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D.KINZEBULATOV, K.R.MADOU, YU.A. SEMËNOV

Abstract. We study the heat kernel of the supercritical fractional diffusion equation with the
drift in the critical Hölder space. We show that such a drift can have point irregularities strong
enough to make the heat kernel vanish at a point for all t > 0.

1. Introduction and main result

1. The present paper concerns the fractional diffusion equation

∂tu+ (−∆)
α
2 u− f · ∇u = 0, f : Rd → Rd, d ≥ 3 (1)

in the critical (α = 1) and the supercritical regimes (0 < α < 1). The terminology “critical” and
“supercritical” refers to the fact that when α = 1 the drift term f · ∇ is of the same weight as
the diffusion term (−∆)

α
2 , while if α < 1 then, formally, f · ∇ dominates (−∆)

α
2 , so the standard

perturbation-theoretic techniques are not applicable.
This equation continues to attract interest, motivated, in particular, by applications in hy-

drodynamics. In the supercritical regime, it was studied by Constantin-Wu [4] who established
Hölder continuity of solution u assuming that the vector field f is in C0,1−α and div f = 0. Later
the Hölder continuity of solution without the divergence-free assumption on the drift was estab-
lished by Silvestre [18]. The Hölder continuity exponent 1 − α arises in both papers from the
scaling arguments (in a variant of the De Giorgi method and a comparison principle, respectively).
Maekawa-Miura [13] considered (1), in particular in the supercritical regime, and established an
upper bound on the heat kernel when f ∈ C0,1−α, div f = 0. Recently, Menozzi-Zhang [14] es-
tablished two-sided heat kernel bound in the “sub”-supercritical case |f| ∈ C0,γ , γ > 1− α; Zhao
[20] established weak well-posedness for the SDE associated with (1) provided that ‖f‖C0,1−α is
sufficiently small; see also [19, 21]. (In fact, [13, 14] allow time-dependent coefficients that can
grow at infinity, [14, 19, 20, 21] deal with more general than (−∆)

α
2 diffusion term.) See also

references therein.
Below we show that the class C0,1−α contains vector fields that have point irregularities strong

enough to make the heat kernel of (1) vanish (in the y variable, for all t > 0). More precisely,
we consider as the drift f a bounded, infinitely differentiable outside of the origin vector field
b : Rd → Rd such that

b(x) = κ|x|−αx in {|x| < 1} (2)
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where κ > 0. The vector field b is, in a sense, a prototypical representative of the class C0,1−α.
We establish a vanishing upper bound on the heat kernel, see Theorem 1.

In order to keep the paper short, we will be assuming that on {|x| ≥ 1} the derivatives of the
vector field b are uniformly bounded, and |div b| is less than C|x|−α for some constant C > 0
(e.g. b can have compact support). The method of the paper can handle b(x) = κ|x|−αx, x ∈ Rd.

The critical regime α = 1, with f in BMO and divergence-free, was studied by Caffarelli-Vasseur
[3] and, later, by Kiselev-Nazarov [11]. The critical regime without the divergence-free condition
but assuming that |f| ∈ L∞ was considered by Silvestre [18]. Our result includes α = 1 as well.

Set γ(s) := 2sπ
d
2 Γ( s2 )

Γ( d2−
s
2 ) .

Theorem 1. Let d ≥ 3, 0 < α ≤ 1. Let b be defined by (2) with κ > 0. Then the heat kernel of
the operator Λ = (−∆)

α
2 − b · ∇, constructed in Proposition 1 below, determines a C0 semigroup

in Lr = Lr(Rd) for all r ∈ [1,∞[, and satisfies for all 0 < t ≤ 1, x, y ∈ Rd

0 ≤ e−tΛ(x, y) ≤ Ct−
d
α
[
1 ∧ t−

β
α |y|β

]
(3)

(possibly after a modification on a measure zero set in Rd × Rd), where the order of vanishing
β ∈]0, α[ is determined from the equation

β
d+ β − 2
d+ β − α

γ(d+ β − 2)
γ(d+ β − α) = κ (see Fig. 1). (4)

The equation (4) is the condition that |x|β is the Lyapunov function of the formal operator
(−∆)

α
2 +∇ · κ|x|−αx, i.e

[
(−∆)

α
2 +∇ · κ|x|−αx

]
|x|β = 0.

Theorem 1 is proved by considering operator Λr in the weighted space L1(Rd, ψdx), with
appropriate vanishing weight ψ(x) ≈ (1 ∧ |x|)β, where the operator is “desingularized”, and the
semigroup e−tΛr is L1(Rd, ψdx) → L∞ ultracontractive. The desingularization procedure was
introduced by Milman-Semënov to establish two-sided heat kernel bounds for the Schrödinger
operator −∆ + κ|x|−2 [15, 16, 17]. The non-symmetric, non-local desingularization for Λ =
(−∆)

α
2 − κ|x|−αx · ∇ in the subcritical case 1 < α < 2 was developed in Kinzebulatov-Semënov-

Szczypkowski [10] (κ < 0) and Kinzebulatov-Semënov [7] (κ > 0). See Theorem 2 below. The
desingularization procedure also works in the critical α = 1 and the supercritical α < 1 regimes,
as we show in this paper. This is rather notable, since α ≤ 1 is known to present its own set of
difficulties compared to 1 < α < 2.

