. 2] as an elementary sufficient condition
for the form-boundedness:

if V= [b? € K¢, then b € F.
Indeed, let f € L?, then

1A —A)"2Vzf|3

Vaif, (A= A)VEf)

v%<x><>[< Ay, 2)] 2 (A= A) )] 2 VE () F))a )y
)V @I F)P)ady])? [0 = A) @)V @) @)2)):]

ik <A A) V) < (= A) Vsl £13.

Let us mention some examples.
fVelP4+L>® p> %l, then V € K% with arbitrarily small v. For every e > 0 there exist
d 1+
V € K¢ such that V ¢ L, '°.
If

{
({(A

IN

{
{
[
{

b| € L4 + L™,

then b € Fs with 0 that can be chosen arbitrarily small (via the Sobolev Embedding Theorem).
The class F; also contains vector fields having critical-order singularities, e.g.

b(z) = i

\x! 2z € Fs with ¢(6) =0

(by the Hardy inequality %Hkﬂrlf\@ < |IV£I3, f € Wh2). More generally, F5 contains vector
fields b with |b| in the weak L space, the Campanato-Morrey class, the Chang-Wilson-Wolff class.
We refer to [KiS2, Sect. 4] for more examples of form-bounded vector fields and a detailed discussion
of class F.

The class MFy is the largest. It contains the class of weakly form-bounded fields F%, which
consists of the vector fields b such that |b| € L{_ and, for some A = A(§) > 0,

H|b|%f||§ <N — A)ifH%, fe Wz (the Bessel potential space).

(The class F% provides WH%’p -regularity theory for the operator —A+b-V for p large and ¢ > p,
see [KiS2] for details.) Indeed, for f € Wh2,

b, 1) < (bIf, £) < 6N = A)2f, ) < 8ll(h — A)2 Fllallfl2
= S\/IIV A3 + A FI311£ -
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1 1
Note that, by interpolation, Fs C F§, furthermore, there exist b € F§ such that [b| ¢ Lllota, e>0
(and so these vector fields are in MFgs). Another example is: if

b=V, (in the sense of distributions) where f : R? — R%, |f| € L™,

then, using the integration by parts, one has b € MF;s with 0 = 2||f||, ¢(d) = 0.
The class MF;s (with [b| in the LHS) was introduced in [S2] as a class providing two-sided
Gaussian bound on the heat kernel of =V -a -V +b-V in the case divb = 0.

2. First, we will establish a priori bounds on the heat kernel of —V -a -V + b -V, i.e. assuming
additionally that a, b are C'° smooth, |b| and div b are bounded. These bounds depend only on the
dimension d, the ellipticity constants o, £, the form-bound 6 of b (or the multiplicative form-bound
 of b) and the Kato relative bound v of div b, but not on the smoothness of a, b.

To treat general measurable a € (H,¢) and b € Fs with divb € K¢, we fix the following smooth
approximations of a, b. Set

ae, = LB a, €1 >0,

where E.f := e*2 f (¢ > 0), the De Giorgi mollifier of f. Tt is easily seen that a., are C* smooth
and belong to (H, ) for all €1 > 0. We define

b, := E.b.

In Section [3.6] we show that the vector fields b. € [L>°]?, C°° smooth and are in Fs with the same
¢(0). (The proof of an analogous result for b € MFy is given in Section[Bl) Moreover, if divb € K¢,
then, for all € > 0, divb. € L, C*° smooth and

divb, = (divd). € K¢

with the same A = A(v), see Section L.l This choice of a regular approximation of b is dictated
by the need to control both b, and div b, at the same time. (A straightforward approach of using
cut-off functions to construct b. leads to, generally speaking, loss of control over the Kato relative
bound of divb.. On the other hand, since b € Fs does not entail |b| € L? + L, the fact that
b. defined as above are bounded requires justification. A careful choice of appropriate smooth
approximation of b is needed even if a = 1.

In what follows, we put

Acye:=—V-a, -V+b-V
with domain D(A;, ) = W?P for p that will be clear from the context.

3. We now state the main results of this paper in detail. Put

lz—y|?
ku(t,,y) = k(ut,x,y) = (dmpat) " 2e” i, >0,
Theorem 1 (Lower bound). Let d > 3. Assume that b € Fs = Fs(—A) for some 0 < § < 402,
and

divb >0 (in the sense of tempered distributions).

Then, for each p 6]2_\/%, oo, the limit

s-LP-lim lim e *e1<

locall ; ly int >
i lim (locally uniformly in t > 0)
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exists and determines in LP a positivity preserving L -contraction, quasi contraction Cy semigroup,
say, e ™. The operator A is an appropriate operator realization of the formal operator —V - a -
V+b-Vin LP.

The semigroup e~ is a semigroup of integral operators. Its integral kernel u(t,z;s,y) =
e~ =3\ (z ) (= the heat kernel of A) satisfies the Gaussian lower bound

Crkey (t — 832 — y)e™ 0= <t z;s,y) (LGB)

tA

for a.e.z,y € R and 0 < s < t < 0o, with constants cg >0 and ¢; > 0 (i = 1,2) that depend only
of d,0,&,0,c(5). If ¢(6) =0 then ¢y = 0.

Remark. 1. In Theorem[I] the Gaussian lower bound holds without any integrability assumptions
on div b, while the Gaussian upper bound is invalid. To the best of our knowledge, this is the first
result of this type.

2. Let us illustrate the fact that in the assumptions of Theorem [Ilthe heat kernel in general does
not satisfy a Gaussian upper bound. Let u(t,z;s,y) be the heat kernel of the operator —A +b-V
with b(z) = \/3%|:17|_2:17 € Fy, so divb = \/S@M_z is positive. If § < 4, then u(t,x;s,y)
satisfies the two-sided bound

Crke,(t — s;x — y)pi—s(y) < ult,x;s,y) < cgke,(t — 532 — y)i—s(y),

where a positive singular weight ¢; € C?(R? — {0}) is uniformly bounded away from zero on R?
and satisfies

i) = [ty 7T for [y <2, >0,
see [MeSS| [MeNS], see also [MS, Sect. 4].

Set
divby :=0Vvdivd, divb_ :=divby —divb.
In the next theorem we relax the assumptions “divb_ = 0” and “6 < 402" of Theorem [I, but
impose a condition on divby.

Theorem 2A (Upper bound). Let d > 3. Assume that
(1) b € Fs for some 6 < 0.
(2) divb_ € LL _ and e**divb_ € L™ for each ¢ > 0.
(3) divb, € K¢ for some small v dependent on d, o, &, 6.
Then the limit

_tAsl »E

s-L%-lim lim e (locally uniformly in t > 0),

el0 €1]0
exists and determines a positivity preserving L°°-contraction, quasi bounded Cy semigroup of inte-
gral operators, say, e M. Its integral kernel u(t, x; s,y) satisfies the Gaussian upper bound

u(t, x;8,y) < cske, (t — 532 — y)e> =) (UGB)

for a.e.z,y € R* and 0 < s < t < 0o, with constants c3,cs dependent on d,o0,&,6,v and c5 on
c(0),\(v). If ¢(6) = A(v) =0, then c5 = 0.

Remark. 1. In the assumptions of Theorem 2A, the heat kernel in general does not satisfy
a Gaussian lower bound. For instance, the heat kernel u(t,z;s,y) of —A —b -V with b(z) =
\/g%m_% € Fy satisfies

clkcz (t — ST — y)wt—s(y) S U(t, x;s, y) S C3kC4 (t — ST — y)wt—s(y)
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with positive bounded weight 1;(y) that vanishes at y = 0, see [MeSS|, [MeNS].

2. One can provide a number of sufficient conditions for the assumption “e2divb_ € L
for each € > 0” to hold. For example, this assumption is satisfied if divb_ € L' + L>® or if
1pe(o,r)div b is form-bounded

(Lgeo,mydivh, |f1*) < w(IVf?) + (s, R)(IfI?), fe W' for some k, R < oo,

where B°(0, R) := R? — B(0,R). (Indeed, we represent divb_ = 1po,r)divb_ + 1ge(o,r)divh_,
where the first term is in L' and so clearly eaAlB(()ﬂ) divb_ € L®NC*, while eaAch(()’R) divb_ €
L>° N C* by repeating the proof of Claim [13] below.)

Theorem 2B (Upper bound). Let d > 3. Assume that
(1) b € MF; for some § < oo.
(2) divb_ € Ll and e#*divb_ € L™ for each ¢ > 0.

(3) divby € K¢ for some small v dependent on d, o, &, 6.
Then ue, £(t,x;8,y) = e~t=s)Aere (1)) satisfy, for all e, € > 0, the Gaussian upper bound

Ua17e(ta Z5s, y) < C3k04(t — 8T — y)ecs(t_s) (UGB’)

for a.e.z,y € R and 0 < s < t < 0o, with constants c3,cq dependent on d,o,¢,0,v and c5 on
c(0), \(v) (but not on e1, €). If ¢(6) = A(v) =0, then c5 = 0.

Armed with the upper bound (UGB)), one can construct a limiting heat kernel using a standard
argument appealing to the weak compactness in the space of measures and the Radon-Nikodym
Theorem. If a = I, the semigroups converge strongly in L? as in Theorem 2A (following closely
the corresponding part of the proof of Theorem 2A).

In the next theorem we impose a more restrictive condition on div b_ than in Theorem 2A.

