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STOCHASTIC EQUATIONS WITH TIME-DEPENDENT SINGULAR DRIFT

D.KINZEBULATOV AND K.R.MADOU

Abstract. We prove unique weak solvability for stochastic differential equations with drift

in a large class of time-dependent vector fields. This class contains, in particular, the critical

Ladyzhenskaya-Prodi-Serrin class, the weak L
d class as well as some vector fields that are not

even in L
2+ε
loc , ε > 0.

1. Introduction

The subject of this paper is the problem of existence and uniqueness of a weak solution to

stochastic equation

Xt = x−
∫ t

0
b(r,Xr)dr +

√
2Wt, t ≥ 0, x ∈ Rd, d ≥ 3, (1)

where Wt is a d-dimensional Brownian motion, and the vector field b(t, x) : [0,∞[×Rd → Rd can

be singular (i.e. locally unbounded) both in t and x variables.

The problem of finding the minimal assumptions on the vector field b (called drift) so that,

for every x ∈ Rd, there exists a unique weak (strong) solution to (1), is one of the central and

classical problems in the theory of diffusion processes. The necessity to work with Brownian motion

perturbed by a discontinuous drift is dictated by applications, among them the problems of the

theory of controlled diffusion processes; see also [26] and references therein regarding connections

with hydrodynamics.

The study of stochastic equations with locally unbounded drift goes back to Portenko [25] who

proved existence of a unique in law weak solution to (1) assuming that

|b(t, ·)| ∈ Lp([0, T ] × Rd), p > d+ 2 or |b(·)| ∈ Lp ≡ Lp(Rd), p > d.

In the same period of time, Kovalenko-Semënov [14] considered the corresponding Kolmogorov

operator −∆ + b · ∇ with stationary b = b(x) in a wide class of form-bounded vector fields (see

Definition 1.1 below) and constructed an associated Feller semigroup. Their result serves as the

point of departure for the present paper. The next important step was made by Krylov-Röckner

[24] who proved that (1) has a unique strong solution provided that

|b| ∈ Lq
loc([0,∞[, Lr + L∞),

d

r
+

2

q
< 1, 2 < q <∞ (LPS)
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(Ladyzhenskaya-Prodi-Serrin class). Further, in [2] Beck-Flandoli-Gubinelli-Maurelli considered b

in the critical Ladyzhenskaya-Prodi-Serrin class

|b| ∈ Lq
loc([0,∞[, Lr + L∞) for r ≥ d, q ≥ 2,

d

r
+

2

q
≤ 1 (LPSc)

and proved that there exists a unique strong solution to equation dXt = −b(t,Xt)dt +
√
2dWt

starting with a diffusive random variable, using an approach based on solving the corresponding

to (1) stochastic transport equation. In [30], Xia-Xie-Zhang-Zhao proved weak well-posedness

of (1), for every initial point x ∈ Rd, in the case |b| ∈ C([0, T ], Ld). Recently, Röckner-Zhao

[26] constructed a weak solution to (1) unique in an appropriate class (i.e. satisfying Krylov-type

estimate) for b = b1 + b2, where

|b1| ∈ Lq
(

[0, T ], Lr
)

,
d

r
+

2

q
= 1, r ∈]d,∞[ and b2 ∈ L∞([0, T ], Ld,w), (2)

where Ld,w is the weak Ld class (in fact, appropriately localized) reaching critical-order singular-

ities.

We comment on the existing literature on (1) in greater detail further below.

In the present paper we treat the problem of weak well-posedness of (1) with b in a large class

of time-dependent vector fields. It contains the critical Ladyzhenskaya-Prodi-Serrin class (LPSc),

the class (2), other classes of vector fields having critical-order singularities, as well as some vector

fields b = b(x) with |b| not even in L2+ε
loc , ε > 0.

Definition 1.1. A vector field b : [0,∞[×Rd → Rd is said to be (time-dependent) form-bounded

if |b| ∈ L2
loc([0,∞[×Rd) and there exist a constant δ > 0 such that

∫ ∞

0
‖b(t, ·)ϕ(t, ·)‖22dt ≤ δ

∫ ∞

0
‖∇ϕ(t, ·)‖22dt+

∫ ∞

0
g(t)‖ϕ(t, ·)‖22dt

for all ϕ ∈ C∞
c ([0,∞[×Rd), for a non-negative function g = gδ ∈ L1

loc([0,∞[). Here and below,

‖ · ‖p := ‖ · ‖Lp .

We write b = b(t, x) ∈ Fδ.

Shortly,

|b(t, ·)|2 ≤ δ(−∆) + g(t) in the sense of quadratic forms.

The constant δ is called the form-bound of b. It plays a fundamental role in what follows.

Our main result, stated briefly, is as follows.

Theorem. Let d ≥ 3, b = b(t, x) ∈ Fδ, δ < d−2. For every x ∈ Rd there exists a weak solution to

(1) that is unique in an appropriate class (dependent on b). The weak solutions to (1) constitute

a Feller process.

For detailed statement, see Theorem 2.1. Its proof is essentially operator-theoretic (see outline

below). Our principal object is a Feller evolution family associated to the Kolmogorov operator

−∆ + b(t, x) · ∇, b ∈ Fδ. The stochastic equation (1) is used to characterize the corresponding

Feller process.
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Example 1.1. The following are some sub-classes of Fδ defined in elementary terms.

We have

b ∈ (LPSc) ⇒ b ∈ Fδ,

b ∈ L∞([0,∞[, Ld,w) ⇒ b ∈ Fδ,

b ∈ L∞([0,∞[,Cs) ⇒ b ∈ Fδ,

where Ld,w = Ld,w(Rd) and Cs = Cs(R
d) (s > 1) are the weak Ld class and the Campanato-

Morrey class, respectively, with δ depending on the norm of b in these classes.

We discuss these examples in detail in Section 3.1.

Note that

b1 ∈ Fδ1 , b2 ∈ Fδ2 ⇒ b1 + b2 ∈ Fδ,
√
δ :=

√

δ1 +
√

δ2,

so the sums of the vector fields from different classes listed above are form-bounded as well.

For example,

|b(t, x)|2 ≤ δ

(

d− 2

2

)2

κ(t)|x− x0|−2 + C|t− t0|−1
(

log(e+ |t− t0|−1)
)−1−γ

, γ > 0, C ∈ R,

where κ is measurable, |κ(t)| ≤ 1, is in Fδ (by Hardy’s inequality).

For every ε > 0, there exist b = b(x) ∈ Fδ such that b 6∈ L2+ε
loc , e.g.

|b(x)|2 = C
1B(0,1+a) − 1B(0,1−a)

∣

∣|x| − 1
∣

∣

−1
(− ln

∣

∣|x| − 1
∣

∣)c
, c > 1, 0 < a < 1.

Let us emphasize that Fδ is not a refinement of the class (LPSc) in the sense that Fδ is not

situated between d
r + 2

q = 1 and d
r + 2

q > 1. In contrast to the sub-classes of Fδ listed above, the

class Fδ is defined in terms of the operators that constitute −∆+ b(t, x) · ∇.

Example 1.2. In [2, Sect. 7], the authors show that the stochastic equation (1) with the initial

point x = 0 and the vector field

b(x) =
√
δ
d− 2

2
|x|−2x ∈ Fδ,

does not have a weak solution if δ > 4( d
d−2 )

2. Informally, the attraction to the origin by b is so

strong that the process get stuck there with positive probability. See also [29].

On the other hand, if δ < d−2, then by Theorem 2.1 a weak solution exists. (In fact, since this

vector field is time-independent, a less restrictive assumption on δ would suffice, see [9].)

Thus, the existence of a weak solution to (1) depends on the value of δ.

It should be noted that, generally speaking, additional constraints on div b allow to further

weaken the regularity assumptions on b, see Zhang-Zhao [34], Zhao [35], Röckner-Zhao [26] and

references therein. These results, however, lie outside of the scope of the present paper, so we will

not comment on them further.
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Existing results. After Krylov-Röckner [24], Zhang [32] established strong well-posedness for

Xt = x−
∫ t

0
b(r,Xr)dr +

∫ t

0
σ(r,Xr)dWr (σ unif. non-degenerate) (3)

when b ∈ (LPS) and σ is uniformly continuous, |∇σ| ∈ (LPS), see also [31, 33].

Regarding the stationary case, in Kinzebulatov-Semënov [8] the authors considered equation

(1) with b = b(x) in the class of weakly form-bounded vector fields: |b| ∈ L1
loc and

‖|b| 12ψ‖22 ≤ δ‖(λ −∆)
1
4ψ‖22 for all ψ ∈ C∞

c (Rd) (F1/2

δ )

for some constants δ > 0 and λ = λδ ≥ 0. The class of form-bounded vector fields b = b(x) ∈ Fδ

is a proper subclass of F1/2

δ2
. They proved that if δ < cd (an explicit constant), then the Feller

semigroup associated to −∆ + b · ∇ (see [10]) provides weak solution to equation (1), for every

x ∈ Rd. The smallness of δ is in fact necessary in view of Example 1.2. Moreover, the family of

these weak solutions is “sequentially” unique, cf. remark after Theorem 2.1.

Earlier, Bass-Chen [1] proved that there exists a unique in law weak solution to (1) assuming

that b = b(x) is in the Kato class. The Kato class contains some vector fields |b| 6∈ L1+ε
loc , ε > 0,

and is a proper subclass of F1/2

δ .

The result of [8] was extended in [9] to equation (3) with bounded σ = σ(x) satisfying ∇σ ∈ Fδ1 ,

which allows to treat σ having critical discontinuities, although at expense of restricting the class

of the drifts b = b(x) from F
1/2

δ to Fδ.

Regarding the strong well-posedness of equation (1) with b ∈ Fδ, in Kinzebulatov-Semënov-

Song [12] the result of [2] on the well-posedness of the stochastic transport equation was extended

in the stationary case to include drifts b = b(x) ∈ Fδ, which allows to construct a strong solution

to dXt = −b(Xt)dt+
√
2dWt with diffuse initial data arguing as in [2].

In [15], Krylov proved that there exists a unique strong solution to (3) if |∇σ| ∈ Ld
loc, |b| ∈ Ld.

In [16], he constructed a strong Markov process that provides a weak solution to (3) assuming

that σ = σ(t, x) is only bounded measurable, and

|b| ∈ Lq
loc([0,∞[, Lr) for r ∈ [d,∞], q ∈ [1,∞],

d

r
+

1

q
≤ 1.

In [20, 21], the author investigated the properties of these solutions, establishing, in particular,

the boundedness of the resolvent operator, Itô’s formula, Harnack inequality, see also [17, 18, 19].

In [22], the author considered |b| ∈ Ld+1([0, 1] × Rd) (or, more generally, in a Morrey class) and

proved, in particular, that the problem

(∂t +∆+ b · ∇)v = f, v(1, ·) = 0,

has a unique solution, and the latter satisfies, for every p ∈]1, d+ 1[,

‖∂tv‖Lp([0,1]×Rd), ‖D2v‖Lp([0,1]×Rd) ≤ N1‖f‖Lp([0,1]×Rd) +N2‖f‖Lq([0,1]×Rd), Ni = Ni(d, p),

and

‖∇v‖Lq([0,1]×Rd) ≤ N1‖f‖Lq([0,1]×Rd), q :=
p(d+ 1)

d+ 1− p
.