It should be noted that in [7] (1 < α < 2) the authors proved, using perturbation-theoretic
arguments, the following two-sided heat kernel bound

e−tΛ(x, y) ≈ e−t(−∆)
α
2 (x, y)[1 ∧ t−

1
α |y|]β (5)

for β ∈]0, α[ determined by (4). The bound (3) describes the behaviour of the heat kernel around
the singularity of the drift, but it leaves open the question of two-sided bound for (1) with f := b

in the critical and the supercritical regimes. We plan to address it in the future.
The case of b with κ < 0, which corresponds to the attracting drift, can be treated by modifying

the argument in [10]:

e−tΛ(x, y) ≤ Ct−
d
α
[
1 ∧ t−

β
α |y|β

]
for β ∈]− d+ α, 0] such that Λ∗|x|β = 0.
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Figure 1. The graph of β as a function of the coefficient κ for d = 3 and α = 1
2 .

We will not be proving this bound here (in fact, to make this result complete one has to prove the
lower bound). Let us only mention that the construction of the heat kernel requires an energy
inequality in some Lr, r ≥ 2 (see [10]), which imposes a constraint from below on the admissible
values of κ < 0 (cf. [20]). Namely, multiplying the equation by u|u|r−2 and integrating, we have

2
r
∂t〈|u|r〉 − λ〈|u|r〉+ Re〈(−∆)

α
2 u, u|u|r−2〉 − |κ|d− α

r
〈|x|−α, |u|r〉 ≤ 0, for some λ > 0.

Now, applying the fractional Hardy inequality

Re〈(−∆)
α
2 u, u|u|r−2〉 ≥ cd,α,r〈|x|−α, |u|r〉

with the sharp constant cd,α,r (see [2]), we arrive at the condition |κ|d−αr < cd,α,r, which yields a
constraint on κ < 0 from below. In fact, in the local case α = 2, some aspects of the regularity
theory of the corresponding parabolic equation depend on this constraint, see [8]. It is interesting
to note that, for α < 2, for every κ < 0 there exists a β ∈] − d, 0[ such that Λ∗|x|β = 0. (In
principle, this open up a possibility to verify accretivity of Λ in the weighed space L1(Rd, ψdx),
ψ(x) ≈ (1∧|x|)β, for any κ < 0, and hence to construct a C0 semigroup there. We plan to address
this matter in detail elsewhere.)

In the subcritical regime 1 < α < 2 there is a greater variety of classes of admissible drifts
having critical-order singularities. In particular, Bogdan-Jakubowski [1] established two-sided
heat kernel bounds for (1) with f in the Kato class. Regarding the case div f = 0, see Jakubowski
[5], Maekawa-Miura [13] who considered f in the Campanato-Morrey class. The weak solvability
and the Feller property for the corresponding SDE with drift f in an even larger class of weakly
form-bounded vector fields were proved in Kinzebulatov-Madou [6].
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2. Let us describe the construction of the heat kernel in Theorem 1. Put |x|ε :=
√
|x|2 + ε.

Let us fix smooth vector fields b ∈ Cb(Rd) ∩ C∞(Rd), ε > 0 such that

bε(x) :=
{
b(x), |x| > 2,
κ|x|−αε x, |x| < 1.

In {1 ≤ |x| ≤ 2}, we require uniform convergence

bε → b, ∇xibε → ∇xib, ∇2
xixjbε → ∇

2
xixjb

and |∇xibε| ≤ σ1 (i = 1, . . . , d), |div bε| ≤ σ2 on {|x| ≥ 1} with constants σ1, σ2 independent of ε.
For r ∈ [1,∞[ put

Λεr := −ε∆ + (−∆)
α
2 − bε · ∇, D(Λεr) =W2,r (Bessel space),

the generator of a positivity preserving L∞ contraction quasi contraction holomorphic semigroup
(e.g. by the Hille Perturbation Theorem, cf. [7, Sect. 8]).

Proposition 1. Let d ≥ 3, 0 < α ≤ 1. Let b be defined by (2) with κ > 0. For every r ∈ [1,∞[,
the limit

s-Lr- lim
ε↓0

e−tΛ
ε
r (loc. uniformly in t ∈ [0,∞[)

exists and determines a L∞ contraction positivity preserving quasi contraction semigroup on Lr,
say, e−tΛr . Its generator Λr is an appropriate operator realization of the formal operator (−∆)

α
2 −

b · ∇ in Lr.
The Sobolev embedding property and the ultracontractivity property hold:

〈Λ2u, u〉 ≥ cS‖u‖22d
d−α

, u ∈ D(Λ2),

‖e−tΛr‖r→q ≤ cNeωrtt−
d
α

( 1
r
− 1
q

)
, t ∈ [0,∞[, 1 ≤ r < q ≤ ∞,

where cS, cN are generic constants.
e−tΛr is a semigroup of integral operators.