Theorem 3A (Two-sided bound). Let d > 3. Assume that
(1) b €Fs for some § < co.
(2) |divb| € K& for some small v dependent on d,o,€, 9.
Then the heat kernel u(t,x; s,y) satisfies the two-sided Gaussian bound

Crkiey (t — 532 — y)e™ ™) <t w35,y) < eake, (t — 552 — y)e® )
for a.e.z,y € R and 0 < s < t < 0o, with constants ¢; > 0 (i = 1,2,3,4) dependent on d,o,¢,8,v
and ¢y, c5 on c(8), \(v). If ¢(0) = A(v) =0, then ¢ = ¢5 = 0.

Corollary 1. In the assumptions of Theorem 3A the following is true.

(i) For every f € L?, v(t,-) := e " f(-) is Hélder continuous (possibly after redefinition on a
measure zero set in R x R?), i.e. for every 0 < a < 1 there exist constants C < oo and 3 €]0, 1]
such that for all z€ R%, s > R2, 0 < R< 1

t—t)2 + |z —a'|\”
0(0.0) = (0.2 < Clloleo e ey {22 )
for all (t,x), (t',2") € [s — (1 — a®)R%, 5] x B(z,(1 — a)R).
Furthermore, if v > 0, then it satisfies the Harnack inequality: Let 0 < o < 8 < 1, then there
exists a constant K = K(d,0,£,6,v,a, ) < oo such that for all (s,x) €]R?,00[xR?%, 0 < R <1
one has

v(t,y) < Kv(s,x)



PARABOLIC EQUATIONS WITH SINGULAR (FORM-BOUNDED) VECTOR. FIELDS 7
for all (t,y) € [s — BR?, s — a’*R* x B(z,0R).
(i) The conservation of probability property:

(u(t,z;s,)y =1 forallx € RY, t > s.

(i)
e_(t_S)AC“f(x) = <u(t,-’1', S, )f()>7 t>s, f = Cu

is a Feller semigroup on Cy, the space of bounded uniformly continuous functions on R?.

We first establish (i) for v., (¢, 2) = e~**¢1¢ f(x), then apply the Arzela-Ascoli Theorem and
use the convergence e~ = s-L2- lim, ¢ lim,, o e~there In turn, the proof of (7) for v, o repeats
the argument in [F'S, Sect. 3], which appeals to the ideas of E.De Giorgi [DG] and uses (LGBJ),
(UGHI). The proof of (ii) and (iii) is a standard consequence of (UGBI), the approximation result

and the Holder continuity of bounded solutions in (7).

Theorem 3B (Two-sided bound). Let d > 3. Assume that

(1) b € MF; for some 6 < oo.

(2) |divd| € K¢ for some small v dependent on d,o, &, 6.

Then the heat kernel uc, -(t,x;s,y) = e~ (t=8)Acy < (x,y) satisfies, for all e1, € > 0, the two-sided
Gaussian bound

c1ke, (t — 8T — y)e—cg(t—s) < uEl,a(ta z;s, y) < C3k04(t — 5T = y)ecs(t_s)'
for a.e.z,y € R and 0 < s < t < 0o, with constants ¢; > 0 (i = 1,2,3,4) dependent on d,o,¢,8,v
and cg,cs5 on c(6), \(v) (but not on g1, ). If ¢(0) = AN(v) =0, then ¢y = ¢5 = 0.

In the assumptions of Theorem 3B an a priori analogue of Corollary [Il holds (i.e. with constants
independent of £1, €).

Remark 1. The proofs of heat kernel bounds in Theorems [, 2A (at least at the a priori level)
can be extended, with minimal changes, to time-dependent coefficients. That is, let

a=a":[0,00[xR? = RI@R?Y ol <alt,z) <& for ae. (t,z) € [0, 00[xRY;

we replace Fs by the class of time-dependent form-bounded vector fields b : [0, 00[xR? — R,
ie. |b| € L2 ([0, 00[xR?) and there exists a constant § > 0 such that

loc
| sz <s [ e [T ool
for some g = gs satisfying fst g(7T)dr < cs4/t — s (to obtain global in time bounds), for all f €
Ll ([0, 00[, W12); the Kato class condition in Theorem 2A is replaced with its time-dependent

counterpart, see [Z3]. Moreover, Theorem 2B also admits extension to time-dependent coefficients:

o

[ 10050, s0)d <5 [T IO @lkae+ [ 0150 B
0 0 0

for all f € LL ([0, 00, W1?) for some constant § and a function g satisfying the same assumptions

as above.
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4. Existing results. In [LZ] the authors constructed a weak heat kernel for —A +b-V satisfying
Gaussian upper or lower bound under the following assumptions:

a) For the Gaussian upper bound: b € Fs for some 0 < § < oo, divb; € K¢ for v sufficiently
small, and |div b| is form-bounded,

([divbl, [f*) < k(VF?) +e(w)(f17),  few™?, (%)

with form-bound x < 2.
We emphasize that according to our Theorem 2A, even in the special case a = I, the Gaussian
upper bound on the heat kernel e *(z,y) is valid without the extra condition ().

b) For the Gaussian lower bound: b € F;s for some 0 < § < oo and divb = 0.

By Theorem [Il even in the case a = I, their condition “divb = 07 is relaxed to “divb > 07
albeit at expense of requiring § < 402.

c¢) They also proved the Gaussian lower bound on the heat kernel of —A + b -V defined via the
Cameron-Martin-Girsanov formula, assuming that

b2 € K§ and be K (= (A — A)72[b]o0 < v)

with some § < 00, ¢(d) > 0, and v < 0o, A = A(v) > 0, thus refining the result in [Z4] where the
two-sided Gaussian bound on the heat kernel of —A + b -V is proved assuming only b € Kd4+!
but with sufficiently small v (in this regard, see also [KiS]). Concerning semigroups defined via
Cameron-Martin-Girsanov formula, see [FK]J.

5. On the proof of Theorem [Il We first establish a priori Gaussian lower bound, i.e. for smooth
a, b. The proof is based on the method of J. Nash |[N| and its development in [S]. The required a
posteriori Gaussian lower bound then follows using approximation results in [KiS2].

6. On the proof of Theorem 2A. First, we establish Gaussian upper bound on the heat kernel
of the auxiliary operator
H"=-V-.a, -V+b-V+Edivby

using only E.divb, € L™ for every ¢ > 0 (rather than stronger condition divb, € K%), see
Theorem Bl The proof uses J. Moser’s iterations. Then the Gaussian upper bound on the heat
kernel of A;, . = =V -a., - V + b, - V follows using the Duhamel formula, by considering A., . as
H™ perturbed by the potential —FE.divb, € KCVl7 see Theorem [6l Finally, we obtain the required
(a posteriori) upper bound on the heat kernel of A = —V -a -V +b-V by passing to the limit in
€14 0 and then in € | 0 (Proposition ).

7. On the proof of Theorem 2B. The proof is obtained by modifying the proof of Theorem
2A, which amounts to estimating differently one term in the proof of the a priori upper bound of
Theorem 2A.

8. On the proof of Theorem 3A. The Gaussian upper bound follows from Theorem 2A, so we
only need to prove the Gaussian lower bound. First, we establish the lower bound on the heat
kernel of the auxiliary operator

H =-V-a, -V+b -V - Edivb_

using only E.divb_ € L™ for every ¢ > 0 (rather than divb_ € K%), see Theorem [7l The proof of
the auxiliary lower bound of Theorem [7lis obtained by modifying the proof of Theorem [II (Nash’s
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method) to take advantage of the (a priori) Gaussian upper bound established in Theorem[6l Now,
the lower bound on the heat kernel of A, . = =V -a., - V + b, - V follows by considering A., . as
H~ perturbed by E.divb_ € K,‘f, and appealing to a pointwise inequality between the heat kernels
of A¢, e, H™ and HI; =—-V-as - V+b.-V—p'E.divb_, p > 2. The required (a posteriori) lower
bound on the heat kernel of A = =V -a -V + b -V follows using Proposition [

9. On the proof of Theorem 3B. The Gaussian upper bound follows from Theorem 2B. To
prove the Gaussian lower bound, we work with rather sophisticated regularization of Nash’s G-
functions, as in [S2]. Once the bounds on the G-functions are established, we argue as in the proof
of Theorem 3A.
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2. PRELIMINARIES

The following class of vector fields b arises naturally in the study of operator —V-a-V +b- V.

Let a € (Hy¢). Let A be the self-adjoint operator associated with the Dirichlet form t[u,v] =
(a-Vu,Vv), u, v € Wh2,

Given a vector field b : R? — R%, we set by := =Vb- a1 -b.

Definition. A vector field b : RY — R? is said to be A-form-bounded if |b| € L? _ and there exist
constants ¢, > 0 and ¢(d,) > 0 such that

1bafll3 < 8all A2 I3+ () |13, f € D(AZ) = W2,

or, shortly,
ba|*> < 3, A+ ¢(6,) (in the sense of quadratic forms).

(written as b € Fy, (A4)).

It is easily seen that

beFs=Fs5(—A) = beEFs (A), d,=0 2.

3. PrROOF OF THEOREM [I]
Since b € Fs = F5(—A), § < 402, we have
beFs5,(A), d,<4.
First, we assume that a € (H,¢) and b are smooth, b is bounded.

Definition 1. A constant is said to be generic if it only depends on the dimension d, the ellipticity
constants o, £, the form-bound ¢, and the constant ¢(d,).

The integral bound, the bounds on Nash’s moment, entropy and the first (i.e. G’—) function
contained in Sections B.IH3.3] which we use to prove the lower bound, appeared in [S2] although
there they were used for different purposes. Since they also play a crucial role in what follows, we
include their proofs.