(The estimates of the same type on the “order 1 + ε” derivatives of solution also play crucial role

in the present paper, see (4) below.) We also refer to recent papers [4, 23] where Alexandrov type

estimates are obtained for drifts of Morrey type.
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After [26] where Röckner-Zhao constructed a unique weak solution to (1) for b = b1 + b2
satisfying (2), they proved in [27] the strong existence and uniqueness for (1) assuming that either

|b| ∈ C([0, T ], Ld) or |b| ∈ Lq
(

[0, T ], Lr
)

, d
r +

2
q = 1, r ∈]d,∞[.

The examples above show that the class (2) considered in [26] is a proper subclass of Fδ.

Moreover, we have from the very beginning the strong Markov property of the constructed weak

solutions as a consequence of the Feller property. It should be added, however, that we prove

uniqueness in a class of weak solutions different from the one considered in [26].

About the proof. The main ingredients of the proof of Theorem 2.1 are as follows:

(a) A Feller evolution family {U t,s}s≤t (≡ contraction positivity preserving strongly continuous

evolution family of bounded linear operators on the space C∞ := {f ∈ C(Rd) | limx→∞ f(x) = 0}
endowed with the sup-norm) such that the function

u(t, ·) := U t,sf(·), f ∈ C∞

is a weak solution to Cauchy problem (∂t−∆+b(t, x) ·∇)u = 0, u(s, ·) = f(·). The Feller evolution

family {U t,s}s≤t is constructed using an approximation of b by smooth bounded vector fields bm
that do not increase the form-bound δ of b (see Theorem 2.1(i) below for detailed statement).

(b) The estimate

‖∇v‖qL∞([s,t],Lq) + ‖∇|∇v| q2 ‖2L2([s,t],L2)

≤ C
(

‖f|h| q2 ‖2L2([s,t],L2) + ‖∇f‖qq
)

, q ∈]d, δ− 1
2 [ (4)

for the solution v to the inhomogeneous Cauchy problem

(∂t −∆+ b(t, x) · ∇)v = |f|h, v(s, ·) = f(·) ∈W 1,q

where f ∈ Fβ, β <∞, h is bounded and has compact support, with constant C independent of h

and f .

An estimate of the type (4) appeared for the first time in the fundamental paper of Kovalenko-

Semënov [14]. There the authors proved that the solution w to the elliptic equation

(µ−∆+ b · ∇)w = f, b = b(x) ∈ Fδ, δ < 1 ∧ (
2

d− 2
)2

satisfies

‖∇w‖q + ‖∇|∇w|
q
2 ‖

2
q

2 ≤ C‖f‖q, q ∈]2 ∨ (d− 2),
2√
δ
[, µ > µ0 > 0, (5)

as was needed to carry out an Lp → L∞ iteration procedure that verifies conditions of the Trotter

Approximation Theorem in C∞. The latter yields the corresponding to −∆+b·∇ Feller semigroup.

The Feller evolution family {U t,s}, employed in the present paper, was constructed in [6] via

a direct (parabolic) variant of the iteration procedure of [14], which we outline below in Section

7. The regularity estimate (4) is the content of Theorem 2.2 below. We note that there is a

non-negligible difference between the proofs of (4) and (5) due to presence of the term ∂tv in the

former, which forces the more restrictive assumption δ < d−2 (compared to δ < 1∧ ( 2
d−2 )

2 in [14],

see Remark 1 below).

Armed with (a), (b), we provide two constructions of the weak solution to (1). The first

construction follows [8], [9] and uses as the point of departure the probability measures on the

càdlàg trajectories determined by the Feller evolution family U t,s. The second construction uses
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a tightness argument, similarly to the proof of the existence in [26]. In view of the approximation

result for U t,s, thus constructed probability measures coincide with the ones in the first proof.

The proof of the uniqueness also appeals to the approximation result for {U t,s} and the regu-

larity estimate (4). This is in addition to the fact that {U t,s} (and thus the family of the weak

solutions to (1) parametrized by x ∈ Rd) does not depend on the choice of a bounded smooth ap-

proximation {bm} of b preserving the form-bound of δ, see above. Similarly to [8], [9], we consider

the latter to be a uniqueness result for (1) on its own.

Further discussion. 1. Generally speaking, a drift b ∈ Fδ rules out W 2,p estimates on solutions

to the corresponding elliptic or parabolic equation for p large. More precisely, let (µ−∆+b·∇)w =

f , b = b(x) ∈ Fδ, f ∈ C∞
c and w ∈ W 1,r for r large (e.g. by (5)). Then, taking into account that

for every ε > 0 there exist b ∈ Fδ such that b 6∈ L2+ε
loc , one only has

∆w = λw + b · ∇w ∈ L
2r
2+r

loc

(this is in contrast to the sub-class |b| ∈ Ld, which provides ∆w ∈ L
dr
d+r ).

2. The heat kernel of −∆ + b(t, x) · ∇, b ∈ Fδ does not satisfy in general neither upper nor

lower Gaussian bound. In fact, already for b(x) = c|x|−2x the sharp two-sided bounds on the heat

kernel take form “a Gaussian density multiplied by a singular weight if c > 0, or a vanishing weight

if c < 0”. Nevertheless, the two-sided Gaussian bounds on the heat kernel of −∆+ b(t, x) · ∇ are

valid when b ∈ Fδ but under additional assumptions on div b, such as the Kato class condition,

see details in Kinzebulatov-Semënov [10] (in a more general context of divergence-form parabolic

equations).

3. The proofs of the main results of the present paper (Theorem 2.1 and Theorem 2.2 below)

can be extended, arguing as in [9], to stochastic equation

Xt = x−
∫ t

0
b(r,Xr)dr +

√
2

∫ t

0
σ(r,Xr)dWr, x ∈ Rd, (6)

with b ∈ Fδ and σ : [0,∞[×Rd → Rd⊗Rd (measurable, bounded, uniformly non-degenerate) such

that a := σσ⊤ satisfies
(

∂xk
aij

)d

i=1
∈ Fγkj , 1 ≤ j, k ≤ d, (7)

assuming that the form-bounds δ and γkj are smaller than certain explicit constants dependent

on the dimension d. The latter allows to treat form-bounded drifts together with some diffusion

coefficients having critical discontinuities. For instance,

a(t, x) = I + κ(t)
x⊗ x

|x|2 ,

where κ ∈ L∞([0,∞[) is measurable, inft≥0 κ(t) > −1 and ‖κ‖L∞([0,∞[) is sufficiently small, or an

infinite series of such matrices discontinuous at different points. Another example is

a(t, x) = I + c1 sin
2
(

κ(t) log |x|
)

e1 ⊗ e1 + c2 sin
2
(

t−α|x|1−
1
β
)

e2 ⊗ e2,

where ei ∈ Rd, |ei| = 1, ci > 0 (i = 1, 2), ‖κ‖L∞([0,∞[) is sufficiently small, and β > 1, α < β−1
2β .

Let us note that condition (7) arises first of all as the condition providing the Sobolev regularity

estimate (4) for solutions to the divergence-form parabolic equation (∂t −∇ · a · ∇+ b · ∇)v = 0,

b ∈ Fδ. The second use for (7) is to put the corresponding to (6) Kolmogorov operator −a·∇2+b·∇
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in divergence form −∇·a ·∇+ b̂ ·∇, b̂ := ∇a+b ∈ Fδ, as is needed to apply the regularity estimate

to construct the Feller evolution family and the weak solution to (6). See [9] for detailed discussion.

4. The result of Kovalenko-Semënov [14] (i.e. estimate (5) + Feller semigroup) has an alternative,

somewhat more elementary proof [7]. Namely, under the same assumption on δ as in [14], one

first “guesses” the resolvent Rq(µ) of −∆+ b · ∇ in Lq, q ∈]2 ∨ (d− 2), 2√
δ
[. That is, for r, p such

that 2 ≤ r < q < p <∞, set

Rq(µ) := (µ−∆)−1 − (µ−∆)−
1
2
− 1

pQq(p)(1 + Tq)
−1Gq(r)(µ−∆)−

1
2
+ 1

r , µ > µ0, (⋆)

where the operators in Lq

Gq(r) ≡ b
2
q · ∇(µ−∆)−

1
2
− 1

r , Qq(p) ≡ (µ −∆)
− 1

2
+ 1

p |b|1−
2
q , b

2
q := |b|

2
q
−1
b,

Tq ≡ b
2
q · ∇(µ−∆)−1|b|1−

2
q

are bounded and ‖Tq‖q→q < 1 (Lq → Lq norm). Here the boundedness of Gq(r), Qq(p), Tq is a

consequence of the hypothesis b ∈ Fδ, while ‖Tq‖q→q < 1 follows from the assumption on q and δ.

In fact, expanding (1 + Tq)
−1 in the geometric series, one obtains that the RHS of (⋆) coincides

with the formal K.Neumann series for µ−∆+ b ·∇. Now, since q > d− 2, the regularizing factor

(µ − ∆)−1/2−1/p in (⋆), with p chosen sufficiently close to q, yields, via the Sobolev Embedding

Theorem, that, for every f ∈ Lq, the solution w = Rq(µ)f to the equation (µ−∆+ b · ∇)w = f

is Hölder continuous. This observation allows to constructs the resolvent RC∞(µ) of the sought

Feller generator by the formula

RC∞(µ) :=
[

Rq(µ) ↾ L
q ∩ C∞

]clos

C∞→C∞
(closure of operator).

Let us note that the representation (⋆) provides more detailed information about the regularity

of higher-order derivatives of w: (µ − ∆)
1
2
+ 1

pw ∈ Lq, cf. (5). That being said, the construction

of the Feller semigroup via the iteration procedure of Kovalenko-Semënov [14] has some crucial

advantages: it admits extension to time-dependent drifts (see [6] and the present paper) and to

discontinuous diffusion coefficients [9].

Notations. Let B(X,Y ) denote the space of bounded linear operators between Banach spaces

X → Y , endowed with the operator norm ‖ · ‖X→Y . B(X) := B(X,X).

We write T = s-X- limn Tn for T , Tn ∈ B(X,Y ) if

lim
n

‖Tf − Tnf‖Y = 0 for every f ∈ X.

Let ‖ · ‖p := ‖ · ‖Lp .

Put

〈f, g〉 = 〈fg〉 :=
∫

Rd

fgdx

(all functions considered below are real-valued).

Let ‖ · ‖p→q = ‖ · ‖Lp→Lq .

C∞ := {f ∈ C(Rd) | limx→∞ f(x) = 0} (with the sup-norm).

S is the L. Schwartz’ space of test functions.

We denote by ↾ the restriction of an operator (or a function) to a subspace (a subset).

We write c 6= c(n) to emphasize that c is independent of n.
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2. Main results

We first introduce few notations and recall some standard definitions.