By construction, the integral kernel e−tΛ(x, y) of e−tΛr does not depend on r. It is defined to
be the heat kernel of (−∆)

α
2 − b ·∇. One can easily see that u(t) := e−tΛ2f with f ∈ L2 is a weak

solution to (1).

Notations. We write
〈u, v〉 = 〈uv̄〉 :=

∫
Rd
uv̄dx.

The fractional Laplacian (−∆)
α
2 is defined in Lr, r ∈ [1,∞[ or Cu (bounded uniformly contin-

uous functions with the sup-norm) in the sense of Balakrishnan. (Here −∆ is defined in Lr or
Cu as the generator of the heat semigroup in these spaces.)

We denote by B(X,Y ) the space of bounded linear operators between Banach spaces X → Y ,
endowed with the operator norm ‖ · ‖X→Y . Set B(X) := B(X,X).

We write T = s-X- limn Tn for T , Tn ∈ B(X) if Tf = limn Tnf in X for every f ∈ X. We also
write Tn

s→ T if X = L2.
Denote ‖ · ‖p→q := ‖ · ‖Lp→Lq .
We say that a constant is generic if it only depends on d, κ, α, σ1, σ2.
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2. Proof of Proposition 1

The proof is contained in the next three claims.

Claim 1. For every r ∈ [1,∞[ and all ε > 0,

‖e−tΛεr‖r→r ≤ eωrt.

There exists constant cN independent of ε such that, for all 1 ≤ r < q ≤ ∞,

‖e−tΛεr‖r→q ≤ cNeωrtt−
d
α

( 1
r
− 1
q

)
, t > 0.

There exists constant cS independent of ε such that

〈Λε2u, u〉 ≥ cS‖u‖22d
d−α

, u ∈ D(Λε2) =W2,2.

Although the proof of Claim 1 is standard, we included it in Appendix A for the sake of
completeness.

To prove that s-Lr- limε↓0 e
−tΛεr exists and determines a C0 semigroup, we will show that

{e−tΛ
εn
r f} is a Cauchy sequence in L∞([0, 1], Lr), for any f ∈ C∞c and any {εn} ↓ 0,. For that,

we will need a uniform bound on the L2 norm of the gradient of uε(t) := e−tΛ
ε
f .

Claim 2. There exists a constant ω3 independent of ε such that

‖∇uε(t)‖2 ≤ etω3‖∇f‖2, t ≥ 0.

Proof of Claim 2. Denote u ≡ uε, w := ∇u, wi := ∇iu. Since f ∈ C∞c and ∇ni biε ∈ C∞ (n = 0, 1)
are bounded and continuous, we can differentiate the equation ∂tu+ Λεu = 0 in xi, obtaining

∂twi − ε∆wi + (−∆)
α
2wi − bε · ∇wi − (∇ibε) · w = 0.

Multiplying the latter by w̄i, integrating by parts and summing up in i = 1, . . . , d, we obtain

1
2∂t‖w‖

2
2 + ε

d∑
i=1
‖∇wi‖22 +

d∑
i=1
‖(−∆)

α
4wi‖22 − Re

d∑
i=1
〈bε · ∇wi, wi〉 − Re

d∑
i=1
〈(∇ibε) · w,wi〉 = 0.

Here, using the integration by parts, we obtain

− Re〈bε · ∇wi, wi〉 = 1
2〈(div bε)wi, wi〉

≥ κ

2 〈1|x|<1(d|x|−αε − α|x|−α−2
ε |x|2)wi, wi〉 −

σ2
2 〈wi, wi〉.

Also,

−〈(∇ibε) · w,wi〉 ≥ −κ〈1|x|<1|x|−αε wi, wi〉+ κα〈1|x|<1|x|−α−2
ε xiw̄i(x · w)〉 − σ1〈1|x|≥1|w|2〉,

and so

−Re
d∑
i=1
〈(∇ibε) · w,wi〉 ≥ −κ〈1|x|<1|x|−αε |w|2〉 − σ1d〈|w|2〉.

Thus,

1
2∂t‖w‖

2
2 + ε

d∑
i=1
‖∇wi‖22 +

d∑
i=1
‖(−∆)

α
4wi‖22

+ κ
d− α− 2

2 〈1|x|<1|x|−αε |w|2〉+ καε

2 〈1|x|<1|x|−α−2
ε |w|2〉 −

(
σ1d+ σ2

2
)
‖w‖22 ≤ 0,
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and so, since κ > 0,
1
2∂t‖w‖

2
2 + κ

d− α− 2
2 〈1|x|<1|x|−αε |w|2〉 ≤

(
σ1d+ σ2

2
)
‖w‖22.

