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ON THE VANISHING OF GREEN’S FUNCTION, DESINGULARIZATION

AND CARLEMAN’S METHOD

RYAN GIBARA AND DAMIR KINZEBULATOV

Abstract. The subject of the present paper is the phenomenon of vanishing of the Green func-

tion of the operator −∆ + V on R
3 at the points where a potential V has positive critical

singularities. More precisely, imposing minimal assumptions on V (i.e. the form-boundedness),

we obtain an upper bound on the order of vanishing of the Green function. As a by-product of

our proof, we improve the existing results on the strong unique continuation for eigenfunctions

of −∆+ V in dimension d = 3.

1. Introduction

Our motivation for this work goes back to a result of Milman-Semënov [MS1]-[MS3] on a sharp

two-sided bound on the heat kernel of the Schrödinger operator with positive inverse-square

potential in R
d, d ≥ 3,

H = −∆+ δ
(d − 2)2

4
|x|−2, δ > 0. (1)

They noticed that the semigroup e−tH remains ultracontractive even when considered in the

space L1(Rd, ϕdx) with the vanishing weight ϕ(x) = |x|β ∧ 1, β = d−2
2 (

√
1 + δ − 1). In fact, the

generator ϕHϕ−1 of the weighted semigroup ϕe−tHϕ−1 becomes “desingularized” in the context

of Nash’s method. This observation allowed them to establish a non-Gaussian two-sided bound

on the heat kernel of H and, hence the following two-sided bound on the Green function:

(µ+H)−1(x, y) ≃ e−c
√
µ|x−y||x− y|−d+2

[

1 ∧ |x||y|
|x− y|2

]β

. (2)

It shows that the singularity of the potential is so strong that it makes the Green function

x 7→ (µ +H)−1(x, y) vanish to order β at x = 0 (say, y ∈ Bc(0, 1)).

Generally speaking, the vanishing of the Green function at a point manifests the presence of

a critical singularity of the potential. The relationship between the order of vanishing and the

magnitude of the singularity is the subject of this work.

The desingularization procedure allows for the exact calculation of the order of vanishing of

the Green function, but it depends on the explicit form of the potential: V (x) = c∆|x|β/|x|β ,
where |x|β is the Lyapunov function of H (that is, H|x|β = 0). In the present paper we venture

to the other endpoint of the range of possible results: we consider an arbitrary potential V ∈ L1
loc

in a wide class of locally unbounded potentials for which the self-adjoint operator

H = −∆+ V
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can be defined (i.e. the form-bounded potentials, see Definition 1, the sum is in the sense of

quadratic forms), and obtain an upper bound on the order of vanishing of the Green function.

In such generality, the desingularization method, even if carried out for some Lyapunov function

ψ, i.e.Hψ = 0, would give little information: one ends up with an essentially equally difficult

problem of estimating the order of vanishing of ψ. Thus, another approach is needed.

It will be convenient to estimate the order of vanishing of u = (µ + H)−1f , for f identically

zero in B(0, 1), rather than that of x 7→ (µ +H)−1(x, y), y ∈ Bc(0, 1). The main result of this

paper, stated briefly, is as follows.

Theorem. Let d = 3. Let V be a form-bounded potential with a sufficiently small form-bound,

H = −∆+ V , and let u := (µ +H)−1f for f identically zero in B(0, 1). If u vanishes in Lp at

x = 0 to order at least β > 0, see definition below (with β, in some sense, substantial), then

‖|x|−[β]−1u‖Lp(B(0,1)) ≤ K (3)

where [β] is the integer part of β.

For the detailed statement, see Theorem 1 below. One easily obtains from (3) e.g.

Corollary. ordpx=0u ≤ log1/a
K

a‖u‖Lp(B(0,a))
, 0 < a < 1.