1. In what follows, given a form-bounded vector field b = b(t, x) ∈ Fδ, we denote by {bm} a

sequence of smooth bounded vector fields such that

bm → b in L2
loc([0,∞[×Rd,Rd) (8)

and
∫ ∞

0
‖bm(t, ·)ϕ(t, ·)‖22dt ≤ δ

∫ ∞

0
‖∇ϕ(t, ·)‖22dt+

∫ ∞

0
g(t)‖ϕ(t, ·)‖22dt (9)

for all ϕ ∈ C∞
c ([0,∞[×Rd), for a function 0 ≤ g ∈ L1

loc([0,∞[) independent of m (in other words,

bm do not increase the form-bound δ of b). An example of such {bm} is given in Section 3.2 below.

2. Consider Cauchy problem (s ≥ 0)
{ (

∂t −∆+ b(t, x) · ∇
)

u = 0, (t, x) ∈]s,∞[×Rd,

u(s+, ·) = f(·).
(CPb)
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Definition 2.1. Let b ∈ Fδ and f ∈ L2
loc. A real-valued function u on ]s,∞[×Rd is called a weak

solution to (CPb) if

1) u ∈ L∞
loc

(

]s,∞[, L2
loc

)

,

2) |∇u| ∈ L2
loc

(

]s,∞[, L2
loc

)

, so b · ∇u ∈ L1
loc

(

]s,∞[, L1
loc

)

,

3) the integral identity
∫ ∞

0
〈u, ∂th〉dt =

∫ ∞

s

(

〈∇u,∇h〉 + 〈∇u, bh〉
)

dt

is valid for all h ∈ C∞
c (]s,∞[×Rd), and

∃ lim
t↓s

〈u(t, ·), ψ(·)〉 = 〈f, ψ〉

for all ψ ∈ L2 having compact support.

3. Set

ρ(x) ≡ ρκ,θ(x) := (1 + κ|x|2)−θ, x ∈ Rd,

where θ > d
2 is fixed, and κ > 0 is to be chosen. We have

|∇ρ| ≤ θ
√
κρ. (10)

We will be applying (10) to ρ with κ chosen sufficiently small.

Theorem 2.1. Let d ≥ 3, b ∈ Fδ, δ < d−2. The following is true.

(i) Let {bm} be bounded smooth vector fields satisfying (8), (9). Then the limit

s-C∞- lim
m→∞

U t,s(bm) (loc. uniformly in 0 ≤ s ≤ t <∞),

where U t,s(bm) is the Feller evolution family of (CPbm) (Definition 7.1), exists and determines a

Feller evolution family, say, U t,s ≡ U t,s(b). For every f ∈ C∞, the function

u(t, ·) := U t,sf(·),

is a weak solution to (CPb). If f ∈ C∞ ∩ L2, then u is unique in the class C([0,∞[, L2).

(ii) The corresponding backward Feller evolution family P 0,t, t ∈ [0, T ], T > 0 (Definition 8.1)

determines probability measures {Px}x∈Rd on (C([0, T ],Rd),Bt = σ(ωr | 0 ≤ r ≤ t), t ∈ [0, T ]),

where ωt is the coordinate process,

P 0,tf(x) = EPx[f(ωt)], t ∈ [0, T ], f ∈ C∞,

such that, for every x ∈ Rd, Px is a weak solution to stochastic equation

Xt = x−
∫ t

0
b(r,Xr)dr +

√
2Wt (SE)

(Definition 8.3).

For every x ∈ Rd, q ∈]d, δ− 1
2 [, f ∈ Fβ, β < ∞, and h ∈ C([0, T ],S) there exists a constant c

dependent only on d, q, δ, gδ, β, gβ and T such that

EPx

∫ T

0
|f(r, ωr)h(r, ωr)|dr ≤ c‖f|h| q2 ‖

2
q

L2([0,T ]×Rd)
. (11)
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Moreover, (11) holds with the RHS replaced by c‖f|h| q2√ρx‖
2
q

L2([0,T ]×Rd)
, where ρx(y) := ρ(y − x),

for κ > 0 chosen sufficiently small.

(iii) The probability measures {Px}x∈Rd do not depend on the choice of {bm} in (i).

Also, if, for some x ∈ Rd, P1
x, P

2
x are weak solution to (SE) that satisfy (11) for some q ∈]d, δ− 1

2 [

with f = 1 and with f = b, then

P1
x = P2

x = Px.

Remarks. 1. The following “sequential uniqueness” result was proved in [8], see also [9]. Let

b = b(x) be form-bounded (in fact, it can be weakly form-bounded, see the introduction). Provided

that the form-bound δ of b is smaller than a certain explicit constant c = c(d), if {Qx}x∈Rd are weak

solutions to (SE), and are obtained via some approximation procedure, i.e. there exist bounded

smooth b̃n ∈ Fδ with g independent of n = 1, 2, . . . such that for every x ∈ Rd

Qx = w- lim
n

Px(b̃n)

(no convergence of b̃n to b is assumed), then

Qx = Px, x ∈ Rd,

where {Px}x∈Rd are from Theorem 2.1(ii). We expect that a similar result can be proved in the

assumptions of Theorem 2.1, but we do not address this matter here.

2. The following result is a consequence of [28, Theorem 1.1] (for the stationary case b = b(x),

see [14]). If b ∈ Fδ, 0 < δ < 4, then for every p ∈ Ic, where Ic :=] 2
2−

√
δ
,∞[, the limit

s-Lp- lim
n
U t,s(bm) (loc. uniformly in 0 ≤ s ≤ t <∞)

exists and determines a strongly continuous quasi contraction positivity preserving evolution fam-

ily in Lp, say, U t,s
p . For every f ∈ Lp, the function u(t, ·) = U t,s

p f(·) is a weak solution to (CPb)

in Lp (if δ > 1, then p > 2, so Definition 2.1 has to be modified accordingly, see [28]; it should be

noted here that the interval Ic is sharp, see [10] for detailed discussion). For all 0 ≤ s < t ≤ T ,

‖u(t, ·)‖q ≤ CT (t− s)
− d

2
( 1
p
− 1

q
)‖f‖p,

2

2−
√
δ
< p < q <∞ (12)

and

‖u(t, ·)‖p ≤ e
1

p
√

δ

∫ t
s
g(τ)dτ‖f‖p, 0 ≤ s ≤ t <∞

(the latter easily yields that the initial condition for u is satisfied in the strong sense).

By construction,

U t,s
p ↾ Lp ∩ C∞ = U t,s ↾ Lp ∩C∞,

where U t,s is the Feller evolution family from Theorem 2.1(i). Thus, in view of (12), by Dunford’s

Theorem, U t,s
p and U t,s, 0 ≤ s < t <∞ are integral operators whose integral kernels coincide a.e.

Let us also note that δ = 4 is the critical value for the weak solvability of (SE) with b(x) =

δ d−2
2 |x|−2x (at least as d→ ∞), see Example 1.2 above.

The following are the key analytic results used in the proof of Theorem 2.1.

Let Lq
ρ := Lq(Rd, ρdx), where ρ(x) = (1 + κ|x|2)−θ was introduced above.
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Proposition 2.1. Let d ≥ 3, b ∈ Fδ with δ < 4, f ∈ Fβ with β < ∞, both b and f are bounded

and C∞ smooth. Let h ∈ C([0, T ],S), f ∈ C∞
c (Rd). Fix T > s. Let v be the solution to Cauchy

problem
{

(∂t −∆+ b · ∇)v = |f|h, t ∈ [s, T ]

v(s, ·) = f,
(13)

For every q > 2
2−

√
δ
, q ≥ 2, there exist constants K and κ dependent only on d, q, δ, gδ, β, gβ

and T such that

‖v‖q
L∞([s,r],Lq

ρ)
≤ K

(

‖f|h| q2‖2L2([s,r],L2
ρ)
+ ‖f‖q

Lq
ρ

)

,

for 0 ≤ s ≤ r ≤ T .

Definition 2.2. We say that a constant is generic if it depends only on d, q, δ, gδ, β, gβ, T , ρ.

Theorem 2.2. In the assumptions of Proposition 2.1, assume additionally that δ < d−2. Let

q ∈]d, δ− 1
2 [. Then there exist generic constants C and κ such that, for all 0 ≤ s ≤ r ≤ T , the

solution v to (13) satisfies the following estimate

‖v‖q
L∞([s,r],Lq

ρ)
+ ‖∇v‖q

L∞([s,r],Lq
ρ)
+ ‖∇|∇v|

q
2 ‖2L2([s,r],L2

ρ)

≤ C
(

‖f|h| q2 ‖2L2([s,r],L2
ρ)
+ ‖∇f‖q

Lq
ρ
+ ‖f‖q

Lq
ρ

)

3. Examples

3.1. Form-bounded vector fields. 1. One has

b ∈ L∞([0,∞[, Ld + L∞) ⇒ b ∈ Fδ

with appropriate δ.

Indeed, let b = b1 + b2, where b1 ∈ L∞([0,∞[, Ld), b2 ∈ L∞([0,∞[, L∞). Then, by Hölder’s

inequality, for a.e. t ∈ [0,∞[ and all ψ ∈ C∞
c (]0,∞[×Rd),

‖b(t, ·)ψ(t, ·)‖22 ≤ (1 + ε)‖b1(t, ·)‖2d‖ψ(t, ·)‖22d
d−2

+ (1 + ε−1)‖b2(t, ·)‖2∞‖ψ(t, ·)‖22 (ε > 0)

(we are applying the Sobolev Embedding Theorem)

≤ CS(1 + ε)‖b1(t, ·)‖2d‖∇ψ(t, ·)‖22 + (1 + ε−1)‖b2(t, ·)‖2∞‖ψ(t, ·)‖22.

Integrating this inequality in time, we obtain that b ∈ Fδ with δ = CS(1 + ε)‖b1‖2L∞([0,∞[,Ld)
.

2. Also,

b ∈ C([0,∞[, Ld + L∞) ⇒ b ∈ Fδ with δ that can be chosen arbitrarily small.

Without loss of generality, b ∈ C([0,∞[, Ld). Consider first a b = b(x). Since |b| ∈ Ld, for every

ε > 0 one can represent b = b1+ b2, where ‖b1‖d < ε and ‖b2‖∞ <∞. (For instance, b2 = b1|b|≤m

and b1 = b− b2, so by the Dominated Convergence Theorem ‖b1‖d can be made arbitrarily small

by selecting m sufficiently large.) Now the previous example applies and yields the required. In

the general case, the continuity of b in time allows to represent b(t, ·) = b1(t, ·) + b2(t, ·), where

‖b1(t, ·)‖d < ε for all t ∈ [0, 1] and b2 is bounded on [0, 1] × Rd. Repeating this on every interval

[n, n + 1] (n ≥ 1), one obtains ‖b1‖L∞([0,∞[,Ld) < ε and b2 ∈ L∞
loc([0,∞[, L∞). (The continuity in
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time is not necessary for the smallness of δ, e.g. consider b(t, x) = a(t)b0(x) where a ∈ L∞([0,∞[)

is discontinuous and |b0| ∈ Ld.)