Since d ≥ 3, α ≤ 1, we have d− α− 2 ≥ 0. Thus, integrating in t, we obtain

‖w(t)‖22 ≤ etω3‖∇f‖22, t ≥ 0, ω3 := σ1d+ σ2
2 .

�

Next, set un := uεn , bn := bεn , where εn ↓ 0, and put

g(t) := un(t)− um(t), t ≥ 0.

Claim 3. ‖g(t)‖2 → 0 uniformly in t ∈ [0, 1] as n,m→∞.

Proof of Claim 3. We subtract the equations for un and um and obtain

∂tg − εn∆g − (εn − εm)∆um + (−∆)
α
2 g − bn · ∇g − (bn − bm) · ∇um = 0,

so, after multiplying by g and integrating, we have
1
2∂t‖g‖

2
2 + εn‖∇g‖22 + (εn − εm)〈∇um,∇g〉

+ ‖(−∆)
α
4 g‖22 − Re〈bn · ∇g, g〉 − Re〈(bn − bm) · ∇um, g〉 = 0. (6)

Concerning the last two terms, we have (uniformly in t ∈ [0, 1]):

−Re〈bn · ∇g, g〉 ≥ −
σ2
2 ‖g‖

2
2

(arguing as in the proof of Claim 2), and

|〈(bn − bm) · ∇um, g〉| = |〈1|x|<2(bn − bm) · ∇um, g〉|
(we use ‖g‖∞ ≤ 2‖f‖∞)
≤ ‖1|x|<2(bn − bm)‖2‖∇um‖22‖f‖∞

(we are using Claim 2)
≤ 2eω3‖1|x|<2(bn − bm)‖2‖∇f‖2‖f‖∞ → 0 as n,m→∞,

Using again Claim 2, we have

|(εn − εm)〈∇um,∇g〉| ≤ |εn − εm|‖∇um‖2‖∇g‖2 → 0 as n,m→∞.

Thus, integrating (6) in t and using the last three observations, we have for all 0 < τ ≤ 1

sup
t∈[0,τ ]

‖g(t)‖22 − σ2

∫ τ

0
‖g(s)‖22ds ≤ o(ε),

where o(ε)→ 0 as ε ↓ 0. It follows that

(1− σ2τ) sup
t∈[0,τ ]

‖g(t)‖22 ≤ o(ε),

where τ > 0 is fixed so that σ2τ < 1. This yields the required convergence on [0, τ ]. Now, the
latter and the reproduction property of the approximating semigroups end the proof of Claim
3. �
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By Claim 3, {e−tΛεnf}∞n=1, f ∈ C∞c is a Cauchy sequence in L∞([0, 1], L2). Set

T t2f := s-L2- lim
n
e−tΛ

εn
f uniformly in 0 ≤ t ≤ 1.

(Clearly, the limit does not depend on the choice of {εn} ↓ 0.) Extending T t2 by continuity to
L2, and then to all t > 0 by postulating the reproduction property, we obtain a C0 semigroup on
L2. Put e−tΛ2 := T t2, t ≥ 0. Now Claim 1 and the standard density argument yields convergence
in all Lr, 1 ≤ r < ∞. The ultracontractivity property follows. The fact that the resulting
semigroups are integral operators is an immediate consequence of the ultracontractivity and the
Dunford-Pettis Theorem.

It remains to prove the Sobolev embedding property. By Claim 1 (Λε ≡ Λε2),

Re
〈
Λε(1 + Λε)−1g, (1 + Λε)−1g

〉
≥ cS‖(1 + Λε)−1g‖22d

d−α
, g ∈ L2, cS 6= cS(ε),

i.e.
Re
〈
g − (1 + Λε)−1g, (1 + Λε)−1g

〉
≥ cS‖(1 + Λε)−1g‖22d

d−α
.

Using the convergence (1 + Λε)−1 s→ (1 + Λ)−1 in L2 as ε ↓ 0, we obtain Re
〈
Λ(1 + Λ)−1g, (1 +

Λ)−1g
〉
≥ cS‖(1 + Λ)−1g‖22d

d−α
for all g ∈ L2, and so the Sobolev embedding follows.

3. Proof of Theorem 1

3.1. Desingularization theorem. We first state an abstract desingularization theorem from
[7]. We will apply it in the next section to the operator (−∆)

α
2 − b · ∇.

Let X be a locally compact topological space, and µ a σ-finite Borel measure on X. Set
Lp = Lp(X,µ), p ∈ [1,∞], a (complex) Banach space. Let ‖ · ‖p→q := ‖ · ‖Lp→Lq . Let −Λ be the
generator of a contraction C0 semigroup e−tΛ, t > 0, in L2.