(See Remark 2 in Section 5.) So, if ‖u‖Lp(B(0,a)) is not too small, then the order of vanishing

of u cannot be too large. On the other hand, if the order of vanishing is large, then ‖u‖Lp(B(0,a))

must be small. Results of this type have appeared in the literature, see [DZ, KT, MaVs] and

references therein, although there the authors treat considerably less singular potentials.

It should be noted that the effect of vanishing and ensuing regularity of weak solutions u

to (−∆ + V )u = 0, as well as of weak solutions to the corresponding parabolic equation, with

supercritical positive potential V (x) = c 1
|x|2+γ , γ > 0 (obviously, not form-bounded) was studied

recently by Li-Zhang [LZ].

1.1. Comments. 1. We prove estimate (3) using Carleman’s method: one recognizes (3) as a

finite unique continuation-type statement. In fact, the constant K in (3) does not depend on [β],

so if u vanishes to infinite order at x = 0 then taking β → ∞ we obtain u ≡ 0 on B(0, 1). Thus,

we obtain as a by-product a strong unique continuation (SUC) result:

“u vanishes to infinite order at a point ⇒ u ≡ 0 everywhere.”

The corresponding SUC result for solutions of the differential inequality |∆u| ≤ |V u| with form-

bounded V was obtained [KSh]. So, to prove the theorem, one is tempted to take the corre-

sponding estimate of type (3) from [KSh] and call it a day. Unfortunately, this leads to an

unsatisfactory result. The reason is that the proof of the SUC in [KSh] requires an additional

to the form-boundedness assumption V ∈ L1+ε
loc , ε > 0, and the resulting upper bound on the

order of vanishing from [KSh] is unnatural: it tends to infinity as ε ↓ 0 (note that one should be

able to take ε = 0 since for any ε > 0 there are form-bounded V 6∈ L1+ε
loc ). The problem is not

technical but ideological. Namely, the proof of SUC in [KSh] uses in an essential manner inter-

polation Sobolev-type inequalities to control the error terms. As [KSh] themselves demonstrate

in their proof of the weak unique continuation for |∆u| ≤ |V u| (“vanishing in an open set ⇒
vanishing everywhere”) avoiding the use of Sobolev-type inequalities and resorting instead to the
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use of L2 → L2 bounds allows to relax the assumptions on V to mere form-boundedness. In the

present paper we exclude the additional assumption V 6∈ L1+ε
loc (and the unnatural dependence

of the upper bound on ε > 0) by eliminating the use of Sobolev-type inequalities. In a sense,

our proof of Theorem 1 is closer to the idea of [KSh] than their own proof of the SUC. The new

proof, however, required a rather substantial modification of the argument in [KSh]. In partic-

ular, we now employ estimate (S2) in addition to (S1) to control the “error term” of gradient

type ∇(−∆)−1Ej(u) (it is when estimating this term that we use the hypothesis on the order of

vanishing of u).

2. The novelty in this paper concerns dimension d = 3. In dimension d ≥ 4, similarly to [KSh],

we would have to impose a stronger requirement that |V |(d−1)/2 is form-bounded with respect to

(−∆)(d−1)/2, so we discuss the corresponding result only briefly, see Remark 1 below.

3. Both the singular weight |x|−[β]−1 in the Carleman method and the Lyapunov function

|x|β in the desingularization method are born out of the Riesz potential (−∆)−1(x, y). Both

approaches to estimating the order of vanishing have a common core that we touched in this

work, but that still needs to be fully understood and exploited.

4. In [KSh] the authors stay in L2, while for the purpose of estimating the order of vanishing of

the Green function it is more natural to work in Lp, cf. Remark 2 below. However, we keep intact

the L2 → L2 assumption on V (i.e. the form-boundedness), and thus its class of singularities.