3.1. Integral bound on the heat kernel of -V -a-V +b-V for b € Fs,(A), do < 4. Set
A=A+b-V, A=-V-a-V.

Let U* denote the solution of
—%Ut’sf:AUtvsf , 0<s<t< oo
0< felL'nL®

in LP = LP(RY), p € [1, oq].

. J7t,8 _ 2
Set u(t) := U"® f. We have, for p € [p., o[, p. = oy
d -1
(5 + Mult), u(t)™) =0.
Setting v := u?/2, w := (v?) = ||u(t,-)||h, J := ||AY?v||3, we have by quadratic estimates,
d 2
V= 2(]7\\141/2’0\\3 +(Vo,bv)), p'=p/(p—1),
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(Vo,b0)] < (b-a~" - bo, )12 A2y | Y2
< (80 + c(a)w)V/ 21/
(we are using b € Fy_ (A))

< V6 + (2v/0,) 7

——w > 4epJ — c(0g)w.

dt

1
5 1
From (x) we obtain —%w > ——=c(0o)w, w(t) < w(s)eﬁC(%)(t—S)’ or

(%a) —
H’LL(t, )Hp < ||U( )Hpep \/E( s)‘
In particular,
[u(t, oo < lluls, )lloo-

Using the Nash inequality
dy 1—4/d
V913 = ewllwlly ™l

11

we obtain from (x) with p = 2p., and so ¢, = i,

d _

g > cgw1+2/deH1 4l _ 612 ¢(8,)w, cg = 20CNpL
Therefore dd
Ea(w—2/d) > chu”;C4pc/d - 5;1/26((5(1)10_2/[1.

This inequality is linear with respect to ¢ = w=2/¢. Thus setting p(t) = ZC\(/‘S—) (t — s), we have,
using (%),

2 (#000) = L2ty 27

dr ~—d pe

2c _u(r
> 20 (s, )00,
u(t) 2¢q 4dpc/d ' —p(r)
e p(t) > 7”“( M. e dr
> —=|lu(s, -)||gc4pc/de_”(t) (t —s), and so

d/4p c(da)(t—s) _g(i_ 1 )
[ut, )ll2p. < (d/(2cg)) o€ vevBa (t —s) 2 pe 20/ ||u(s, -)|p, -
Applying the Coulhon-Raynaud Extrapolation Lemma (Appendix [A]) to

€795 utt, gy, < (@/(2eg)) (= 58 G2 [T a0,
and
He Pm/@ u(t H < He pcm u(s, )Hoo’

which is an immediate consequence of the inequalities (x.) and (*p), we obtain

c(3a)(t=3) 4
[ut, oo < ce rev@a (¢t —s) 2 |u(s, )|l VP € [pe, o0

with a generic constant ¢ (although it does not depend on &).

(c)
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From (xx) we immediately obtain the following integral bound on the heat kernel u(¢, z;s,y) of
A (= the integral kernel of U%*):

’ ’ M __d
sup (uf (t,z;8,-)) < Pe revia (t—s) 20-D Vp€E [pe, o0, 0<s<t<oo. (o)
r€ER?

3.2. Bounds on Nash’s moment and entropy. Our assumptions on b are as in Section 311

In this section we assume 0 < ¢t —s < 1. (Let us note that if ¢(d,) = 0, then we can work over
0<s<t<o0.)

Following J. Nash, define the entropy

Q(S) = Q(87 t, 33‘) = —<U(t, Z;s, ) log U(t, z;s, )>
and the moment
M(S) = M(Sv t, .Z') = <‘.Z' - ‘U(t, T;s, )>

The dynamic equation %u(t, x;8,+) = N*u(t,z;s,-) (where A* = A —V -b) and the conservation
law (u(t,x;s,-)) =1 yield

_%Q(S) = N(s) + () - Voult, 3s,-)) = <Vu- % : Vu> + (b V).

Proposition 1. There exist generic constants Cy,cq > 0 such that, for allz € R* and 0 < t—s <

17
Q(s) = Q(t — 5)| < Cy, (NEE)
c_\Vt—5< M(s) < civt—s, (NMB)

where Q(7) == $log 7.
Proof of Proposition [1. We will repeatedly use (u(t,z;s,-)) =1 and (@).

Claim 1. Q(s) > Q(t — s) — Cp, where Cp, = (p. — 1)logé, ¢ the constant from (@).

Proof of Claim[1 By Jensen’s inequality and (@) for r = p,,
Q(s) = —(r— 1)<ulogur_i1>
> —(r—1)log <u’",(t,:17; s, )>

> —(r—1)log (e(t — s)_ﬁ).

Claim 2. N(s) < pe( — Q'(s) + c(d2)//3a), where Q'(s) = LQ(s).
Proof of Claim@. Clearly, N'(s) = —Q'(s) — (b- Vu), and
[(b-Vu)| < (b-a=" - bu)' PN/
< (BN 4 (o)) PN

< \/WW + C(éa)/\/a~
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Claim 3.

c t 1/2
M(s) < \/5{\/2—1%(1 + \/5a/4)\4/m[ f/‘;ﬁm_/ \/t_—TQ/(T)dT]
VT Selb) .

Proof of Claim[3. Clearly,
M(s) = ~(a — A" (Jult, 235, )
—(V|x —-|-a-Vu) — (V|x — |, bu)

1/2
T 12 4 ip.g b p)V/2).
< ) ey

x — |z — -

By a < &I, (u)=1and (b-a~' - bu) < 2N +c(4,),
—M'(s) < \/E[/\fl/2 + (ZaN + c(aa))l/z]
<\/[1+\/ TONY2(s) + /(o }

SinceM(t)annd0<t—s<1

M(s) < \/E (1+ /04 / (Vt—=TN(r ))1/2\/%“15—5) c(5a)]

gﬂ_(HM)( t\/_>l/2</ Vit —TN( )dT>l/2+M(c(5a))1/2]

- 1/2
= Ve[ VEmVadS( [ Vi) V).

By Claim [
/ AN () < e / t (\/gcwa) VI ) )ir
<pe( L=t - | t VI () ).
O
Claim 4.

/ VE=TQ'(T)dT <Vt —5(Q(s) — Q(t — 8) + Cp, + d).
Claim [ follows easily from Claim [I] using integration by parts.

Claim 5.

(Kl\/Q Qt — 8) + Cp, +d + Ka(c(d, ))1/2)\/m,

where K1 = \/2p.(1 + \/04/4) and K2—1—|—\/—

Claim [Blis a simple corollary of Claim Bl and Claim [l
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Claim 6. There is a constant c¢(d) < oo such that
QD < e(d)M(s).

Claim [@ follows from (u) = 1 via the inequality ulogu > —pu — e~1=# for all real pu.
Claim [l and Claim [6] combined yield

Claim 7.

e 3lR(9)-QU-9)] < Qc(d)2§<K12 [Q(s) = Q(t — 8) + Cp, +d| + K%C(%))-

Claim [7 implies that, for all 0 < t —s < 1 and all z € R? there is a generic constant C such that

Q(s) — Q(t — s) < C. Taking into account Claim [l Claim Bl and Claim [@ we arrive at (NEE) and

(NMB). 0
3.3. G-bound. In what follows, 0 < t — s < 1. Define Nash’s G-function
G(s) := (kg(t — s,0 — -)logu(t,x;5,-)), o= x—;—y

for all x,y € R? such that 2|z —y| < \/B(t — s), where B > £ is a constant whose value we will be
specified below.

The proof of the next proposition works under more general assumptions than in Theorem [I]
i.e. we may assume that b satisfies the assumptions of Section Bl

Proposition 2. There exist generic constants 5 and C such that

Glty) > —Q(t—t)—C,  t,= t;s.

Proof of Proposition[2. Our proof of the G-bound follows in general Nash’s original proof and
relies on the conservation law, the M-bound proved in Proposition [0l the Spectral gap inequality,
the geometry of the euclidean space (i.e.the rate of growth of the volume of euclidean ball) and
the integral bound (@).

Let ¢ > 0. Set U(s) := u(t,z;s,:) + &, € > 0 and put

G(1) = G.(1) == (kg(t — s,0— ) log U(7)), T € [s,ts].

It suffices to carry out the proof for G. since G(s) = inf.>o Ge(s), Set
3 J,
=14+ 2 )e
=5 (145
Claim 8. For all T € [s,ts] and B > (*

(6 + Qe =) + 3et6) 2 g halt = 5.0 g V) — GOP)

Proof of Claim[8. Let N := (VlogU -al' - VlogU), Ny := (VgD -al' - VlogT), where
I':=kg(t—s,0—"),

the Gaussian density, and let b2 :=b-a~!-b.
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The dynamic equation yields
~G'(1) = - /U = —(T/U, AU) + (T /U, V - bu)
=N —(VI'-a-VliogU) — (b-VI',u/U) + (I'b- Vg U,u/U).

By quadratic inequalities,
(VT -a-ViegU)| < N1/2N(]1/2,

|(b- VT, u/UY| < Ny/*(B21)V/2,

(Tb - Vg U,u/U)| < N2 (B210)1/2,
Therefore,
Q) = N =3 = 2y
=2 90 T g Vat

Note that Ny < &((VI)2/T) = and, since b € Fy, (A),

2ﬁ(t s)’
(BT < 6,(VVT -a-VVT) 4 ¢(8,) < i—a/\/'o + ¢(6q)-
Thus,

/ 1 3 O &d 3
-G'(1) > 5./\/'(7') 1 <1 + Z) BG—s) 56(5a).

Noticing that —% > —t% we have (for g > p* = 3(1 + %ﬂ)g)
/

—(G(T) +Qt—7)) 4+ Zc(dy) > =N

At this point we use the Spectral gap inequality

1
(T|Vy*) > m@w —(Ty)*)

~_
DN | W
l\DI»—\

obtaining

_<G(T)+Q(t—7)> - §c(é) <F\1ogU G(1)?).