Assume that, for some constants M ≥ 1, cS > 0, j > 1, c > 0,

‖e−tΛf‖1 ≤M‖f‖1, t ≥ 0, f ∈ L1 ∩ L2. (B11)

Sobolev embedding property: Re〈Λu, u〉 ≥ cS‖u‖22j , u ∈ D(Λ). (B12)

‖e−tΛ‖2→∞ ≤ ct−
j′
2 , t > 0, j′ = j

j − 1 . (B13)

Assume also that there exists a family of real-valued weights ψ = {ψs}s>0 on X such that, for
all s > 0,

0 ≤ ψs, ψ−1
s ∈ L1

loc(X −N,µ), where N is a closed null set, (B21)

and there exist constants θ ∈]0, 1[, θ 6= θ(s), ci 6= ci(s) (i = 2, 3) and a measurable set Ωs ⊂ X

such that
ψs(x)−θ ≤ c2 for all x ∈ X − Ωs, (B22)

‖ψ−θs ‖Lq′ (Ωs) ≤ c3s
j′/q′ , where q′ = 2

1− θ . (B23)
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Theorem 2 ([7, Theorem 1]). In addition to (B11) − (B23) assume that there exists a constant
c1 6= c1(s) such that, for any s > 0 and all s2 ≤ t ≤ s,

‖ψse−tΛψ−1
s f‖1 ≤ c1‖f‖1, f ∈ L1. (B3)

Then there is a constant C such that, for all t > 0 and µ a.e. x, y ∈ X,

|e−tΛ(x, y)| ≤ Ct−j′ψt(y).

Theorem 2 is a weighted Nash initial estimate [N].

3.2. Proof of Theorem 1. Define weights ψt ∈ C2(Rd − {0}) ∩ Cb(Rd) by

ψt(y) = η(t−
1
α |y|), y ∈ Rd,

where

η(τ) =


τβ, 0 < τ < 1,
βτ(2− τ

2 ) + 1− 3
2β, 1 ≤ τ < 2,

1 + β
2 , τ ≥ 2

(the constant β is determined from the equation (4)).
Theorem 1 will follow from Theorem 2 applied to the semigroup e−tΛ ≡ e−tΛ2 , Λ2 ⊃ (−∆)

α
2 −

b ·∇, which was constructed in Proposition 1. Thus, we will prove that for all t ∈ [0, 1], for a.e.x,
y ∈ Rd,

e−tΛ(x, y) ≤ Ct−
d
αψt(y),

which yields Theorem 1.
In Proposition 1 we proved that e−tΛ satisfies conditions (B11), (B12) and (B13) with j′ = d

α .
The condition (B21) is evident. It is easily seen that (B22), (B23) hold with

Ωs = B(0, s
1
α ), θ = (2− α)d

(2− α)d+ 8β .

It remains to verify (B3). This step presents the main difficulty. We will show that ψse−tΛψ−1
s

is a quasi contraction semigroup in L1, i.e. there exists ĉ > 0 such that for any s > 0

‖ψse−tΛψ−1
s f‖1 ≤ e(ĉs−1+σ2)t‖f‖1, t > 0. (7)

Then, taking s
2 ≤ t ≤ s and t ∈ [0, 1], we obtain (B3).

Intuitively, the generator of ψse−tΛψ−1
s should be ψsΛ1ψ

−1
s . Thus, it would suffice to show

that λ+ ψsΛ1ψ
−1
s is accretive in L1 for some λ > 0, i.e. formally, for all admissible f ,〈

(λ+ ψsΛ1ψ
−1
s )f, f

|f |
〉
≥ 0.

However, a direct calculation is problematic: Λ1 is not an algebraic sum of (−∆)
α
2
L1

and (b ·∇)L1 ,
there is no explicit description of the domainD(Λ1) and, furthermore, ψ−1

s is unbounded. Instead,
we will carry out an approximation argument, replacing Λ1 by the approximating operators Λε,
ε > 0 introduced in Section 1, and then replacing the weight ψs by its smooth approximations
φs,ε bounded away from 0 and so that φ−1

s,ε is bounded. Now, however, if we define φs,ε by
applying a standard (e.g. Friedrichs) mollifier to ψs, the task of evaluating φs,εΛεφ−1

s,εf remains
quite non-trivial. We overcome this difficulty by considering a mollifier defined in terms of Λε,
see (9) below. This choice of the mollification is a key step in the proof.
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In addition to the approximating operators Λεr, ε > 0 in Lr, r ∈ [1,∞[, we define in Cu
ΛεCu := −ε∆ + (−∆)

α
2 − bε · ∇, D(ΛεCu) = D((−∆)Cu).

Similarly to Λεr, for every ε > 0 the operator ΛεCu is the generator of a positivity preserving
contraction holomorphic semigroup (cf. [7, Sect. 8]).

We will also need

(Λε)∗r := −ε∆ + (−∆)
α
2 +∇ · bε, D(Λεr) =W2,r, r ∈ [1,∞[

(Λε)∗Cu := −ε∆ + (−∆)
α
2 +∇ · bε, D(ΛεCu) = D((−∆)Cu).