3. Further, any vector field

b ∈ Lp([0,∞[, Lq),
d

q
+

2

p
≤ 1,

is in Fδ with appropriate δ.

Indeed, e.g. in the more difficult case d
q + 2

p = 1, by Young’s inequality,

|b(t, x)| = |b(t, x)|
〈|b(t, ·)|q〉

1
q

〈|b(t, ·)|q〉
1
q ≤ d

q

( |b(t, x)|q
〈|b(t, ·)|q〉

)
1
d

+
2

p

(

〈|b(t, ·)|q〉
1
q
)

p
2 ,

where the first term is in L∞([0,∞[, Ld) (and so by the first example it is form-bounded) and the

second term is in L2([0,∞[, L∞) (the second term squared is to be absorbed by the function g).

(If p <∞, q > d, then one can argue as in the previous example to show that δ can be chosen

arbitrarily small.)

3. The class of form-bounded vector fields Fδ contains vector fields b = b(x) with |b| in Ld,w

(the weak Ld class). Recall that a function h : Rd → R is in Ld,w if

‖h‖d,w := sup
s>0

s|{x ∈ Rd : |h(x)| > s}|1/d <∞.

By the Strichartz inequality with sharp constant [13, Prop. 2.5, 2.6, Cor. 2.9], if |b| in Ld,w, then

b ∈ Fδ1 with
√

δ1 = ‖|b|(λ−∆)−
1
2 ‖2→2

≤ ‖b‖d,wΩ
− 1

d
d ‖|x|−1(λ−∆)−

1
2‖2→2 ≤ ‖b‖d,wΩ

− 1
d

d

2

d− 2
,

where Ωd = π
d
2Γ(d2 + 1) is the volume of B(0, 1) ⊂ Rd.

4. The Chang-Wilson-Wolff class Ws (s > 1) consists of the vector fields b = b(x) such that

|b|2 ∈ Ls
loc and ‖b‖Ws := sup

Q

1

|Q|

∫

Q
|b(x)|2 l(Q)2ϕ

(

|b(x)|2 l(Q)2
)

dx <∞,

where |Q| and l(Q) are the volume and the side length of a cube Q, respectively, ϕ : [0,∞[→ [1,∞[

is an increasing function such that
∫∞
1

dx
xϕ(x) <∞. By [3],

b ∈ Ws ⇒ b ∈ Fδ

with δ = δ
(

‖b2‖Ws

)

<∞.

The class Ws contains, in particular, the Campanato-Morrey class Cs (s > 1):

|b|2 ∈ Ls
loc and

(

1

|Q|

∫

Q
|b(x)|2sdx

)
1
s

≤ csl(Q)−2 for all cubes Q.

More generally, vector fields in L∞([0,∞[,Cs) or L∞([0,∞[,Ws) are form-bounded.

We refer to [10] for further discussion of form-bounded vector fields and their role in the theory

of divergence-form elliptic and parabolic equations.
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3.2. Approximation. Given a b ∈ Fδ, a sequence {bm} of bounded smooth vector fields satisfying

(8), (9) can be constructed e.g. by the formula (extending b to t < 0 by 0)

bm := cme
εm∆(t,x)(1mb),

where 1m is the indicator of {(t, x) | |b(t, x)| ≤ m, |x| ≤ m, |t| ≤ m} and ∆(t,x) is the Laplace

operator on R×Rd, for appropriate εm ↓ 0 and cm ↑ 1 so that bm ∈ Fδ with g independent of m.

Proof. Set b̃m = eεm∆(t,x)(1mb) and write

b̃m = 1mb+
(

b̃m − 1mb
)

.

Clearly, the first term 1mb ∈ Fδ with the same g = g(b). In turn, since for all m = 1, 2, . . . we

have

1mb ∈ L∞([0,∞[, Lr) for every d ≤ r <∞, sprt1mb ⊂ [0,m] ×B(0,m),

the following is true: given any γm ↓ 0 we can select εm ↓ 0 so that e.g. ‖b̃m−1mb‖Lr([0,∞[,Lr) ≤ γm,

and so the second term b̃m − 1mb ∈ FCSγ2
m

with g ≡ 0, see Example 2. Hence,

b̃m ∈ Fδm with δm = (
√
δ +

√

CSγ2m)2 and g = gδ ,

Now, selecting cm = δ
δm

and recalling that bm = cmb̃m, we have bm ∈ Fδ with the same g = gδ. �

4. Proof of Proposition 2.1

We will treat more difficult case q > 2. We multiply the equation in (13) by ρv|v|q−2 and

integrate to obtain

1

q
〈ρ|v(r)|q〉+ 4(q − 1)

q2

∫ r

s

〈

ρ|∇(v|v| q2−1)|2
〉

dt

=
1

q
〈ρ|f |q〉 −

∫ r

s
〈ρv|v|q−2, bm · ∇v〉dt+

∫ r

s
〈ρv|v|q−2, |f|h〉dt +R1

q , (14)

where R1
q := −1

q

∫ t
s 〈(∇ρ) · ∇|v|q〉. From now on, the terms containing ∇ρ will be denoted by Ri

q.

We will get rid of them, using estimate (10), towards the end of the proof. The terms to estimate

are

M1 ≡ −
∫ r

s
〈ρv|v|q−2, bm · ∇v〉dt and M2 ≡

∫ r

s
〈ρv|v|q−2, |f|h〉dt.

We have, using the quadratic inequality,

M1 = −2

q

∫ r

s
〈√ρ∇|v|

q
2 , bm

√
ρ|v|

q
2 〉dt

≤ 2ν

q

∫ r

s
〈ρ|∇|v| q2 |2〉dt+ 1

2qν

∫ r

s
〈ρ|bm|2|v|q〉dt (ν > 0)

(we are using bm ∈ Fδ)

≤ 2ν

q

∫ r

s
〈ρ|∇|v| q2 |2〉dt+ 1

2qν

[

δ

∫ r

s
〈|∇(

√
ρ|v| q2 )|2〉dt+

∫ r

s
gδ(t)〈ρ|v|q〉dt

]

≤
(2ν

q
+

δ

2qν

)

∫ r

s
〈ρ|∇|v| q2 |2〉dt+ 1

2qν

∫ r

s
gδ(t)〈ρ|v|q〉dt+

δ

2qν

(

R2
q +R3

q

)

,

where R2
q :=

∫ r
s 〈|v|

q
2∇ρ,∇|v| q2 〉dt, R3

q :=
∫ r
s 〈

|∇ρ|2
ρ |v|q〉dt.
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Next,

M2 ≤
γ

4

∫ r

s
〈ρ|v|q−2|f|2|h|2〉dt+ 1

γ

∫ r

s
〈ρ|v|q〉dt (γ > 0)

(we are applying in the first term ac ≤ ap/p+ cp
′
/p′ with p =

q

q − 2
, p′ =

q

2
)

≤ γ(q − 2)

4q

∫ r

s
〈ρ|f|2|v|q〉dt+ γ

2q

∫ r

s
〈ρ|f|2|h|q〉dt+ 1

γ

∫ r

s
〈ρ|v|q〉dt

(we are using f ∈ Fβ)

≤ γ(q − 2)

4q

[

β

∫ r

s
〈ρ|∇|v| q2 |2〉dt+

∫ r

s
gβ(t)〈ρ|v|q〉dt

]

+
γ

2q

∫ r

s
〈ρ|f|2|h|q〉dt+ 1

γ

∫ r

s
〈ρ|v|q〉dt+ γ(q − 2)β

4q

(

R2
q +R3

q

)

.

Thus, we obtain from (14):

1

q
〈ρ|v(r)|q〉+D

∫ r

s
〈ρ|∇(v|v|

q
2
−1)|2〉dt

≤ 1

q
〈ρ|f |q〉+

∫ r

s

(

Aδgδ(t) +Aβgβ(t) +
1

γ

)

〈ρ|v|q〉dt

+
γ

2q

∫ r

s
〈ρ|f|2|h|q〉dt+R1

q +

(

δ

2qν
+
γ(q − 2)β

4q

)

(R2
q +R3

q), (15)

where

D =
4(q − 1)

q2
− 2

q
ν − δ

2qν
− δ

γ(q − 2)

4q
,

Aδ =
1

2qν
, Aβ =

γ(q − 2)

4q
.

We maximize D by taking ν :=
√
δ
2 . Then

D =
4(q − 1)

q2
− 2

√
δ

q
− δ

γ(q − 2)

4q
> 0 ⇔ q >

2

2−
√
δ

(our assumption on q)

provided that γ is chosen sufficiently small.

Now, applying quadratic inequality and the inequality |∇ρ| ≤ θ
√
κρ, we obtain

R1
q +

(

δ

2qν
+
γ(q − 2)β

4q

)

(R2
q +R3

q) ≤ c(κ)
(

∫ r

s
〈ρ|∇|v| q2 |2〉dt+

∫ r

s
〈ρ|v|q〉dt

)

with c(κ) ↓ 0 as κ ↓ 0. Thus, we obtain from (15):

1

q
〈ρ|v(r)|q〉+

(

D − c(κ)
)

∫ r

s
〈ρ|∇(v|v| q2−1)|2〉dt

≤ 1

q
〈ρ|f |q〉+

∫ r

s
G(t)〈ρ|v|q〉dt+ γ

2q

∫ r

s
〈ρ|f|2|h|q〉dt,

where G(t) := Aδgδ(t) +Aβ gβ(t) +
1
γ + c(κ). We fix κ so that D − c(κ) > 0.

In particular, for all s ≤ r ≤ T ,

1

q
〈ρ|v(r)|q〉 ≤ 1

q
〈ρ|f |q〉+

∫ T

s
G(t)〈|v|q〉dt+ γ

2q
‖f|h| q2‖L2([s,T ],L2

ρ)
,
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so
1

q
‖v‖q

L∞([s,T ],Lq
ρ)

≤ 1

q
〈ρ|f |q〉+

∫ T

s
G(t)〈ρ|v|q〉dt+ γ

2q
‖f|h| q2 ‖2L2([s,T ],L2

ρ)
.

Hence, re-denoting T by r, we obtain from the last two inequalities

1

q
‖v‖q

L∞([s,r],Lq
ρ)
+

(

D − c(κ)
)

∫ r

s
〈ρ|∇(v|v| q2−1)|2〉dt

≤ 2

q
〈ρ|f |q〉+ 2

∫ r

s
G(t)〈ρ|v|q〉dt+ γ

q

∫ r

s
〈ρ|f|2|h|q〉dt.

Using
∫ r
s G(t)〈ρ|v|q〉dt ≤

∫ r
s G(t)dt ‖v‖L∞([s,r],Lq

ρ) and assuming first that r is sufficiently close to

s so that 1
q − 2

∫ r
s G(t)dt > 0, we obtain from the previous inequality the required bound, i.e.

‖v‖q
L∞([s,r],Lq

ρ)
≤ K

(

‖f|h| q2‖2L2([s,r],L2
ρ)
+ ‖f‖q

Lq
ρ

)

,

with K :=
(

1
q − 2

∫ r
s G(t)dt

)−1 γ+2
q .