- 45(
O

Claim 9. Set ® := |logU(t,x;7,) — G(7)|, T € [s,ts]. Let x denote the indicator of the ball
B(o,\/B(t — s)). There is a generic constant c¢(B) > 0 such that, for any r > pe,

- (G@ +Q(t - ﬂ) +oel0) 2 e(B)(t — )T (yur 2)?

Proof of Claim[9. Clearly, xI' > cg(t —s)~ /2y cg = (47T5)_d/2e_i. Thus
<F¢2> > cp(t — s)_d/2<X(I>2>.
By Holder’s inequality, <X<I>2> > <Xu7’// 2<I>>2 / <u7’/>. By the integral bound (@) in Section B.1],
<u7’/(t,x; T, )> < ¢t — T)_z(T;il),
and by the inequality ¢t — 7 > %,

2—r

<F<I>2> > 2_2(%1) Cgﬁ(t _ s)%r.,l <XUTI/2<I>>2-
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Now Claim [@ with ¢(53) = 0;‘22_ 201 follows from Claim Bl O

Claim 10. Set 6 =1'/2. Then

uf
<Xu0<1>> > <Xu9> —G+0"11og % .

Proof of Claim[10. By the definition of &,

<Xu9<1>> <Xu logU> < 9>G. (%)

1-m

Using the inequality vlogv > —mv — e~ , v >0, m real, we have

<Xu logU) > <Xu logu) > —mb~ < 9>—9_1e_1_m(x>.

()

Putting here —1 — m = log oo it is seen that

0
<Xu9 log U> > 0_1(Xu9> log <Xu >
x)
Substituting the latter in (%) ends the proof. O
Now, if 0 < 6, < 1, then p. = (1 — 1/d,/4)! < 2 and we can take r = 2, in which case we can

proceed directly to Claim In the more interesting case 1 < §, < 4, however, r > p. > 2, and
the next claim plays a crucial role.

Claim 11. Let ¢ be the constant from the integral bound (@) in Section [3 1)
<uTl(t,x;T, D) < et — T)_ﬁ, r>2.
Then, for all T € [s,t],
(a) = (¢ — )1 (xu)
and
(xu’®) > (xu’)[ - G(r) = Q(t = 7) + (r — 1) log (xu) — ],
where ¢ = (2ﬁé)2% and ' = w log ¢ + (T L) log (2w; /d).
Proof of Claim [I1. The first inequality follows from Holder’s inequality

() = ()2 (ur Y BT

because r > 2 and
d(r—2) d(2—r)
5 (t _ s) 4(r—1) Q4(r—1) |

(Y2 5 2

The second inequality follows from the first one, Claim [0 and the equality (x) = wq(B(t —
S))d/2. O

Claim 12. Fiz a 8 > max(8*, (4c;)?), where B* and c, are defined before Claim[8 and in Propo-
sition [0, respectively. Then (xu(t,z;7,-)) > % for all T € [s,1].
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Proof of Claim[12. Recalling that 2|z — y| < \/B(t —s), and so |o —-| < 471\/B(t — s) + |z — |,

we have

(ﬂ—XW>=A;ZNﬁFEU@$WJWZ
< < 0| u(t, x; T, )>
ﬂ (t—s)
EEETEI s
§< G u(t, z; 7, )
1 1
< Z 75(15 s)M(T)
< 1 cVt—s < 1
ST 2
and hence (xu) =1— ((1 - x)u) > 3. O
Claim [[1 and Claim [[2] combined yield
(xu’®) > (xu’)[~G(7) = Q(t —7) — 1], (%)

where ¢; = ¢’ + (r — 1)log 2 > 0 with » = max(2, p.).
Using last inequality and Claim [ we end the proof of Proposition 2] as follows. Set
~ 3
Iy :=-G(r) —Q(t—71) — 56(5a)(t — 7).
If Iy > 2¢; for all T € [s,t;], then Iy — ¢y > %Io > ¢; > 0, and so by Claim [0 and then by Claim
I and (%*),

2
2—r

L ho > e(B)(t — o) () | ]y — 1 + Selda)(t 1)

>t —s) 72 with ¢ = ¢(8)(¢)?27"72,

or ——I !> c(t — s)7!. Integrating the latter over [s, ¢ ] yields I;*(s) > £, or Ip(s) < 2, or
~ 3 2
G(s) 2 ~Qlt —5) — SelBa)(t —5)

If Iy < 2¢; for some T € [s,t,], then by Claim [, L1 > 0, and hence G(s)+Q(t—s)+3¢(d,)(t—s) >
G(r) + Q(t — ) + 3e(da)(t — 7) = —2¢1. 0

3.4. G-bound for -V -a-V+V-b. Set A, =A+V-b. Let Ui’s denote the solution of

—AULf =AU, 0<t—s<1,

0< feL'nL>
in LP = LP(RY), p € [1, oq].
Set u(t) := ULS f and let ux(t, z; s,y) denote the heat kernel of A,. We introduce
Q(t) = Q(t7 s,y) = _<u*(t7 S Svy)) log u*(t7 ) s,y)},
M(t) = M(t;s,y) = (ly — Ju«(t, 3 5,y)), and
G(t) :== (kg(t — s,0 — ) log u.(t, -; s,y)).
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We will need the integral bound

’ _ d
<’LL€ (t7 ';87y)> < Cg(t - 8) 2p-1) Vp € [pc,OO[, 0<t—s<1l (.)

Proof of (). Clearly, —(Lu,(t),ud " (t)) = (A + V- bu.(t),ud ' (t)), 1 < ¢ < p, = —2—. Thus,

t Véa
setting w 1= (u.q), v :=u?, J = HA%UH%, we have
1d 2,2
VA il .
thw q’(qJ <U,Vv>)

Using assumption b € Fj, (A), d, < 4 we have by quadratic estimates, |(bv, Vv)| < J3 (5aJ+gw)%,

and so
1

20,
ligll
From (x) we have |lu,(t)|; < Hqueq’f/f‘l_a. In particular, ||u.(t)|l1 < || f]l1. Also from (%) we obtain
d d
s (@lly < c(t—5)"3 | fll1, and by duality, [[(U*)*]lg o0 < co(t—s) 3. Now, (s) is evident. [

i (5a)w}- (%)

—iw >2(q — 1)[(2 — \/(5:)J—

Armed with (e), we repeat word by word the arguments from the previous section, arriving at
the following proposition.

Proposition 3. Let § and C be (generic) constants defined in Proposition [2 and Proposition [1,
respectively.

_t+s

2

for all0 <t —s<1 and z,y € R? such that 2|z — y| < \/B(t — s).

G(ts) > —Q(ts — s) — C, te

Similarly to Proposition 2 the proof works under more general assumptions than in Theorem
[0 i.e. we may assume that b is as in Section 311

3.5. A priori lower bound. Recall that a € (H,¢) and b are smooth, b is bounded, divd > 0.
It is seen from the Duhamel formula that, since divbd > 0,

us(t,z;8,y) <ul(t,z;s,y), 0<t—s<1.
We have
ult,zss,y) > (4mB(t — )72 (kg (t — ts, 0 — Jult, @i ts, -Jults, -5 5,9)),
and, for all 2|z — y| < \/m, due to Proposition [2] and Proposition [3]
log u(t, x;s,y) > log(4mB)¥? + Q(t — t,)

+ (kg(t —ts, 0 — ) logu(t,z;ts,-)) + (kg(t — ts, 0 — ) log ui(ts, 5 5,y))

> log(4mB)"* — Q(t — t,) — 2C

= —Q(t — s) — 2C + log(87B)%2,
so a Gaussian lower bound for u(t, z; s, ) follows but only for 2|z —y| < \/B(t — ts). Now, the stan-

dard argument (“’small gains yield large gain’), see e.g. [Dl Theorem 3.3.4], and the reproduction
property of u(t,x;s,y) give
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Theorem 4. There exist generic constants co > 0 and c1, ¢a > 0 such that, for all z,y € R?
Crke, (t — s,x — y)e_co(t_s) <u(t,z;s,y)
for all 0 < s <t < oo.

We emphasize that the constants ¢, ¢ are generic, and thus do not depend on the smoothness
of a, b, and the boundedness of b.

3.6. A posteriori lower bound. We now exclude the assumption of the smoothness of a, b, and
the boundedness of b by constructing a smooth bounded approximation of b € Fs = Fs(—A) that
preserves the relative bound § and the constant ¢(4).

Define

b, := E.b,
where, recall, E. f := e2f (¢ > 0) denotes the De Giorgi mollifier of f.
Claim 13. The following is true:
1. b, € [L>® N C>].
2. b, € Fs with the same c(6) (thus, independent of €).

Proof of Claim[13. 1. Since b. = E_ 5 E, )5b, it suffices to only prove that |b.| € L. We have by
Fatou’s Lemma,

b ()| < lim inf (€% (2, )1 p(0,n) ()16C)1)
glimninf<eE (z, )10 ()b() % (6(|Vy/es2 (x, ‘ +c(6

_d gy _lz—ul® _d_1 _clz—yf?
where |Vy\/e2(z,y)| = (4me)71 |m4€y|e 5= < Ce 1 2¢”~ = , and so |b| € L™ for each
e>0.

2. Indeed, |b:| < \/E:|b|?, and so

b= f113 < (B[, [ f?) = 6V E| 2113
< OIVVESRIZ + c@)IfIIZ  fewh?

l\?\b—‘

where

\Y
IV VEITPI = | 2,

1
< IV EVIFIPl2 = |12 VIFIIP1?