These are also generators of positivity preserving L∞ contraction quasi contraction holomorphic
semigroups. Moreover, there exists a constant cN independent of ε such that, for all 1 ≤ r < q ≤
∞,

‖e−t(Λε)∗r‖r→q ≤ cN t−
d
α

( 1
r
− 1
q

)
, t > 0. (8)

Indeed, for 1 < r ≤ q < ∞ the ultracontractivity estimate follows from Claim 1 by duality, and
for all 1 ≤ r ≤ q ≤ ∞ upon taking limits r ↓ 1, q ↑ ∞.

In what follows, s is fixed (since s
2 ≤ t ≤ s, we have s ≤ 2). We introduce the following

two-parameter approximation of ψ ≡ ψs:

φn,ε := n−1 + e−
(Λε)∗
n ψ (ε > 0, n = 1, 2, . . . ) (9)

In L1, define operators

Q = φn,εΛε1φ−1
n,ε, D(Q) = φn,εD(Λε)

and strongly continuous semigroups

e−tG := φn,εe
−tΛε1φ−1

n,ε.

Our goal is to show that e−tG satisfies

‖e−tGf‖1 ≤ e(ĉs−1+σ2+n−1)t‖f‖1, t > 0, (10)

so that we can pass to the limit (first in ε and then in n) to establish (7). The difficulty is that a
priori we have little information about G to conclude (10). On the other hand, we have detailed
information about Q and, moreover, intuitively Q should coincide G. We prove this in Steps 1-3
below.

Step 1. Set

M :=φn,ε(1−∆)−1[L1 ∩ Cu].

This is a dense subspace of L1 such that

M ⊂ D(Q), M ⊂ D(G)

and, furthermore,
Q �M ⊂ G.

(Indeed, for f = φn,εu ∈M ,

Gf = s-L1- lim
t↓0

t−1(1− e−tG)f = φn,εs-L1- lim
t↓0

t−1(1− e−tΛε)u = φn,εΛεu = Qf ).
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Thus Q �M is closable and
Q̃ := (Q �M)clos ⊂ G.

A standard argument shows that the range λε + Q̃ is dense in L1 (see [7, Proof of Prop. 1] for
details).

Step 2. There are constants ĉ > 0 and εn > 0 such that, for every n and all 0 < ε ≤ εn, the
operator λ+ Q̃ is accretive whenever λ ≥ ĉs−1 + σ2 + n−1, i.e.

Re〈(λ+ Q̃)f, f
|f |
〉 ≥ 0 for all f ∈ D(Q̃), (11)

where s > 0 is from the definition of the weight φn,ε.

Proof of (11). We can represent ψ ≡ ψs as

ψ = ψ(1) + ψ(u), where 0 ≤ ψ(1) ∈ D((−∆)1), 0 ≤ ψ(u) ∈ D((−∆)Cu)

(e.g.ψ(u) := 1 + β
2 so ψ(1) has compact support and coincides with s−

β
α |x|β around the origin).

Therefore,
(Λε)∗ψ = (Λε)∗L1ψ(1) + (Λε)∗Cuψ(u)

is well defined and belongs to L1 + Cu = {w + v | w ∈ L1, v ∈ Cu}.
By the construction of Q̃, it suffices to prove that

Re〈(λ+Q)f, f
|f |
〉 ≥ 0 for all f ∈M. (12)

In what follows, we use the fact that both e−tΛ
ε , e−t(Λε)∗ are holomorphic in L1 and Cu. We

have, for a f = φn,εu, u ∈ (1−∆)−1[L1 ∩ Cu],

〈Qf, f
|f |
〉 = 〈φn,εΛεu,

f

|f |
〉 = lim

t↓0
t−1〈φn,ε(1− e−tΛ

ε)u, f
|f |
〉,

so

Re〈Qf, f
|f |
〉 ≥ lim

t↓0
t−1〈(1− e−tΛε)|u|, φn,ε〉

= lim
t↓0

t−1〈(1− e−tΛε)|u|, n−1〉+ lim
t↓0

t−1〈(1− e−tΛε)e−
Λε
n |u|, ψ〉

= lim
t↓0

t−1〈|u|, (1− e−t(Λε)∗)n−1〉+ lim
t↓0

t−1〈e−
Λε
n |u|, (1− e−t(Λε)∗)ψ〉

= 〈|u|, (Λε)∗n−1〉+ 〈e−
Λε
n |u|, (Λε)∗ψ〉 =: J1 + J2,

A simple calculation shows that div bε ≥ −σ2 on Rd (cf. the proof of Claim 2) and so, since
φ−1
n,ε ≤ n,

J1 ≥ −σ2‖f‖1.

We estimate J2 using the next lemma. (It is in its proof that we use the fact that |x|β is a
Lyapunov function of the formal operator (−∆)

α
2 +∇ · κ|x|−αx.)
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Lemma 1.