Applying this bound repeatedly, we extend it to an arbitrary [s, r] ⊂ [s, T ] for any T > s. The

proof of Proposition 2.1 is completed.

5. Proof of Theorem 2.2

Let v be the solution of (13). We will prove existence of generic constants C0 and κ (κ from

the definition of ρ) such that

‖∇v‖q
L∞([s,r],Lq

ρ)
+ ‖∇|∇v| q2 ‖2L2([s,r],L2

ρ)

≤ C0

(

‖f|h| q2‖2L2([s,r],L2
ρ)
+ ‖∇f‖q

Lq
ρ

)

(16)

for 0 ≤ s ≤ r ≤ T .

(16) combined with Proposition 2.1 will yield the required.

Set

w := ∇v, ∇i := ∂xi , wi := ∇iv, wik := ∇i∇kv,

ϕi := −∇i(ρwi|w|q−2) (1 ≤ i ≤ d).

Put

Iq :=

∫ r

s

〈

ρ|w|q−2
d

∑

i=1

|∇wi|2
〉

dt, Jq :=

∫ r

s
〈ρ|w|q−2|∇|w||2〉dt.

Multiplying the equation (13) by the “test functions” ϕi, integrating, and summing up in 1 ≤ i ≤ d,

we obtain
d

∑

i=1

∫ r

s
〈ϕi, ∂tv〉dt =

d
∑

i=1

∫ r

s
〈ϕi,∆v〉dt −

d
∑

i=1

∫ r

s
〈ϕi, bm · w〉dt +

d
∑

i=1

∫ r

s
〈ϕi, |f|h〉dt

or

S = S1 + S2 + S3.

Our goal is to evaluate S, S1 and to estimate S2, S3 in terms of Jq and Iq (≥ Jq), arriving at the

principal inequality

〈ρ|w(r)|q〉+ C1Jq ≤ 〈ρ|∇f |q〉+
∫ r

s
G(t)〈ρ|w|q〉dt+ C

∫ r

s
〈ρ|f|2|h|q〉dt
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with generic constants C1 > 0, C and a function G ∈ L1
loc([0,∞[), from which (16) will follow

easily.

1. Integrating by parts, we obtain:

S =

d
∑

i=1

∫ r

s
〈ρ(wi|w|q−2), ∂twi〉dt

=
1

q

∫ r

s
∂t〈ρ|w|q〉dt =

1

q
〈ρ|w(r)|q〉 − 1

q
〈ρ|∇f |q〉.

2. Next, we integrate by parts twice:

S1 = −
d

∑

i=1

∫ r

s
〈∇i(ρwi|w|q−2),∆v〉dt

= −
d

∑

i=1

∫ r

s
〈ρ∇(wi|w|q−2),∇wi〉dt+R4

q

= −
∫ r

s
〈ρ|w|q−2

d
∑

i=1

|∇wi|2〉dt−
1

2

∫ r

s
〈ρ∇|w|q−2,∇|w|2〉dt+R4

q ,

where R4
q := −∑d

i=1

∫ r
s 〈(∇ρ)|w|q−2, wi∇wi〉dt. The terms containing ∇ρ will again be denoted

by Ri
q. We will get rid of them towards the end of the proof.

Thus,

S1 = −Iq − (q − 2)Jq +R4
q .

3. In order to estimate S2, we evaluate:

ϕi = −ρwii|w|q−2 − (q − 2)ρ|w|q−3wi∇i|w| − (∇iρ)wi|w|q−2. (17)

Thus,

S2 =

∫ r

s
〈ρ|w|q−2∆v, bm · w〉dt+

∫ r

s
〈ρw · ∇|w|q−2, bm · w〉dt +R5

q

=: W1 +W2 +R5
q ,

where R5
q := −

∫ r
s 〈(∇ρ) · w|w|q−2, bm · w〉dt.

Let us estimate W1, W2. Applying the quadratic inequality, we have

W1 ≤
γ

4

∫ r

s
〈ρ|w|q−2|∆v|2〉dt+ 1

γ

∫ r

s
〈ρ|bm|2|w|q〉dt (γ > 0)

(we are applying b ∈ Fδ)

≤ γ

4

∫ r

s
〈ρ|w|q−2|∆v|2〉dt

+
1

γ

[

δ

∫ r

s

〈

|∇(
√
ρ|w|q/2)|2

〉

dt+

∫ r

s
gδ(t)〈ρ|w|q〉dt

]

=
γ

4

∫ r

s
〈ρ|w|q−2|∆v|2〉dt+ 1

γ

[

δ
q2

4
Jq +

∫ r

s
gδ(t)〈ρ|w|q〉dt

]

+
δ

γ
(R6

q +R7
q), (18)
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where R6
q :=

∫ r
s

〈

|w| q2∇ρ,∇|w| q2
〉

dt, R7
q :=

∫ r
s

〈 |∇ρ|2
ρ |w|q

〉

dt. Now, representing |∆v|2 = |∇ · w|2
and integrating by parts twice, we obtain

∫ r

s
〈ρ|w|q−2|∆v|2〉dt = −

∫ r

s
〈ρ∇|w|q−2 · w,∆v〉dt +

d
∑

i=1

∫ r

s
〈ρwi∇|w|q−2,∇wi〉dt+ Iq +R8

q +R9
q

=: F +H + Iq +R8
q +R9

q ,

where R8
q := −

∫ r
s 〈(∇ρ) · w|w|q−2,∆v〉dt, R9

q :=
∑d

i=1

∫ r
s 〈wi|w|q−2∇ρ,∇wi〉dt. Applying the qua-

dratic inequality, we have

F ≤ (q − 2)

[

1

4κ

∫ r

s
〈ρ|w|q−2|∆v|2〉dt+ κJq

]

(κ > 0), H ≤ (q − 2)

(

1

2
Iq +

1

2
Jq

)

.

Thus, for any κ > q−2
4 (we will fix κ later),

(

1− q − 2

4κ

)
∫ r

s
〈ρ|w|q−2|∆v|2〉dt ≤ Iq + (q − 2)

(

κJq +
1

2
Iq +

1

2
Jq

)

+R8
q +R9

q . (19)

Thus, applying (19) in (18), we arrive at

W1 ≤
γ

4

4κ

4κ − q + 2

(

Iq + (q − 2)(κJq +
1

2
Iq +

1

2
Jq)

)

+
1

γ

(

δ
q2

4
Jq +

∫ r

s
gδ(t)〈ρ|w|q〉dt

)

+
γ

4

4κ

4κ − q + 2
(R8

q +R9
q) +

δ

γ
(R6

q +R7
q).

Remark 1. In the elliptic case one can estimate S2 more efficiently, using the equation for v one

more time to evaluate ∆v, see [14].

Next, using the quadratic inequality, we obtain

W2 ≤ (q − 2)

∫ r

s
〈ρ|w|q−2

∣

∣∇|w|
∣

∣, |bm||w| q2 〉dt

≤ (q − 2)

(

ν

∫ r

s
〈ρ|w|q−2|∇|w||2〉dt+ 1

4ν

∫ r

s
〈ρ|bm|2|w|q〉dt

)

(ν > 0)

(we are applying b ∈ Fδ)

≤ (q − 2)

(

νJq +
δ

4ν

q2

4
Jq +

1

4ν

∫ r

s
gδ(t)〈ρ|w|q〉dt+

δ

4ν
(R6

q +R7
q)

)

,

completing the estimate of S2.

4. To estimate S3, we represent it, using (17), in the form

S3 =

∫ r

s
〈ρ|w|q−2∆v, |f|h〉dt +

∫ r

s
〈ρw · ∇|w|q−2, |f|h〉dt +R10

q

=: Z1 + Z2 +R10
q ,

where R10
q :=

∫ r
s 〈(∇ρ) · w|w|q−2, |f|h〉dt.
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Applying the quadratic inequality, we have

Z1 ≤
α1

4

∫ r

s
〈ρ|w|q−2|∆v|2〉dt+ 1

α1

∫ r

s

〈

ρ|w|q−2|f|2|h|2
〉

dt (α1 > 0)

(we are using (19))

≤ κα1

4κ − q + 2

[

Iq + (q − 2)(κJq +
1

2
Iq +

1

2
Jq)

]

+
1

α1
Lq +

κα1

4κ − q + 2
(R8

q +R9
q),

where

Lq :=

∫ r

s

〈

ρ|w|q−2|f|2|h|2
〉

dt.

Next,

Z2 ≤ (q − 2)

∫ r

s

〈

ρ|w| q2−1∇|w|, |w|(q−2)/2 |f||h|
〉

dt (α2 > 0)

≤ (q − 2)

[

α2Jq +
1

4α2
Lq

]

.

It remains to estimate Lq. Applying inequality ac ≤ εp ap

p + ε−p′ cp
′

p′ (ε > 0) with p = q/(q − 2),

p′ = q/2, we obtain

Lq =

∫ r

s
〈ρ

q−2
q |f|2−

4
q |w|q−2, ρ

2
q |f|

4
q |h|2〉dt

≤ q − 2

q
ε

q
q−2

∫ r

s
〈ρ|f|2|w|q〉dt+ 2

q
ε−

q
2

∫ r

s
〈ρ|f|2|h|q〉dt

(we are using f ∈ Fβ)

≤ q − 2

q
ε

q
q−2

[

β
q2

4
Jq +

∫ r

s
gβ(t)〈ρ|w|q〉dt+ β(R6

q +R7
q)

]

+
2

q
ε−

q
2

∫ r

s

〈

ρ|f|2|h|q
〉

dt.

This completes the estimate of S3.

5. Applying 1-4 in the identity S = S1 + S2 + S3, we obtain

1

q
〈ρ|w(r)|q〉+NIq +MJq ≤

1

q
〈|∇f |q〉+

∫ r

s

[

Aδgδ(t) +Aβgβ
]

〈ρ|w|q〉dt (20)

+ C

∫ r

s
〈ρ|f|2|h|q〉dt+

10
∑

i=4

ciR
i
q

for appropriate generic constants ci > 0, where

N := 1− (γ + α1)κ

4κ − q + 2

(

1 +
1

2
(q − 2)

)

,

M := q − 2− (q − 2)

(

ν + α2 +
δ

16ν
q2 +

qβε
q

q−2

4
(
1

α1
+
q − 2

4α2
)

)

− δ

γ

q2

4
− (γ + α1)κ

4κ − q + 2
(q − 2)

(

κ +
1

2

)

,

Aδ :=
q − 2

4ν
+

1

γ
, Aβ := ε

q
q−2

q − 2

q

(

1

α1
+
q − 2

4α2

)

and C := ε−
q
2
2

q

(

1

α1
+
q − 2

4α2

)

.
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We maximize N +M by choosing

ν :=
q
√
δ

4
, κ :=

q − 1

2
, γ :=

q
√
δ

q − 1
.