< [IVIflllz < IV £,

ie. b. € Fs. [The fact that [[b\/E.|f[*[2 < oo follows from 1yp<n3b € Fs, the inequality
1L gjp<ny v/ Bl FP113 < Sl Vf1I3 + c(6)] f]13 and Fatou’s Lemma]. O

Claim 14. divb. > 0.

Proof. Indeed, since divb > 0 in the sense of tempered distributions, i.e. (b, V) < 0 for every
0<pesS, wehave (b;, V) = (b, VE.p) <0, as needed. O
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We are in position to complete the proof of Theorem [Il
By Claim [3}, b. € Fs, § < 402, and so b. € Fys,(A), , = 0726 < 4. Thus, [KiS2, Theorems 4.2,
4.3] apply and yield that the limit

2
s-LP-lim lim e the1 (locally uniformly in ¢t > 0), p>

€10 €100 2 Vo2

where
Ao c:i==Via, -V4+b.-V, a =FE,a€ (Hye), DA c)= Ww2p

exists and determines in LP a positivity preserving L°°-contraction, quasi contraction Cj semigroup

of integral operators, say, et

Next, by Claim I3 and Claim [[4] Theorem H applies to the heat kernel e *A1.+ with constants
co-¢o independent of €1, . Therefore, for every pair of balls By, By C R? we have

cle—cot<1B1 , et02A132> < <1B1 , e_tAs’sl 1B2>-
Now, passing to the limit in €; and then in &, we obtain
616_00t<131 , 6t02A132> < <lB1 , e—tA1B2>‘

Applying the Lebesgue Differentiation Theorem, we complete the proof of Theorem [1I

4. PROOF OF THEOREM 2A

Recall that, by the assumption of Theorem 2A, b € Fs, 0 < § < oo, and so
beFs,(A), 6g=0 26 < .

Recall that a constant is called generic if it only depends on the dimension d, the ellipticity
constants o, &, the form-bound 4, and the constants ¢(d,).

We will first prove Theorem 2A for the smoothed out coefficients a.,, b. (see Theorem [ below).
By Claim [[3] b. are bounded and are in Fy with the same ¢(d) (thus, independent of ¢).

4.1. A remark on the approximation of Kato class potentials. Let V' € KCVl. Define
Ve=EV, ¢>0,

where, recall, E. f := e f (¢ > 0) denotes the De Giorgi mollifier of f. Below we will be interested

in the case
V =divby, so V. = E.divb,.

Claim 15. 1. V. € K¢ with the same A = A\(v) (independent of ¢),
2. V.e L*NnC>.

Proof of Claim[I3. 1. By duality, it suffices to prove that ||[VZ|(A —A)" |1 < v||fll1, f € L'. We
have |V-| < |V|e, and

VI = A) 7l = VI = A) T Ecfl
< v[IEflly < vl
2. Since V,, € > 0 are form-bounded,
(VELIFP) < v(VEP) +ellf?), feWwh? o=,

see the introduction, we can argue as in the proof of assertion 1 of Claim O
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4.2. Upper bound for the auxiliary operator —V -a., -V +b. -V 4 E.divb,. Set
Ay, =-V-a., -V,

and
H" = A, +b.-V+ Edivb,.
Let H%*f denote the solution of

d s s
{ _Elgtéffzelzjgli , 0<s<t< 0 (CPy+)
in LP = LP(RY), p € [1, oq].
Let h(t,z;s,y) denote the heat kernel of H™, that is, H* f = (h(t,x;s,-) f(*)).
Theorem 5. There exist generic constants c3,cq > 0, w > 0 such that
ht,z;5,y) < cshe, (t — 5,2 — y)e” 75 (UGB")

for all 0 < s <t < oo.

Proof of Theorem. 1. Since A, +b. -V + E.divby = A, + V- b + E.divb_ (where E.divb_(x)
and E.div b, () are uniformly bounded in 2 € R? and smooth by the assumptions of Theorem 2A
and Claim [I5] respectively),

(h) := (h(t,a;5,)) < 1and (h) == (h(t,";5,y)) < L.

Also, since divb. = FE.divb = E.divby — E.divb_,

(H+mh>=J>F%QLMWbLh%;3L J:=(Vh-a., -Vh),

(Y (s)h, By = J + %<E€|divb|, B2y > F, Ji= (Vh-a., - VA,
and so estimating ||[H%*(|;1_, 2 and || (H"*)"||;1_, 12 by means of the Nash inequality, we obtain

h(t,z;s,y) < c(t —s)~ Y2, ¢=c(d, o). (NIEM+)
Here z,y € R? and 0 < 5 < t < o0.
2. In order to prove (UGB"+) we consider

d r7t,s ¢ _ 17+ pptss
—<H, =HTH, <
{ datta f alla f ) 0_S<t<007 (CPH;r)

0< feLlnL®
in LP = LP(R%), p € [1, 00], where HS® := e®* HbSe= % and
Hf =e*(w+HNe * =w+H"—a-b.—a-a, -ata-a, -V+V-a, -a,

_ c(da)
20,
To shorten notation, in the rest of this section we write A = A.,.

Moser’s Lemma. There are generic constants c,cy such that, for all 0 < s <t < o0,

_ 205
”Hé,s”2_)007 ”H:;’SHl_ﬂ < C(t _ S) d/4ec4a (t s)'
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Proof of Lemma. We follow [ES] Sect.1]. Set uq(t) := HS f, v(t) := ug/Z(t), p > 2. Noticing that
(be - Vg, ub ) = %(Vv, bov) = —l(vz, E.divb), we have by the dynamic equation
1d . 1 .
—55( 2(6)) = wllv®)l3 t o HAl/2 013+ E(Uz(t)aEadIVb+> + 5@2(?5)7Eadlvb—>

_?@;”wﬂqvmmw»—mwwﬂm—wnmaw%»

By quadratic estimates and by (b. € Fs, see Claim [3] = b. € Fy,(A), 6, = 0726),

—_

4 4
——— 1—k—~0d, AY2y) 12 [w—— c } v
H H2_pp,( Yéa )| 12 + pp’Y( )| ol

Loy 1op (p—2\?]. oy 1o
e 2 (B .
[ +4’y 1 +4/€ 1 p cas|v|l3

Choosing here v = k/d,, k = % we obtain

1d 2 c(d, pp’ p—2\2
2ol > - 2 80 g (14 2 (5, (222 ) ealolt

In particular %Huaﬂg < %5@2\\1@”2, and so

243dq
[ua (t)]l2 < e

§Xt=9) | fl,. (%)

1
1

1d 2 1 c( ) pp’ p—2\2
vl||5 > A1/2v2+[w ] [ — |6, +4 —— a?|lvl|3.
~od Pl (= p,H B " lv]13 — 1 ; Ea[v]3

2
Let p > 4. Then [W—#%:)} > 0 and [1+’%<5a+4<p7?2> >] <pCs,, Cs, = 1+%. Therefore

Choosing v = K/d4, kK = 7 we obtain

d, 2 1/2, 112 20 29,112
—lvllz = 1A P2ol3 = Cs, %6013 (%)
R
Using the Nash inequality ||A'/2v||3 > JC’N||U||§+d lull; ¢, we obtain from (*)

d 1+% —% 2+ 9
—2llvllz = oCnllvlly " “llvlly * = Cs,p°¢a”|v]2, or

—4/d QO’CN —4/d —4/d
uu/ ol - @mm%w/

2UC'N

The last inequality is linear with respect to w, = ”U”2 Therefore setting ¢, := and

2
pp(t) = 805Ep2£a2(t —5),

we have

t
wp(t) zcge_“”(t)/ ey (r)dr

[S]iS]

t
> cge ) / e (M) (r — 5)4dr Ve (1),
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where ¢ = 5§ — 2 and

Ve (t) :=inf[(r — s) Twe(r) | s <r <{]

[MiS]

2p

d

w6 - 9F a5 <7 <)

Set B =2d~'Cjs,£02. Since e #r(t) f; et (") (r — §)ddy > e~ PP*(t=5) fst PP’ (r=5)(r — )4dr and

t q+1 B 2
/ PP (r=s ) (r—s)? <tﬂp2 > ’ e(t=5) 4 gy

2

<t > p?—1)(t—s) /Bp rddr
Bp* Bp2(1-p~2)

(t ) [ (1- )p 1] B(p*—1)(t—s)

v

> Kp— (t _ S)Teﬁ(lﬂ—l)(t—s)’

where K —21nf{p[1— (1—p2)p- 1] |p22} > 0, we obtain

N

p—

wp(t) > & Kp~2e - (t — )7 Vy (1),

d(p—2)
or, setting Wp(t) := sup [(r — s) w ua(r)llp | s <r<t],

d d Caaﬁa

Wy(t) < (&K) Fpre

W o), p=28 k=1,2,....

Iterating this inequality, starting with k& = 2, yields (¢ — s)%Hua(t)Hoo < Cgec5a§°‘2(t_s)W2(t).
Finally, taking into account (x), we arrive at

— 204
[ HE amsoe < (t — 5)~WAC eCsato?(t=5),

The same bound holds for |[H5®|l1—2. To see this it is enough to note that, for H* = H*t(b),

(HZ (b)" = HI (D). O
We obtain e " (z,y) < Cewtt=s e (y—a)+eaa® o — Cs,&. The proof of (UGB"+) is completed
upon putting o = g—;f. O

4.3. Upper bound for —V -a., -V +b. - V.

Theorem 6. In the assumptions of Theorem 24, there exist generic constants ¢; (i = 3,4,5) such
that the heat kernel u(t,x;s,y) = e~ =91 (z, 1) of Acye=—V-a., -V +b.-V satisfies

u(t,z;s,y) < cske,(t — s;x — y)ecs(t_s)
for all z,y € R* and 0 < s < t < 00.