Λε)∗ψ ≥ −ĉs−1ψ − Vε on Rd,

where Vε = εc01|x|≤41/α |x|−2+β + 1|x|<1κ(d + β − α)(|x|−αε − |x|−α)|x|β + c11≤|x|≤2|bε − b| for
generic constants ĉ, c0, c.

We will show below that the auxiliary potential Vε becomes negligible as ε ↓ 0.
Lemma 1 yields

J2 ≥ −cs−1〈e−
Λε
n |u|, ψ〉 − 〈e−

Λε
n |u|, Vεψ〉.

Hence, taking into account the estimate on J1,

Re〈Qf, f
|f |
〉 ≥ −σ2‖f‖1 − ĉs−1〈|u|, e−

(Λε)∗
n ψ〉 − 〈e−

(Λε)
n |u|, Vε〉

(recall that |u| = φ−1
n,ε|f | and φn,ε = n−1 + e−

(Λε)∗
n ψ )

≥ −(cs−1 + σ2)‖f‖1 − 〈|u|, e−
(Λε)∗
n (Vε)〉. (∗)

By the ultracontractivity of e−t(Λε)∗ , see (8), and the fact that ‖Vε‖1 ↓ 0 as ε ↓ 0, we have for
every n ≥ 1

‖e−
(Λε)∗
n Vε‖∞ ≤ cNn

d
α ‖Vε‖1

(we choose εn > 0 such that for all ε ≤ εn ‖Vε‖1 ≤ n−2(cNn
d
α )−1)

≤ n−2.

Thus, since φn,ε ≥ n−1, we have, for every n = 1, 2, . . . and all 0 < ε ≤ εn,

〈|u|, e−
(Λε)∗
n (Vεψ)〉 ≤ n−1‖f‖1.

Applying the latter in (∗), we obtain (12) ⇒ (11).

Step 3. Since Q̃ is closed and the range of λ + Q̃ is dense in L1, the accretivitiy of λ + Q̃

in L1 imply that the range of λε + Q̃ is in fact L1 (see e.g. [7, Appendix C]). Hence, by the
Lumer-Phillips Theorem, λ + Q̃ is the generator of a contraction semigroup, and, since Q̃ ⊂ G,
we have

Q̃ = G.

As a consequence of Steps 1-3, we obtain: for all ε ≤ εn, n = 1, 2, . . . ,

‖e−tG‖1→1 ≡ ‖φn,εe−tΛ
ε
φ−1
n,ε‖1→1 ≤ e(ĉs−1+σ2+n−1)t. (?)

We pass to the limit in (?) in ε ↓ 0 using Proposition 1, and then take n → ∞. (See detailed
argument in [7].) This yields (B3) and ends the proof of Theorem 1. �
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4. Proof of Lemma 1

Recall ψ ≡ ψs, s ≤ 2. We estimate the RHS of

(Λε)∗ψ = −ε∆ψ + (−∆)
α
2 ψ + div (bεψ) (13)

in the next three claims. The first claim is straightforward:

Claim 4. −ε∆ψ ≥ −Pε, where Pε = εc01|x|≤41/α |x|−2+β for a generic constant c0.

To estimate the second term in (13), we introduce

ψ̃(x) := s−
β
α |x|β.

Clearly, ψ and ψ̃ coincide in B(0, s
1
α ), however, in contrast to ψ, the Lyapunov function ψ̃ grows

at infinity.

Claim 5. (−∆)
α
2 ψ ≥ −β(β − 2 + d) γ(d+β−2)

γ(d+β−α) |x|
−αψ̃

Proof. We represent (−∆)
α
2 h = −∆I2−αh = −I2−α∆h, where Iν = (−∆)−

ν
2 is the Riesz poten-

tial. Then

(−∆)
α
2 ψ = −I2−α∆ψ = −I2−α∆ψ̃ − I2−α∆(ψ − ψ̃)

(all identities are in the sense of distributions). We evaluate the first term in the RHS as

−I2−α∆ψ̃ = −s−
β
αβ(d+ β − 2)I2−α|x|β−2 = −s−

β
αβ(d+ β − 2) γ(d+ β − 2)

γ(d+ β − α) |x|
β−α

and drop the second term since −∆(ψ − ψ̃) ≥ 0 (see [7, Remark 4] for the calculations). �

Claim 6.
div (bεψ) ≥ div (bψ̃)− ĉs−1ψ − Uε −Wε,

where Uε(x) = 1|x|<1κ(d + β − α)(|x|−αε − |x|−α)|x|β and Wε = c11≤|x|≤2|bε − b| for constants ĉ
and c.

Proof. We represent
div (bεψ) = div (bψ̃) +

[
div (bεψ)− div (bψ̃)

]
.