Then N = 1− q
√
δ

2 + o(ε, α1, α2), where o(ε, α1, α2) can be made as small as needed by selecting

sufficiently small α1, α2 and ε. Due to
√
δ < q−1 we may and will select α1, α2 and ε so that

N > 0. Thus, we can apply in (20) the elementary inequality Iq ≥ Jq arriving at

1

q
〈ρ|w(r)|q〉+ (N +M)Jq ≤

1

q
〈ρ|∇f |q〉 (21)

+

∫ r

s
G(t)〈ρ|w|q〉dt+ C

∫ r

s
〈ρ|f|2|h|q〉dt+

10
∑

i=4

ciR
i
q

for all s ≤ r ≤ T , where we denoted G(t) := Aδgδ(t) +Aβgβ(t).

Now,

N +M =
(

q − 1− q
√
δ

2
(2q − 3)

)

+ o2(ε, α1, α2),

where o2(ε, α1, α2) can be made as small as needed by selecting sufficiently small α1, α2 and ε.

Our assumptions on δ and q ensure that we can select α1, α2 and ε so that in (21) N +M > 0.

Next, applying the quadratic inequality, the form-boundedness of f and the inequality |∇ρ| ≤
θ
√
κρ, we can estimate the Ri

q terms in (21) by
∫ r
s 〈ρ|w(t)|q〉dt, Jq and

∫ r
s 〈ρ|f|2|h|q〉dt, with coef-

ficient c(κ) that can be made as small as needed by selecting κ sufficiently small.

Thus, (21) yields

1

q
〈ρ|w(r)|q〉+

(

N +M − c(κ)
)

∫ r

s
〈ρ|∇|w| q2 |2〉dt

≤ 1

q
‖∇f‖q

Lq
ρ
+

∫ r

s

(

G(t) + c(κ)
)

〈ρ|w|q〉dt+
(

C + c(κ)
)

‖f|h| q2 ‖2L2([s,r],L2
ρ)

with κ chosen sufficiently small so that N +M − c(κ) > 0.

Finally, arguing as in the end of the proof of Proposition 2.1 (selecting r sufficiently close to s

and using the reproduction property), we obtain (16). The proof of Theorem 2.2 is completed.

6. Some corollaries of Theorem 2.2

Let {bm} be a bounded smooth approximation of b satisfying (8), (9). In the proof of Theorem

2.1 we will use

Corollary 6.1. In the assumptions of Theorem 2.2, let v ≡ vm be the solution to Cauchy problem

(∂t −∆+ bm · ∇)v = |f|h, v(s, ·) = 0.

For every q ∈]d, δ− 1
2 [, there exists a generic constant C0 such that

‖v‖L∞([s,r]×Rd) ≤ C0‖f|h|
q
2 ‖

2
q

L2([s,r],L2)

for all 0 ≤ s ≤ r ≤ T .
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Proof. Repeating the proof of Theorem 2.2 with ρ ≡ 1 (in which case all terms Ri
q disappear), we

obtain (taking into account that the initial function f here is 0)

‖v‖qL∞([s,r],Lq) + ‖∇v‖qL∞([s,r],Lq) + ‖∇|∇v| q2 ‖2L2([s,r],L2) ≤ C‖f|h| q2 ‖2L2([s,r],L2).

Now, applying the Sobolev Embedding Theorem to the second term in the LHS, we obtain the

required. �

Corollary 6.2. Let d ≥ 3, b ∈ Fδ with δ < d−2. Let v = vk,m,n be the solution to

(∂t −∆+ bm · ∇)v = |bk − bn|h, v(s, ·) = 0,

where h ∈ C([0, T ],S). For every q ∈]d, δ− 1
2 [ there exists a generic constant C0 such that

‖v‖L∞([s,r]×Rd) ≤ C0‖(bk − bn)|h|
q
2 ‖

2
q

L2([s,r],L2)

for all 0 ≤ s ≤ r ≤ T .

Proof. f := bk − bn ∈ F4δ in Corollary 6.1. �

Corollary 6.3. In the assumptions of Corollary 6.2, let v ≡ vm be the solution to

(∂t −∆+ bm · ∇)v = h, v(s, ·) = 0, h ∈ C∞
c ([0, T ] × Rd).

For every q ∈]d, δ− 1
2 [ there exists a generic constant C such that

‖v‖q
L∞([s,r],Lq)

+ ‖∇v‖q
L∞([s,r],Lq)

+ ‖∇|∇v| q2 ‖2L2([s,r],L2) ≤ C‖h‖q
Lq([s,r],Lq)

,

for all 0 ≤ s ≤ r ≤ T .

Proof. We repeat the proof of Theorem 2.2 with ρ ≡ 1, f ≡ 1 and the initial function f = 0. �

Corollary 6.4. In the assumptions of Corollary 6.2, let v = vk,m be the solution to

(∂t −∆+ bm · ∇)v = |bk|, v(s, ·) = 0.

For every q ∈]d, δ− 1
2 [ there exist generic constants C1, C2 and κ such that

‖ρ
1
q v‖L∞([s,r]×Rd) ≤ C1‖bk

√
ρ‖L2([s,r],L2),

‖v‖L∞([s,r]×Rd) ≤ C2 sup
z∈Zd

‖bk
√
ρz‖L2([s,r],L2), ρz(x) := ρ(x− z),

for all 0 ≤ s ≤ r ≤ T .

Proof. Repeating the proof of Theorem 2.2 with f = bk and h ≡ 1, we obtain

‖v‖q
L∞([s,r],Lq

ρ)
+ ‖∇v‖q

L∞([s,r],Lq
ρ)

≤ C‖bk‖2L2([s,r],L2
ρ)
.

By (10),

‖∇v‖L∞([s,r],Lq
ρ)

= sup
[s,r]

〈ρ|∇v|q〉
1
q = sup

[s,r]

〈
∣

∣∇
(

ρ
1
q v

)

− 1

q
ρ

1
q
−1(∇ρ)v

∣

∣

q〉 1
q

≥ ‖∇
(

ρ
1
q v

)

‖q −
1

q
θ
√
κ‖ρ

1
q v‖q,

so applying the Sobolev Embedding Theorem to the first term, we obtain the first inequality. The

second inequality follows from the first one using translations. �
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Corollary 6.5. In the assumptions of Corollary 6.2, let u ≡ um be the solution to

(∂t −∆+ bm · ∇)u = 0, u(s, ·) = f.

For every q ∈]d, δ− 1
2 [ there exist generic constants C and κ such that

‖u‖q
L∞([s,r],Lq

ρ)
+ ‖∇u‖q

L∞([s,r],Lq
ρ)
+ ‖∇|∇u| q2‖2L2([s,r],L2

ρ)

≤ C
(

‖∇f‖q
Lq
ρ
+ ‖f‖q

Lq
ρ

)

and

‖ρ
1
q u‖L∞([s,r]×Rd) ≤ C

(

‖∇f‖Lq
ρ
+ ‖f‖Lq

ρ

)

.

for all 0 ≤ s ≤ r ≤ T .

Proof. The first estimate is Theorem 2.2 with f = 0. The second estimate follows from the first

one using the Sobolev Embedding Theorem and arguing as in the proof of Corollary 6.4. �

7. Proof of Theorem 2.1(i)

The convergence result of Theorem 2.1(i) was proved in [6]. The method of proof is the parabolic

variant of the iteration procedure of Kovalenko-Semënov [14]. For reader’s convenience we outline

the proof below.

Definition 7.1. A Feller evolution family is a family of linear operators {U t,s}0≤s≤t≤T ⊂ B(C∞)

such that

1) U t,rU r,s = U t,s (r ∈ [s, t]),

2) U s,s = Id,

3) ‖U t,sf‖∞ ≤ ‖f‖∞, U t,s[C+
∞] ⊂ C+

∞,
4) U r,s = s-C∞- limt↓r U t,s (r ≥ s).

By a standard result, if b is bounded and smooth, then, given an initial function f ∈ C∞, there

exists a unique classical solution u to Cauchy problem (CPb), and the operators

U t,sf(·) := u(t, ·), 0 ≤ s ≤ t ≤ T,

constitute a Feller evolution family.

Now, let b ∈ Fδ, δ < d−2 and let bm, m = 1, 2, . . . be a bounded smooth approximation of b

satisfying (8), (9). Let U t,s
m ≡ U t,s(bm) be the Feller evolution family determined by (CPbm). Let

f ∈ C∞
c , um(t, ·) := U t,s

m f(·). We write Um = U t,s
m if no ambiguity arises.

1. Subtracting the equations for um, un and setting h := um − un, we obtain

∂th−∆h+ bm · ∇h+ (bm − bn) · ∇un = 0, h(s, ·) = 0. (22)

Multiplying the last equation by h|h|p−2, p > 2
2−

√
δ
, integrating and applying the quadratic

inequality and b ∈ Fδ (we only need δ < 4 at this step), we arrive at [6, Lemma 2]:
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For every 0 < α < 1 there exist θ > 0, k = k(δ) > 1 and a m0 such that for all m,n ≥ m0, for

all p ≥ p0 >
2

2−
√
δ

we have

‖um − un‖
L

p
1−α ([s,s+θ],L

pd
d−2+2α )

≤
(

C0δ‖∇um‖2
L2λ′ ([s,s+θ],L2σ′(Rd))

)
1
p
(p2k)

1
p ‖um − un‖

1− 2
p

L(p−2)λ([s,s+θ],L(p−2)σ)
, (23)

for any σ such that

1 < σ <
d

d− 2 + 2α
,

1

σ
+

1

σ′
= 1,

and
1/(1 − α)

λ
=
d/(d − 2 + 2α)

σ
,

1

λ
+

1

λ′
= 1,

for a constant C0 = C0(θ) that does not depend on m or s.

2. Since δ < d−2, we can apply [6, Lemma 1] (or Corollary 6.5 where we apply the Sobolev

Embedding Theorem to the term ‖∇|∇um| q2 ‖2L2([s,r],L2)) to obtain

‖∇um‖qL∞([s,r],Lq) + ‖∇um‖q
Lq([s,r],L

qd
d−2 )

≤ C‖∇f‖qq.

Applying Young’s inequality in the last estimate, one can bound the factor ‖∇um‖L2λ′ ([s,s+θ],L2σ′(Rd))

in inequality (23) by C1‖∇f‖q. Now, one can iterate the resulting inequality. Set

DT = {(s, t) | 0 ≤ s ≤ t ≤ T}, DT, θ := DT ∩ {(s, t) | 0 ≤ t− s ≤ θ}, θ < T.

We have [6, Lemma 3]:

In the assumptions of Theorem 2.1, for any p0 >
2

2−
√
δ

there exist θ > 0, constants B <∞ and

γ :=
(

1− σd
d+2

)(

1− σd
d+2 + 2σ

p0

)−1
> 0 (1 < σ < d+2

d ) independent of m,n such that

‖Umf − Unf‖L∞(DT, θ×Rd) ≤ B sup
0≤s≤T−θ

‖Umf − Unf‖γLp0([s,s+θ],Lp0) for all n,m (24)

(the fact that γ is strictly positive is the main concern of the iteration procedure).

3. That {Umf} indeed converges in Lp0([s, s + θ], Lp0) is the content of [6, Lemma 4]. Its

proof consists of subtracting the equations for um, un and using quadratic inequality and b ∈ Fδ

to show that the sequence {Umf} is fundamental in L∞(DT , L
2) and hence, since U t,s

m are L∞

contractions, in L∞(DT , L
p) for all 2 ≤ p <∞.