Proof. We have A = H™ — E.div b, , so the proof follows from Theorem [§and a standard argument
using the Duhamel formula and the fact that E.divb, € K% (Claim[I5). (If ¢(d,) = 0 and A\(v) =
then we arrive at global in time Gaussian upper bound.) D
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4.4. A posteriori upper bound. We are in position to complete the proof of Theorem 2A.
In Theorem [6] we have established the upper bound on the heat kernel of

Aeye:=—V-as -V+b-V, D(A.)=W>2

where a., := E. a € (Hyg), 1 > 0, with constants independent of €1, €. It remains to pass to
the limit 1 | 0 and then € | 0. Since b € Fs with § that is assumed to be only finite, we can not
appeal to [KiS2, Theorems 4.2, 4.3] as in the proof of Theorem [Il Instead, we will use

Proposition 4. In the assumptions of Theorem 2A, the limit

s-L2-lim lim e "1+
el0 €1]0

(locally uniformly int > 0)

exists and determines a positivity preserving L°°-contraction quasi contraction Cy semigroup in
L?, say, e ).

Proof. Since b, € [L™ N C™]?, the limit

e e — o L2 lime™
140

tAElﬁ

exists and determines a quasi contraction Cp semigroup (positivity preserving L°°-contraction),
and A, = A+b.-V, D(A;) = D(A).

Thus, it remains to pass to the limit € | 0. It suffices to prove that e *A

f converges strongly
in L? for every 0 < f € C%°, and then apply a density argument.

In what follows, the constant v is from Theorem [6] but possibly taken smaller, if needed, so that
v < 20. We have

divb, = E.divb = E.(divby —divb_) = E.divby — E.divb_, (%)

where 0 < E.divb_ € L*° N C* by assumption (2) of Theorem 2A, and 0 < E.divb, € L NC™>
by Claim
1. Set u = u. = e " f. Using the equation for u, we have
1d
2dt
Since u satisfies a qualitative Gaussian upper bound (i.e. with constants that a priori depend on

(u?) + (a - Vu, Vu) + (b - Vu,u) = 0.

the smoothness of the coefficients), we find that
1, .. 9
— (b - Vu,u) = §<le be,u”)
(we are using (&))

< —(e¥Adiv by, u?).

N —

Since E.divby € K% by Claim [[5, E.divb, is form-bounded: (E.divby,u?) < v(|Vul?) + ¢, (u?),
¢, = v (see the introduction). Hence

d
E<U2> + 2(a - Vu, Vu) — v{|Vu|?) — ¢, (u?) < 0.

Thus, for ¢ € [0, 7],
t
e~ ul(t)) + (20’—’/)/0 e~ || Vul3dr < ||f113,
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SO

T
sup (i) +e [ [VulBdr < T |
T€[0,7T 0
for positive constant ¢ := 20 — v.

2. Fix some ¢, | 0 and put g = u,, — uc,,. Then, subtracting the equations for u.,, u.,, arguing
as above, multiplying by ¢ and integrating, we obtain

T

T
sup [lg(t)|3 +C/ IVgll3dr < eC”T/ [((be,, = be,) - Ve, g)|dr,
te[0,T) 0 0

where we estimate the RHS as

r r s ;
/ \<<ban—bam>-wam,g>rd75(/ |r<ban—b57,L>g|r%dT) (/ Hwamuadf). (+)
0 0 0

By Step 1, the second multiple in the RHS of (&) is uniformly (in m) bounded. To estimate the
first multiple, we can appeal to the a priori Gaussian upper bound on the heat kernel of A, .
(Theorem [6) to obtain pointwise estimate

lg(t, x)| < 2e3(ke,(t, 2 =) f()) (= F(t,z)) (%)
on [0,7] x R%. We write (R > 0)

T T T
/0 (b, — b, )gl3dr < /0 lnr(be, — be, )gl3dr + /0 11— ) (b, — b )2,

where 0 < np € C*,0<n<1,ng =1o0n B(0,R). Now, for every R > 0, the first term converges
to 0 as n, m — oo since |bs, — b, | — 0 in L2 . and, by (&), g is uniformly in n, m bounded on
[0,T] x R%. In turn, the second term is estimated using (@) and b, € Fj:

H(l - T,R)(ban - bam)g(T)”% S ”(1 - nR)(ban - bam)F(T)Hg
2
< 28(|V[(1 = nr) F(T)]||3 + 2¢(O)(1 = nr)F(7)[3, 7€ [0,T].
Taking into account that f € C2°, it is easily seen that the last expression can be made as small
as needed, uniformly in 7, by selecting R sufficiently large.

It follows that the first multiple in () tends to 0 as n,m — oo.
Thus, {u., = e *en f1°° | is a Cauchy sequence in L>([0,T], L?(R%)). We set

Ulf:=s-L>lime ™ f, 0<t<T.

end0

Next, we extend U, 0 < t < T by continuity to whole L?, and then, using the reproduction
property of e *en | extend it to all 0 < t < co. The strong continuity of U* and the other claimed
properties now follow from the corresponding properties of e *<n. Set e~ := U?.

The proof of Proposition [ is completed. O

Remark. The proof of Proposition Ml can be made independent of Theorem [ by working with
appropriate weights, essentially repeating the proof of [KiS2, Theorem 4.3].

Proof of Theorem 2A. Theorem [6] and Proposition Ml yield
e 1000 < c3e%t78, ¢ > 0.

Hence, by the Dunford-Pettis Theorem, e ** is an integral operator for every ¢ > 0.



26 D.KINZEBULATOV AND YU. A. SEMENOV
Next, for every pair of balls By, By C R% we have, using again Theorem [6] and Proposition @}

<131 s e—tA1B2> § 63€C5t<131 s etC4AlBQ>.

tA

Since for every t > 0 e ** is an integral operator, the a posteriori Gaussian upper bound in

Theorem 2A follows by applying the Lebesgue Differentiation Theorem.

5. PROOF OoF THEOREM 2B

Since b € MFj, the vector fields b, = e2b are C™ smooth are bounded (following the proof of
Claim [[3]in Section B.0]) and are in class MFs with the same constants § and ¢(d). Indeed,

(0-f, f) = <be€A’f’2> = <b(h5)2>,
where h. = \/E.|f|2 so Vh. = h- E.(|f|V|f],
IVhell3 < IWVE(VIFD2I15 = 1 B=(VIF) I < IV FI13

and || he|l2 < || f]l2, which clearly yields the required.

Thus, in what follows, we assume that b = b. € MF; is bounded and C*° smooth. The
assumption (2) of Theorem 2B ensures that divb_ = E.divb_ € L N C*. Further, assumption
(3) and Claim [ in Section E] ensure that divb, = E.divb, € K% with the same constants v
and A.

The rest of the proof follows closely Sections and [4.3] of the proof of Theorem 2A with the
following modification. We need to estimate differently the term (« - b,v?). By b € MFs,

(- b,0%)] = |a- (bo, )| < |al|(bv, v)]

< |a| (65~ 2| AY2v|ja|[v]l2 + ¢(8)2 |[v]|3)

40 1 0 pp
R CORT C R D[

and so

1d 4
vl > oSl YO A0l — o — e(®)]v]l3

1 S pp' | Lpp (p=2\,] oy
- |- ——  —— A4 —— .
[44-5—1-4074 +4/{4 » &latv||3
Take w = ¢(d). Choosing first v = §, k = %, p=2,and then v = %, k = %, p > 4, we have

RPN
a0l < [ lexp | 2D 02 ) ()

and

1d 2 52 pp  pp p—2 2
_La AY/2)12 — opp PP, 20112
S0l > 20— |3+ T+ P ( 222 ) e o? ol

2
> FHAW’UH% — Cioep0”||v]J3.
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Therefore,
d, 2 1/2, 112 220112
a”””2 > [|AY 0]z = Cse,0p”a”||v]|3
2450 4 2 2,112
> oCn|vlly “lvlly @ = Csoep™a||v]l2,

SO

d _4/d QO'C'N —4/d
= Jolly ¥ > o]l @ ——@ow%wwz/

Now we iterate the last inequality in the same way as in the proof of Theorem 2A, arriving at

(t = )5 |Jua(t)| oo < CyeCorc® =Wy (1),

-
where W, (t) :=sup [(r — s) % |lua(r)|lp | s < r < t]. Taking into account (x*), we arrive at
IHS® om0 < (t — s)_d/‘lC;eCé»v»&aQ(t_s). The same bound holds for |H5®||1—2. To see this it is
enough to note that, for H* = H(b), (HI(b))* = HT_(-b).

We obtain e_tH+(a;,y) < Ce“’tt_gea'(y_w)“w%, cy = C(/Saf' Putting o = 902;;1/’ we obtain
(UGB"+). Now argue as in Section 3l

6. PROOF OF THEOREM 3A

In the assumptions of Theorem 3A the upper bound of Theorem 2A is valid, so we only need
to prove the lower bound.

We will prove the lower bound in Theorem 3A first for the smoothed out coefficients a.,, b.
(Theorem [ below). Recall that b, are bounded and are in Fs5 with the same ¢(d) (thus, independent
of €), see Claim [I3]

First, we assume 0 <t — s < 1.

Write

A, =-Veas, -V, Aye=A, +b.-V, divh. = E.divb, — E.divb_.

We have divb. € K¢ with the same constants v, A(v) (see the beginning of the proof of Theorem
2A for details).