It is the difference div (bεψ)− div (bψ̃) that we need to estimate from below in terms of Uεψ̃ and
cs−1ψ. We represent

[div (bεψ)− div (bψ̃)] = h1 + div
[
(bε − b)ψ

]
,

where h1 := div
[
b(ψ − ψ̃)

]
is zero in B(0, s

1
α ), continuous and vanishes at infinity. (Indeed, on

{|x| ≥ 2} h1 = κ|x|−αx∇(ψ − ψ̃) + (div b)(ψ − ψ̃), where |∇(ψ − ψ̃)| ≤ C1|x|β−1, β < α, while
|div b| ≤ C|x|−α by our assumption. Hence h1(x) → 0 as x → ∞.) Moreover, a straightforward
calculation shows that

h1 ≥ −ĉs−1ψ.

In turn, we bound div
[
(bε − b)ψ

]
from below as follows:

1) On {|x| > 2} we have bε = b, so div
[
(bε − b)ψ

]
= 0.
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2) On {|x| < 1},

div
[
(bε − b)ψ

]
= (bε − b) · ∇ψ + (div bε − div b)ψ

≥ 1|x|<1κ(|x|−αε − |x|−α)x · ∇|x|β + 1|x|<1κ(d− α)(|x|−αε − |x|−α)|x|β

= 1|x|<1κ(d+ β − α)(|x|−αε − |x|−α)|x|β.

3) On {1 ≤ |x| ≤ 2},
div

[
(bε − b)ψ

]
≥ −c11≤|x|≤2|bε − b|

for generic c.
Thus, everywhere on Rd

div
[
(bε − b)ψ

]
≥ 1|x|<1κ(d+ β − α)(|x|−αε − |x|−α)|x|β − c11≤|x|≤2|bε − b|,

as needed. �

Applying Claims 4-6 in (13) and taking into account that, by our choice of β,

−β(β − 2 + d) γ(d+ β − 2)
γ(d+ β − α) |x|

−αψ̃ + div (bψ̃) = 0,

we obtain the assertion of the lemma with Vε := Pε + Uε +Wε. �

Appendix A. Proof of Claim 1

The proof below follows closely e.g. [7, Proof of Proposition 8] or [9, Proof of Theorem 4.2].
Fix ε > 0 and put

u(t) := e−tΛ
ε
f, f ∈ C∞c ,

where Λε = −ε∆ + A − b · ∇, A := (−∆)
α
2 . First, let 1 < r < ∞. Multiplying the equation

∂tu+ Λεru = 0 by ū|u|r−2 and integrating in the spatial variables, we obtain
1
r
∂t‖u‖rr + ε

4
rr′
‖∇(u|u|

r
2−1)‖22 + Re〈Au, u|u|r−2〉 − Re〈bε · ∇u, u|u|r−2〉 = 0. (14)

Since −A is a Markov generator, we have using [12, Theorem 2.1]

Re〈Au, u|u|r−2〉 ≥ 4
rr′
‖A

1
2u

r
2 ‖22, u

r
2 := u|u|

r
2−1.

Next, the integration by parts yields

−Re〈bε · ∇u, u|u|r−2〉 = 1
r
〈div bε, |u|r〉,

where on {|x| < 1} we have

div bε = κ(d|x|−αε − α|x|−α−2
ε |x|2) ≥ κ(d− α)|x|−αε > 0,

and on {|x| ≥ 1} |div bε| ≤ σ2 by our assumption. Therefore,

−Re〈bε · ∇u, u|u|r−2〉 ≥ −σ2
r
〈|u|r〉.

Thus, we obtain from (14)

− ∂t‖u‖rr ≥
4
r′
‖A

1
2u

r
2 ‖22 − σ2‖u‖rr. (15)
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From (15) we obtain ‖u(t)‖r ≤ etωr‖f‖r for appropriate ωr > 0. Hence taking r ↓ 1 and r ↑ ∞,
we obtain the first assertion of Claim 1, i.e. the quasi contractivitiy of e−tΛεr in Lr, r ∈ [1,∞[ and
its L∞ contractivity.

Let us prove the ultracontractivity of e−tΛεr . By (15),

−∂t‖u‖2r2r ≥
4

(2r)′ ‖A
1
2ur‖22 − σ2‖u‖2r2r, 1 ≤ r <∞.

Using the Nash inequality ‖A
1
2h‖22 ≥ CN‖h‖

2+ 2α
d

2 ‖h‖−
2α
d

1 and ‖u(t)‖r ≤ eωrt‖f‖r, integrating the
previous inequality (see details e.g. in [7, Proposition 8], [9, Theorem 4.2]), we obtain

‖e−tΛεr‖r→2r ≤ c3e
ωrtt−

d
α

( 1
r
− 1

2r ), t > 0.

Now, using either the reproduction property or the Coulhon-Raynaud extrapolation (see e.g. [9,
Theorem F.1]), we obtain the required ultracontractivity bound.

The previous argument yields: for u ∈ D(Λε2) =W2,2, Re〈Λε2u, u〉 ≥ ‖A
1
2u‖22, so the fractional

Sobolev Embedding Theorem now yields the required Sobolev embedding property. �
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