Combining Steps 2 and 3, we obtain the convergence result of Theorem 2.1(i) first on DT,θ and

then, using the reproduction property of U t,s
m , on DT :

∃ s-C∞- lim
m→∞

U t,s
m =: U t,sf (loc. uniformly in (s, t) ∈ DT ), f ∈ C∞

c .

Since U t,s
m are (positivity preserving) L∞ contractions, so is U t,s. Now a density argument allows

to extend U t,s to C∞. The convergence result of Theorem 2.1(i) follows.

The fact that U t,sf , f ∈ C∞ delivers a weak solution to (CPb) is the content of [6, Proposition

1].

The uniqueness of the weak solution in class C([0,∞[, L2) was proved (in greater generality) in

[28].
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8. Proof of Theorem 2.1(ii)

Having at hand Theorem 2.1(i) and Corollaries 6.1-6.5, we will give two proofs. Both of them

use rather standard arguments.

The first proof uses the fact that we have at our disposal a backward Feller evolution family

P t,r, 0 ≤ t ≤ r ≤ T (see below) and follows [8].

The second proof uses a tightness argument, as in [34, 35, 26]. It yields, for every x ∈ Rd,

a weak solution Px to (SE). In view of the convergence result in Theorem 2.1(i), Px, x ∈ Rd

coincide with the probability measures determined by P 0,r.

Recall that by Xm
t = Xm

t,x, m = 1, 2, . . . we denote the strong solution to the stochastic equation

Xm
t = x−

∫ t

0
bm(r,Xm

r )dr +
√
2Wt, x ∈ Rd.

We will need

Definition 8.1. A backward Feller evolution family {P t,r}0≤t≤r≤T ⊂ B(C∞) satisfies

1◦) P t,sP s,r = P t,r (s ∈ [t, r]).

2◦) P r,r = Id,

3◦) ‖P t,rf‖∞ ≤ ‖f‖∞, P t,r[C+
∞] ⊂ C+

∞,
4◦) P t,r = s-C∞- limt↑s P s,r (r ≥ s).

The terminal-value problem
{ (

∂t +∆+ b(t, x) · ∇
)

w = 0, 0 ≤ t ≤ r ≤ T,

u(r, ·) = f(·)
(TPb)

determines a backward Feller evolution family: P t,rf(·) := w(t, ·).
We have

P t,r(b) = UT−t,T−r(b̃), b̃(t, x) = b(T − t, x),

where U t,s is the Feller evolution family for (CPb).

Definition 8.2. A probability measure Px, x ∈ Rd on (C([0, T ],Rd),Bt = σ(ωr | 0 ≤ r ≤ t)),

where ωt is the coordinate process, is said to be a martingale solution to stochastic equation (SE)

if

1) Px[ω0 = x] = 1;

2) Ex

∫ r
0 |b(t, ωt)|dt <∞, 0 < r ≤ T ;

3) for every f ∈ C2
c (R

d) the process

r 7→ f(ωr)− f(x) +

∫ r

0
(−∆f + b · ∇f)(t, ωt)dt

is a Br-martingale under Px.

Definition 8.3. A martingale solution Px of (SE) is said to be a weak solution if, upon completing

Bt (to B̂t), there exists a Brownian motion Wt on
(

C([0, T ],Rd), B̂t,Px

)

such that

ωr = x−
∫ r

0
b(t, ωt)dt+

√
2Wr, r ≥ 0 Px − a.s.
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8.1. Proof №1.

Claim 1. For all x ∈ Rd, 0 ≤ t ≤ r ≤ T , 〈P t,r(x, ·)〉 = 1.

This is a consequence of Corollary 6.5 and the convergence in Theorem 2.1(i). (Indeed, working

with the weight ρ, we can show, for a fixed x, that for every ε > 0 there exists R > 0 such that

〈P t,r
m (x, ·)1Rd−B(0,R)(·)〉 < ε for all m = 1, 2, . . . , and so 〈P t,r

m (x, ·)1B(0,R)(·)〉 ≥ 1 − ε. Passing to

the limit in m and then in R→ ∞, we obtain 〈P t,r(x, ·)〉 ≥ 1− ε, which yields the required since

ε > 0 is arbitrary. For details, see the proof of [8, Lemma 2].)

By a standard result (see e.g. [5, Ch. 2]), given a conservative backward Feller evolution family,

there exist probability measures Px (x ∈ Rd) on (D([0, T ],Rd),B′
t = σ(ωr | 0 ≤ r ≤ t)), where

D([0, T ],Rd) is the space of right-continuous functions having left limits, and ωt is the coordinate

process, such that

Ex[f(ωr)] = P 0,rf(x), 0 ≤ r ≤ T.

Here and below, Ex := EPx.

The following estimate, which is a consequence of Corollary 6.4, plays a crucial role both in the

present proof and in the alternative proof given below.

Claim 2. There exists a constant C > 0 independent of m, k such that

sup
m

sup
x∈Rd

E

∫ r

s
|bk(t,Xm

t,x)|dt ≤ CF (r − s)

for 0 ≤ s ≤ r ≤ T , where F (h) := h+ sups∈[0,T−h]

∫ s+h
s g(t)dt.

Proof. Let v = vm,k be the solution to the terminal-value problem

(∂t +∆− bm · ∇)v = −|bk|, v(r, ·) = 0, t ≤ r.

By Itô’s formula,

v(r,Xm
r ) = v(s,Xm

s ) +

∫ r

s
(∂tv +∆v − bm · ∇v)(t,Xm

t )dt+
√
2

∫ r

s
∇v(t,Xm

t )dWt.

Taking the expectation, we obtain

E

∫ r

s
|bk(t,Xm

t )|dt = Ev(s,Xm
s ).

Since Ev(s,Xm
s ) ≤ ‖v(s, ·)‖∞, we obtain from Corollary 6.4

E

∫ r

s
|bk(t,Xm

t )|dt ≤ C̃ sup
z∈Zd

‖bk
√
ρz‖L2([s,r],L2).

Since bk ∈ Fδ, we have

‖bk
√
ρz‖2L2([s,r],L2) ≤

δ

4

∫ r

s
〈 |∇ρz|

2

ρz
〉dt+

∫ r

s
g(t)〈ρz〉dt

≤ δ

4
(r − s)‖∇ρ/√ρ‖22 + ‖√ρ‖22

∫ r

s
g(t)dt

(we are using (10) and ‖√ρ‖2 <∞)

≤ CF (r − s)

for 0 ≤ s ≤ r ≤ T . �
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Claim 3. Ex[
∫ r
0 |b(t, ωt)|dt] <∞.

Proof. Using Theorem 2.1(i) we can pass to the limit m→ ∞ in Claim 2 to obtain

Ex[

∫ r

0
|bk(t, ωt)|dt] ≤ CF (r − s) <∞.

Now, Fatou’s Lemma applied in k → ∞ yields the required. �

Claim 4. For every f ∈ C2
c (R

d), the process

Mf
r := f(ωr)− f(x) +

∫ r

0
(−∆f + b · ∇f)(t, ωt)dt

is a B′
r-martingale under Px.

Proof. Set Pm
x := (PXm)−1 and Em

x := EPm
x

. First, we note that

Em
x [f(ωr)] → Ex[f(ωr)], Em

x [

∫ r

0
(−∆f)(ωt)dt] → Ex[

∫ r

0
(−∆f)(ωt)dt] (m → ∞), (⋆)

as follows from the convergence result in Theorem 2.1(i). Next, we note that

Em
x

∫ r

0
(bm · ∇f)(t, ωt)dt → Ex

∫ r

0
(b · ∇f)(t, ωt)dt (m → ∞). (⋆⋆)

The latter follows from:

(a)

Em
x

∣

∣

∣

∣

∫ r

0

(

(bm − bn) · ∇f
)

(t, ωt)dr

∣

∣

∣

∣

≤ C‖(bm − bn)|∇f |
q
2 ‖L2([0,r],L2)

→ 0 (m,n → ∞)

since bm → b in L2
loc([0,∞[×Rd) and f has compact support. The inequality is proved arguing as

in the proof of Claim 2 using Corollary 6.2 instead of Corollary 6.4.

(b)

Em
x

[
∫ r

0
(bn · ∇f)(t, ωt)dt

]

→ Ex

[
∫ r

0
(bn · ∇f)(t, ωt)dt

]

(m→ ∞).

(c)

Ex

∣

∣

∣

∣

∫ r

0

(

(b− bn) · ∇f
)

(t, ωt)dt

∣

∣

∣

∣

≤ C‖(b− bn)|∇f |
q
2‖L2([0,r],L2)

→ 0 (n→ ∞).

The proof is similar to (a) (using Corollary 6.2 where we pass to the limit in m and then in k

appealing to Fatou’s Lemma).

We are in position to complete the proof of Claim 4. Since

Mf
r,m := f(ωr)− f(x) +

∫ r

0
(−∆f + bm · ∇f)(t, ωt)dt

is a B′
r-martingale under Pm

x ,

x 7→ Em
x [f(ωr)]− f(x) + Em

x

∫ r

0
(−∆f + bm · ∇f)(t, ωt)dt is identically zero on Rd,
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and so by (⋆), (⋆⋆)

x 7→ Ex[f(ωr)]− f(x) + Ex

∫ r

0
(−∆f + b · ∇f)(t, ωt)dt is identically zero in Rd.

Since {Px}x∈Rd are determined by a Feller evolution family, and thus constitute a Markov process,

the latter suffices (see e.g. the proof of [17, Lemma 2.2]) to conclude that Mf
r is a B′

r-martingale

under Px. �

Having at hand Claim 4, we establish

Claim 5. {Px}x∈Rd are concentrated on (C([0, T ],Rd),Bt).

The proof repeats the proof of [8, Lemma 4].

We denote the restriction of Px from (D([0, T ],Rd),B′
t) to (C([0, T ],Rd),Bt) again by Px, and

thus obtain that for every x ∈ Rd and all f ∈ C2
c

Mf
r = f(ωr)− f(x) +

∫ r

0
(−∆f + b · ∇f)(t, ωt)dt, ω ∈ C([0, T ],Rd),

is a Br-martingale under Px.

Thus, Px is a Br-martingale solution to (SE).

The proof that Mf
r is also a martingale for f(x) = xi and f(x) = xixj is obtained by following

closely [8, proof of Lemma 6] (we have to work again with the weight ρ and Corollary 6.4). It

follows that

r 7→ ωr − x+

∫ r

0
b(t, ωt)dt

is a continuous Br-martingale having the cross-variation of a Brownian motion times
√
2, so, by

Lévy Theorem, Px is a weak solution to (SE).

Finally, we note that Px satisfies estimate (11) in view of Corollary 6.1, upon applying the

convergence result of Theorem 2.1(i) and then applying Fatou’s Lemma to appropriate bounded

smooth approximation fm of f that does not increase the form-bound β of f (such fm can be

constructed as in Section 3.2).