By Theorem [6] the heat kernel u(t, z; s,y) of A, . satisfies, for all z,y € R?, the Gaussian upper
bound

U(t,$;8,y)§63k04(t—8;$—y), 0<t_8§17

for generic constants ¢3, ¢4. The latter trivially yields the integral bound

sup (u(t, x;s,-)) < é(t — s)_%, 0<t—s<1 (00)
z€eRd

with generic ¢. We will use this integral bound below.
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6.1. G-bound. Let us define Nash’s function
r+y
2

G(s) == (kp(t — s,0—)logu(t,z;s,")), o=
forall 0 <t —s <1 and x,y € R? such that 2|z —y| < \/B(t — s).
Proposition 5. There exist generic constants 5 and C such that

G(ts) 2 _Q(t - ts) - (c7 tS = t_gsa

where, recall, Q(t — t,) = %log(t —tg).

Proof. In the proof of Proposition [2 take r = 2 and instead of (@) from Section B.I] use integral
bound (g). O

6.2. G-bound for —V-a., -V+V-b.. Let u.(t,z;s,y) denote the heat kernel of A, = Ac, +V -be.
Set

G(t) = <k6(t - 35,0 — )logu*(tv g Svy)>7
where 0 < s < t < oo and z,y € R? such that 2|z — y| < /B(t — s).

Proposition 6. Let § and C be (generic) constants defined in Proposition [3 and Proposition [I,
respectively. Then

G(t) > —Q(t — s) — C.
Proof. We repeat the proof of Proposition [3] with p = 2. O

6.3. Lower bound for the auxiliary operator —V -a., -V +b. -V — E.divb_. Set
H™ := A, . — E.divb_.
Let H"*f denote the solution of

—4fatsf=H HY"f , 0<t—s<l,
0< feL'nL™.

Let h(t) := HY* f. It is seen (for example from the Duhamel formula) that u(t,x;ts,y) < h(t,z;ts,y)
and uy(ts, x; s,y) < h(ts,x;s,y), where u(t), u.(t) solve (CPyp),(CPy,) respectively. It is seen that

h(t,x;8,y) > (AmB(t — ts) Y2 (kg(t — ts,0 — h(t, x;ts, )hlts, -5 5,9)),

(CPy-)

kg(t —ts,0— ) = kg(ts —s,0— ),
and, for all 2|z —y| < \/m , due to Proposition [l and Proposition [6]
log h(t,x; s,y) > log(4nB)¥? + Q(t — t,)
+ (kg(t —ts,0 — ) logu(t, x;ts,-)) + (kg(t —ts,0 — ) log us(ts, -5 s, y))
> log(4mB) " — Q(t — t;) — 2C
= —Q(t —s) — 2C + log(87B)%?,

i.e. we have proved a lower Gaussian bound for h(t,z;s,y) but only for 2|x — y| < /B(t —ts).
Now, the standard argument (see e.g. [D, Theorem 3.3.4]) gives
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Theorem 7. There exist generic constants ci, ¢a > 0 such that, for all z,y € R?
ClkCQ (t — ST — y) S h(t7 X5 S, y) (LGBhf)

forall0 <t—s<1.

6.4. Lower bound for —V -a., -V +b.-V. Let u(t,z;s,y) be the heat kernel of A, ..

Theorem 8. There exist generic constants cog > 0 and ¢; > 0 (i = 1,2) such that, for all z,y € R?
and 0 < s <t < oo,

Crke,(t — 8320 — y)e_c‘)(t_s) < u(t,z;s,y).

Proof. Let hi(t,z;s,y), hy (t,z;s,y) denote the heat kernels of H~ = —V-a.,-V+b.-V—E_divb_,
H v = —V-ag -V +b. -V —p'Edivb_, respectively. The pointwise inequality
) . 1/p . 1/p’
hi(t, @ s,y) < [ult,z;s,9)] 7 [hy (25, 9)] 7, p>1, ()

is a standard consequence of the Lie-Trotter Product Formula (for the proof, if needed, see [HS]).

1. In the RHS of (&), we bound hy(t,z;s,y) from above as follows. We write the Duhamel
series for hy (t,21s,y), with H; viewed as H;I = A., . + p'E-div by perturbed by —p'(E.divb; +
E.div b_), and estimate its terms from above using a straighforward modification of Theorem
and appealing to |divb| € K. We obtain

hp'(t7$;s7y) < 63]€54(t — ST = y)

for all z,y € R? and 0 < s < t < T, for generic constants & (i = 3,4, 5).

2. In the LHS of (®), we bound hy(t,z;s,y) from below using Theorem [71

Now, 1-2 yield the required lower bound on u(t,z;s,y) for z, y € R% 0 < t—s < 1. Next,
the reproduction property of u(t,z;s,y) gives the required lower bound for all z, € R? and
0<s<t<oo.

If ¢(64) = AMv) = 0, then we work over 0 < ¢ < oo from the beginning, obtaining a global in
time lower bound. O

6.5. A posteriori lower bound. We are in position to prove Theorem 3A. Theorem [ and
Proposition @ yield for every pair of balls By, By C R?

616_00t<131 , 6tc2Ale> < <lB1 , e—tA1B2>’

so an application of the Lebesgue Differentiation Theorem gives the a posteriori Gaussian lower
bound in Theorem 3A.
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7. PROOF OoF THEOREM 3B

The upper bound follows from Theorem 2B. The proof of the lower bound under the assumption
divb = 0 was given [S2]. Below we relax that assumption to “divb € K% for v sufficiently small”
by modifying the proof in [S2] and then arguing as in the proof Theorem 3A.

Few remarks are in order.

For every € > 0, b. € MF;s with the same constants §, ¢(d), and divb. € K¢ with the same
constants v, A(v) (for details, see the beginning of the proof of Theorem 2B and of Theorem 2A,
respectively). In particular,

. 1
[1divbe|2 £ < vV FI5 + Ml fl13, fewh? (%)
In what follows, we put
b=b., divb=divb, = E.divby — E.divb_.

We denote E.div by, with some abuse of notation, by div b4.
We will establish the lower bound for 0 < ¢t — s < 1. Then the reproduction property will yield
the lowe bound for all 0 < t — s < .

7.1. G-bound for —V -a -V + b - V. By Theorem 2B, the heat kernel u(t,z;s,y) of Ao =
—V -a., - V+b. -V satisfies, for all 2,y € R?, the Gaussian upper bound

u(t,z;s,y) < éske,(t —s52—y), 0<t—s<l1, (UGB,)

for generic constants €3, c4.
The next proposition is valid under weaker assumptions than those of Theorem 3B, namely, it
suffices to assume that (UGB,)) holds, and

. 1
I(dive-)2 fI5 < vIIVFIZ+ vl fl5,  few?h?
with e.g.v < g.

Proposition 7. Let z,y € R?, o0 = 7, ts = =5*. There emist generic constants  and C such
that

G(ts) == (kp(t —ts,0 — ) logul(t, z;ts,-)) > —Q(t —ts) —C,  for all z € B(o, /T —ts),
where, recall, Q(t — t,) = %log(t —tg).
Proof of Proposition[] Fix € > 0 and define
Ge(7) := (kg(t —ts,0 — ) log [ek‘g(t —ts,0— ) +ult,z;T, )] ),

where 7 € [t;, Zl2]. Then

G(ts) = ir;g Ge(ts).

Below we write for brevity:
Ge(t) = (Tlog [I' + U]) = (T'log [l + U(7)]),

where ' =T'g = kg(t —ts,0—-), U=U(7) = ult, z;7,-).
Also, set

1

V= CO(t - ts)d/2 [EF + U], Cco = (47TC4)d/26_1 [6 + égem] _1_
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If 8 > 2¢y, then clearly

lo—yP® _
Bt~
In particular, —log V" > 1.
Let us calculate —0;G¢(7). We have

—aTGE(T):<r_aTU>:< L _voa.vevyu

t+t8}

L forall y € R, € €]0,1] and 7 € [ts, 5

V(7,y) exp

e +U e +U

vU divb U
_<VIOgV'aP'eI’—|—U>_< o 6F+ > <F6F+U> <P6P+U>

= <VlogV-aF-VlogV> — <V10gV-aF

> (VI -a-VlegV)

_I_
VT b.ev Udivh
Ia. Th- Viog V) — T .
+<V ¢ eF+U>+< b:ViogV) < F+U>+< eF+U>

All the terms except for <F gpdi‘g’> will be treated as in [S2]. Setting N := <Vlog V -al'- Vlog V>,
applying quadratic inequality and estimating <F Urdjr‘§> > <Fd1vb > we have

1/2
~8,;Ge(1) > N — 2N1/2<vr vr> +(Tb-Vleg V) — (|b- VL) — (T'divb_)

Remark 2. Note that now we cannot estimate the term <F b-V log V> as in the proof of Theorem
M or Theorem 3A since for any p > 1 (close to 1) there are b € MF; with |b| ¢ L”

loc®

Hence
—0;Ge(1) > (1 —y)N — %<@> +(b- VI, —logV)
— (Tdivb_, —log V) — ([b]|VT|) — (D'divb_),

where 0 < v < 1 will be chosen later.
We have:

(VD)2 d 1 V2
(“x >_%H’ <|b||VF|>§m<|b|F2B>-

Further, applying b € MF; and (%), we estimate

([b[Tap) < 5\/IIV\/T26II§ +c(0)[lv/Tasl3lv/Tasll2

= 0V \/Tasllzllv/Tasll2 + v/e(6) [/ Tasll3
5 Wd
_ZW—F\/C(&
o V&5 +V2V/B/e)
44/ B(t —ts)

1
Weused0<t—ts§§),
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(b VT, —log V)| + (Pdivb_, —log V)

1 1/2 lo— |2 1/2 )
< wﬂblf,—log V) <\b\mf,—logv> + (I'divb_, —log V)
_ 1 1/2 ,1/2 1
=—A/°A A — (A + A A
Bai) o + A3 < ﬁ(t—ts)( 0+ Az) + A3,
where
Ao(7) = (bIT(=log V)) =: ([b], ),
_ .2
Aalr) i= (b iy T log V) ) = (bl v).
As(7) := (Ddivb_, —log V).
Denoting

Y(7) i= Ge(r) + Q(t — 7)
and gathering the above estimates, we obtain
Ky 1

_8TY(T) > (1 - ’Y)N_ 4B(t — ts) - 9 5(75 — ts) [AO(T) +A2(T)] - A3(T)7

where Ko := v/2d6 + 2v/B+/c(0) + 2,5Y—d + % + 26\v. Multiplying this inequality by e#(7),

K(t—71)
T):i= ————=,
M= =5
where constant K will be chosen later, we obtain
__ Ko
45@ - ts)
1

_ m [A()(T) + AQ(T)] — Ag(T):| .

0, (Y (7)) 2 ) | (1= 3N () = Y (1) pl(r) -

We note that
Y(1)<e, 7€ l[ts,(t+1s)/2],
where the constant ¢ = log(1+ ¢é3) with ¢ from wu(t, x;7,) < é3(t—7)_d/2. Indeed, for € < (47?5)%,
Ge(r) = (Tlog(el' + U)) < (I log [(1+&)(t — 7) 7/} < —Q(t — 7) + log(1 + &).

Thus, avoiding division on possible zero, we obtain

0r (eu(T)(Y(T) - C))_l > [(1 = 4y)N(7) + M(T)]e_“(T)(Y(T) — )72, (%)
where
Ky 1
M) = 3N() = (V(7) = 00 pr) = s = s [Aol) + Ax(r)] = ).
Take ~v := %.

Lemma 1. M(7) >0 for all T € [ts, (t +ts)/2], for c sufficiently large, v < §.
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Proof of Lemma. Recall ¢ =T'(—log V). Then

VI VgV
V90=<—+ o5 ><p,

T log V'
and so
(Vo) _ (VL V(-log V>>2
0 T T log V
(VI)? (VlogV)?
—_ . 2
< ((26‘((; — ’ts))zl“(— logV) +I'(Vlog V)2> (since —logV > 1).
Using the identity M‘;zt‘i_"fs)r = B(t — t5)AT + 4T, we obtain
1/ (Vy)? 9 1 d
§<7> < (T(VlegV)?*) + m«ﬁ(t —ts)Al + §F)(—log V))
< O'_lN + <VF, Vlog V> + Wd_ts)«@
_ 1/(VI)? d
<20 1N+Z< = >+ 25(t—ts)<(’0>
<207N + d - d ()
o 85(75 - ts) ZB(t - ts) '
Thus, by (&),

v 2
As(1) < 1 <(vij)> + Av{p)
dv dv + 28 v
TR — 1) | At

We estimate Ag(7) and As(7) as in [S2]. For the sake of completeness, we provide the details.
Using the inequalities (B +C + D)Y2? < (B+ D)Y/24C"Y? and E'/?(B+ D)'/?M"? < (B+ D)e +
(4e)"'EM for positive numbers with ¢ = 0y/2, we obtain

Ao(7) g N d d 12 1/2 c(9)
2Bt —t5) = 4./Bt —t5) (20 N+ 86(t —ts) " 2ﬁ(t—t5)<¢>> er 2 ﬁ(t—ts)«’p>

<AN(T) +

<o YWwN +

I () + ovd
26(t—ts) 7 168t — 1)
where ¢ = ¢((d, 0,&,6,¢(0),7) > 0.

Analogous calculation shows

As(7) c oyd
N A W A T e

where ¢ = ¢(d,0,€,9,¢(),7) > 0. Let us only note that in order to estimate <(V1/))2/¢> in the
same way as ((Vg)?/¢) we need the inequality

(ViegV)? Jo— -
< —log V' 45(t —ts)

r> <(I'(VlogV)?)
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o=

which is valid since —logV > W=t (the inequality —log V' > 1 would not be enough). The

[P

latter is the reason why in the definition of G.(7) we have “eI"” rather than simply “¢” (as in the
proofs of Theorems [[] and 3A).

Thus, we obtain

e ) 4 4]+ )
_ oyd + % oty + %+ 5
< (2’7 +o 1V)N( ) S,B(t ¢ ) ( - ;(t —4t5) 2 ><(p>

By our assumption, v < ¢7. Thus,

2Ko + oyd + &

> _ —(Y(1) — ¢)d,
M(r) 2 = 2 TR — (Y (1) = ()
. <c6+c§+%”+%><¢>
B(t - ts) ‘
dv
Set ¢* = %. Recalling that 0 u(1) = B(t 5 and fixing K by K =cj+c5+ % d" + ﬁAu we
conclude that
c K —2¢* c K
> T (S vy () )
M) 2 55—+ (5 =Y 0 - ) 50
Now,
() = (T(~log V) = —(T'log [e[' + U]) — (I log [CO@ - mdﬁ]
= —G (1) — log [co(t - ts)d/2] ,
or (p) = =Y (7) + Zlog I=F —log ¢y, and so —Y () — () > logcy > log % - ﬁ. To end the
proof, it remains to Select c sufficiently large. O

We now return to (x). Recall that v = 1/8. Since N > oN7, N := (I'|Vlog V|?), Lemma yields

On (DY (1) =) = TN (Y (1) = o) 2 ()
By the Spectral gap inequality,
N > mm log V — (I'log V)|?)
= m<ﬂlog [l + U] — (I'log [eI" + U]>]2>
= m<ﬂ log [l + U] — G[*).
Note that 2o — > < [z — |2+ o — 2|*. Clearly, ﬁ <A <2 and |z —o| < /T — ¢, combined
| — o— lo—2

and hence

imply that — 755 < gm0 T 2m@ o)

1

key(t,z;7,) < 22e2¢4 ko, (t,0;ts,-).

R.
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Therefore, by (UGB.)), U < éske, (t, z;7,-) and 8 = 2¢y,

I'>CU, C ' = ég2des,

C
./\/1 > m<U|lOg [EF“‘U] —G€|2>,
and so, by (U) =1,
C

Now,
(Ullog [l + U] — Ge|) > (Ulog [l +U]) — G(U)
> (UlogU) — G(U)

> ~Gelr) - QUt—7) —C

=-Y(r)-C.

Here we again have used (U) = 1 and the Nash entropy estimate —(Ulog U) < Q(t—T1)+C. (We
Q
note that this simple estimate requires a proof: use ed < CM, see Claim [l in Section and, by

(UTBL), M < OVi—Ts)

Case (a): For all 7 € [t,, H],

-Y(r)—c—2C>0.
Here c is from (x*). Then =Y (1) —C > £(=Y () 4+ ¢) > C > 0 and hence

Nl(T) > ¢

> 785@ —y (-Y(r) +C)2.

t+ts)/2 3K /(4 1.1/
— 16(t —ty) t = 16(t—s) J ;

and so

32 204564
c=Yt) < oarmam < T,

or G(t) > ~Q(t — t,) + ¢ — 2%,
Case (b): For some 7 € [ts, %]7

~Y (1) —c—2C < 0.

By (),
(Y (r) =) = (MY (ty) — ),
c—Y(ts) < eM=rE) (¢ — V(7).
Therefore,

K
c—Y(ty) < e 4 C) < e152(c +C),
or G(ts) > —Q(t—ts)—l—c—e%Z(c—l—C). O
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7.2. G-bound for -V -a-V+V-b. Set A, =A+V-b, A= -V -a-V. Let u,(t,z;s,y) denote

the heat kernel of A,. By Theorem 2B, by duality, u.(t, x; s, y) satisfies the Gaussian upper bound
U*(t,$;8,y) §é3k04(t_8;$_y)7 0<t—8§ 17 (UGBU*)

for generic constants ¢s, c4.
The next proposition is valid under weaker assumptions than those in Theorem 3B, that is, it

suffices to assume (UGB,,|) and
. 1
I(divbp)2 £I5 < vIVFIE+ Al fI3,  fewh?

Proposition 8. Let  and C be (generic) constants defined in Proposition [ Set o = zty

2
z,y € R4 t, = HTS Then
G(ts) := (kg(ts — 5,0 — ) log u(ts, 3 8,2) > —Q(ts — 8) — C, 2z € B(o,/T5 — s).
Proof. The proof repeats the proof of Proposition [7, except that we have to deal with the positive
part div by of the divergence of b. O

Armed with Propositions [7] and B, we can repeat the argument in Sections and [6.4] using
the assumption divb € KZ. This ends the proof of Theorem 3B.

APPENDIX A. EXTRAPOLATION THEOREM

Theorem 9 (T. Coulhon-Y. Raynaud). Let U : LYNL>® — L'+ L™ be a two-parameter evolution
family of operators:
Ubs =UYU™, 0<s<7<t<o0.
Suppose that, for some 1 < p<q<r <oo,v >0, My and Ms, the inequalities
1T fllp < Millfll,  and (U £l < Ma(t = s)7"| fllq
are valid for all (t,s) and f € L' N L. Then
U5 £l < Mt =)D £,

9P gnd M = 2v/0=8° My vy P,

where B = gr_p

For the proof see e.g. [KiS2, Appendix F].
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