8.2. Proof №2. Claim 2 will again play a crucial role.

Claim 6. There exists a constant Ĉ independent of m such that, for every 0 < β < 1

sup
m

sup
x∈Rd

E

[

sup
t∈[0,T ],a∈[0,h]

|Xm
t+a,x −Xm

t,x|β
]

≤ C̃β

1− β
F̃ (h), h > 0,

where F̃ (h) = h
1
2 + F (h).

Proof. Armed with Claim 2, we can repeat [26, proof of Theorem 1.1]. For any stopping time

τ ≤ T ,

E sup
a∈[0,h]

|Xm
τ+a,x −Xm

τ,x| ≤ E

∫ τ+h

τ
|bm(t,Xm

t,x)|dt+
√
2E sup

a∈[0,h]
|Wτ+a −Wτ |

Thus, applying Claim 2 (with k = m), we obtain

E sup
a∈[0,h]

|Xm
τ+a,x −Xm

τ,x| ≤ CF (h) + C1h
1
2 ≤ C̃F̃ (h).
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Now a Chebyshev-type argument [34, Lemma 2.7] yields the required. �

It is easily seen that F (h) ↓ 0 as h ↓ 0, and thus so does F̃ (h). Thus, applying Chebyshev’s

inequality in Claim 6, we have for every ǫ > 0

lim
h↓0

sup
m

sup
x∈Rd

P

[

sup
t∈[0,T ],a∈[0,h]

|Xm
t+a,x −Xm

t,x| > ǫ

]

= 0.

It follows that {Pm
x := (PXm)−1}∞m=1 is tight. Therefore, for every x ∈ Rd there exists a sequence

Pmk
and a probability measure Px on (C([0, T ],Rd),Bt) such that

Pmk
x → Px weakly as k → ∞.

The latter and the convergence result in Theorem 2.1(i) yield

Pm
x → Px weakly as m→ ∞. (∗)

Claim 7. For every x ∈ Rd, Px is a martingale solution to (SE).

Proof. Put Ex := EPx, E
m
x := EPm

x
. Claim 2 can be stated as

Em
x

∫ r

s
|bk(t, ωt)|dt ≤ CF (r − s), for all x ∈ Rd, m, k = 1, 2, . . . ,

where C is independent of m and k. Taking the limit in m and then applying Fatou’s Lemma in

k, we obtain

Ex

∫ r

s
|b(t, ωt)|dt is finite (i.e.≤ CF (r − s)).

It remains to show that for every f ∈ C2
c

Mf
r := f(ωr)− f(x) +

∫ r

0
(−∆f + b · ∇f)(t, ωt)dt

is a martingale under Px. By a standard result, it suffices to show that for every “test function”

η ∈ Cb(C([0, T ],Rd)), for all 0 ≤ s < r ≤ T ,

Ex[M
f
r η] = Ex[M

f
s η].

We will need the following:

(a)

Em
x

∣

∣

∣

∣

∫ r

0

(

(bm − bn) · ∇f
)

(t, ωt)dt · η(ω)
∣

∣

∣

∣

≤ C‖η‖∞‖(bm − bn)|∇f |
q
2 ‖L2([0,r],L2)

→ 0 (m,n → ∞)

since bm → b in L2
loc([0,∞[×Rd) and f has compact support. To prove the inequality in (a), we

argue as in the proof of Claim 2 but use Corollary 6.2 (with k = m).

(b)

Em
x

[
∫ r

0
(bn · ∇f)(t, ωt)dt · η(ω)

]

→ Ex

[
∫ r

0
(bn · ∇f)(t, ωt)dt · η(ω)

]

(m→ ∞).
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(c)

Ex

∣

∣

∣

∣

∫ r

0

(

(b− bn) · ∇f
)

(t, ωt)dt · η(ω)
∣

∣

∣

∣

≤ C‖η‖∞‖(b− bn)|∇f |
q
2 ‖L2([0,r],L2)

→ 0 (n→ ∞).

The proof of the inequality in (c) follows closely the proof (a) (using Corollary 6.2 passing to the

limit in m and then in k appealing to Fatou’s Lemma).

Now, having at hand (a)-(c), we complete the proof. We have

Em
x [Mf,m

r η] = Em
x [Mf,m

s η], m = 1, 2, . . . , (∗∗)

where

Mf,m
r := f(ωr)− f(x) +

∫ r

0
(−∆f + bm · ∇f)(t, ωt)dt,

so it remains to pass to the limit in m in (∗∗). The assertions (a)-(c) yield

Em
x [

∫ r

0
(bm · ∇f)(t, ωt)dt η(ω)] → Ex[

∫ r

0
(b · ∇f)(t, ωt)dt η(ω)],

while

Em
x [f(ωr)η(ω)] → Ex[f(ωr)η(ω)],

and

Em
x [

∫ r

0
(−∆f)(ωt)η(ω)dt] → Ex[

∫ r

0
(−∆f)(ωt)η(ω)dt] (m → ∞),

follow from (∗). �

Thus, Px is a Bt-martingale solution to (SE). The rest repeats the end of the first proof.

9. Proof of Theorem 2.1(iii)

The first statement is immediate from assertion (i): given two bounded smooth approximations

{bm}, {b′m} of b, by (i) their combination {b1, b′1, b2, b2,′ , . . . } will produce a new Feller evolution

family that, in turn, must coincide with the Feller evolution families produced by {bm} and {b′m}.
Let us prove the second statement. We have P1

x, P2
x, two martingale solutions to (SE) that

satisfy

Ei
x

∫ T

0
|h(t, ωt)|dt ≤ c‖h‖Lq([0,T ]×Rd) (25)

and

Ei
x

∫ T

0
|b(r, ωt)h(t, ωt)|dt ≤ c‖b|h| q2‖

2
q

L2([0,T ]×Rd)
, h ∈ C([0, T ],S) (26)

with constant c independent of h (i = 1, 2). Here and below, E1
x := EP1

x
, E2

x := EP2
x
. Let us show

that for every F ∈ C∞
c (]0, T [×Rd) we have

E1
x[

∫ T

0
F (t, ωt)dt] = E2

x[

∫ T

0
F (t, ωt)dt], (27)

which will then imply P1
x = P2

x.
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Let un be the solution to

∂tun −∆un + bn · ∇un = F, un(T, ·) = 0, (28)

where bn are as in Section 3.2, i.e.

bn = cne
ǫn∆1nb,

where cn ↑ 1, 1n is the indicator of {(t, x) ∈ [0, T ]×Rd | |n| ≤ n, |x| ≤ n, |b(t, x)| ≤ n} and, given

any d ≤ p1 <∞, we can select ǫn ↓ 0 sufficiently rapidly so that

‖1nb− bn‖Lp1 ([0,T ],Lp1) → 0 n→ ∞. (29)

Set τR := inf{t ≥ 0 | |wt| ≥ R}, R > 0. Since un is smooth, we can apply Itô’s formula, obtaining

(i = 1, 2)

Ei
xun(T ∧ τR, ωT∧τR) = un(0, x) + Ei

x

∫ T∧τR

0
F (t, ωt)dt

+ Ei
x

∫ T∧τR

0

[

(b− bn) · ∇un
]

(t, ωt)dt. (30)

We represent

Ei
x

∫ T∧τR

0

[

(b− bn) · ∇un
]

(t, ωt)dt = Ei
x

∫ T∧τR

0

[

(b− 1nb) · ∇un
]

(t, ωt)dt

+ Ei
x

∫ T∧τR

0

[

(1nb− bn) · ∇un
]

(t, ωt)dt

=: I1n + I2n.

1. Let us estimate I1n. We have

I1n ≤ Ei
x

∫ T∧τR

0

[

|b|(1 − 1n)|∇un|
]

(t, ωt)dt

(we are applying (26))

≤ c‖1B(0,R)|b|(1 − 1n)|∇un|
q
2 ‖

2
q

L2([0,T ]×Rd)
.

In turn, for a 0 < θ < 1, we have

‖1B(0,R)|b|(1− 1n)|∇un|
q
2‖L2([0,T ]×Rd)

≤ ‖1B(0,R)|b|(1− 1n)‖θL2([0,T ]×Rd)

(

2‖1B(0,R)|b||∇un|
q

2(1−θ) ‖
)1−θ

L2([0,T ]×Rd)
.

The first multiple ‖1B(0,R)|b|(1−1n)‖θL2([0,T ]×Rd)
→ 0 as n→ ∞. The second multiple is uniformly

(in n) bounded: by b ∈ Fδ,

‖|b||∇un|
q

2(1−θ) ‖2L2([0,T ]×Rd)

≤ δ

∫ T

0
〈|∇|∇un|

q
2(1−θ) |2〉dt+

∫ T

0
g(t)〈|∇un|

q
1−θ 〉dt,

where the RHS is uniformly bounded in view of Corollary 6.3, provided that θ is chosen sufficiently

close to 0 so that q
1−θ ∈]d, δ− 1

2 [. Thus, I1n → 0 as n→ ∞.
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2. By (25),

I2n ≤ Ei
x

∫ T∧τR

0

[

|1nb− bn||∇un|
]

(s, ωs)ds

≤ c‖1B(0,R)|1nb− bn|
q
2 |∇un|

q
2‖

2
q

L2([0,T ]×Rd)
,

where, for every 0 < θ < 1,

‖1B(0,R)|1nb− bn|
q
2 |∇un|

q
2‖L2([0,T ]×Rd)

≤ ‖1B(0,R)|1nb− bn|
q
2θ ‖θL2([0,T ]×Rd)‖|∇un|

q
2(1−θ) ‖1−θ

L2([0,T ]×Rd)
.

The second multiple is uniformly (in n) bounded in view of Corollary 6.3, provided that θ is chosen

sufficiently close to 0 so that q
1−θ ∈]d, δ− 1

2 [. The first multiple tends to 0 as n → ∞ in view of

(29) with p1 =
q
θ .

Combining 1 and 2, we arrive at
∣

∣

∣

∣

Ei
x

∫ T∧τR

0

[

(b− bn) · ∇un
]

(t, ωt)dt

∣

∣

∣

∣

→ 0 as n→ ∞. (31)

Now, we will need

Lemma 9.1. un converge uniformly on [0, T ]× Rd to a u ∈ C([0, T ]× Rd).

Lemma 9.1 follows from the convergence result in Theorem 2.1(i) and the Duhamel principle.

Alternatively, one can carry out the Lp0 → L∞ iteration procedure used in the proof of Theorem

2.1(i) but for equation (28). Indeed, taking the difference between solutions um, un to equation

(28) with b = bm, b = bn, respectively, we arrive at the same equation (22), and hence to the

same iteration inequality (23). To estimate the factor containing ∇um, we appeal to Theorem 2.2

rather than to [6, Lemma 1]. We arrive at (24), which yields the required uniform convergence

once we establish the convergence of un in L2. The latter follows easily by modifying the proof of

[6, Lemma 4].

Thus, using un(T, ·) = 0 and applying (31) and Lemma 9.1 in (30), we pass to the limits n→ ∞
and then R→ ∞ to obtain

0 = u(0, x) + Ei
x

∫ T

0
F (t, ωt)dt i = 1, 2,

which yields (27). The proof of Theorem 2.1(iii) is completed.
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