5. Our proof of (3) applies to |∆u| ≤ |V u| and yields a SUC result in dimension d = 3 that

contains, to the best of our knowledge, all the existing results on the SUC in the spaces of solutions

u large enough to contain the eigenfunctions of −∆+ V , including the classical results of Sawyer

[S] (V is in the Kato class), Jerison-Kenig [JK] (V in L
d/2
loc ) and Stein [St] (V in the weak-Ld/2

space). (Historically, the principal motivation behind the efforts to prove UC for |∆u| ≤ |V u|
with singular V is the problem of absence of positive eigenvalues of −∆+V in R

d.) We state the

corresponding result in Section 5.

6. When estimating the order of vanishing of the Green function, in principle we face a problem

that is fundamentally simpler than the problem of proving unique continuation for eigenfunctions

of the Schrödinger operator H. Indeed, unlike the Green function, the eigenfunctions can be

widely oscillating; the key feature of Carleman’s method is that it allows to combat these oscilla-

tions via singular weights. On the other hand, when proving unique continuation, one is working

with a function that is actually identically zero, while the Green function is non-trivial and can

vanish to a finite order, cf. (1).

See further discussion in Section 5.

1.2. About the proof. Put u = ηju, where ηj is an appropriate cutoff function identically equal

to 0 in B(0, j−1) (j will be taken to ∞ to take into account that u vanishes at x = 0). We have

uj = (−∆)−1(−∆uj) (4)

which yields

uj = (−∆)−1ηj(−∆u) +∇(−∆)−1Ej(u) + (−∆)−1Ẽj(u) (5)

for appropriate “error terms” Ej, Ẽj that depend on u but not on its derivatives (this is important

since we want to avoid applying Sobolev-type inequalities to control vanishing of ∇u). Set

N := [β] + 1. Now we subtract the (N − 1)-degree Taylor polynomial at x = 0 from both
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sides of identity (5). Since uj is identically zero around the origin, this will not change the left-

hand side of (5), but it will introduce a singular weight ϕN (x) := |x|−N into the right-hand side

via estimate [S]

∣

∣(−∆)−1(x, y)− TN−1
x=0

(

(−∆)−1(x, y)
)∣

∣ ≤ C
ϕN (y)

ϕN (x)
(−∆)−1(x, y),

(and similarly for ∇xi(−∆)−1(x, y), see (S2) below). Thus one obtains from (5)

|uj | ≤ Cϕ−1
N (−∆)−1ϕNηj |∆u|+ error terms. (6)

Multiplying (6) by 1B(0,1)|V | 12ϕN (say, working in L2), we arrive at

‖1B(0,1)|V | 12ϕNuj‖2 ≤ C‖1B(0,1)|V | 12 (−∆)−1ηjϕN |∆u|‖2 + error terms 2

(−∆u = −V u+ f − µu )

≤ C‖1B(0,1)|V | 12 (−∆)−1ϕN |V ||uj |‖2 + error terms 3

hence

‖1B(0,1)|V | 12ϕNuj‖2 ≤ C‖1B(0,1)|V | 12 (−∆)−1|V | 121B(0,1)‖2→2 ‖1B(0,1)|V | 12ϕNuj‖2 (7)

+ error terms 4.

The local form-boundedness condition on V is ‖1B(0,1)|V |1/2(−∆)−1|V | 121B(0,1)‖2→2 ≤ ν, so (7)

yields

‖1B(0,1)|V | 12ϕNuj‖2 ≤ Cν‖1B(0,1)|V | 12ϕNuj‖2 + error terms 5,

i.e.

(1 −Cν)‖1B(0,1)|V | 12ϕNuj‖2 ≤ error terms 5.

Without loss of generality |V | ≥ 1, so, provided that the form-bound ν is so small that 1−Cν > 0,

the last inequality gives (3) upon estimating properly the error terms.

To the best of our knowledge, the idea of subtracting Taylor polynomial from both sides of (4)

to prove unique continuation first appeared in Sawyer [S].

1.3. Notations. We denote the Lp-norm by ‖f‖p and the norm of an operator T : Lp → Lq

by ‖T‖p→q. The open ball with centre x0 ∈ R
d and radius r > 0 is denoted by B(x0, r), its

complement by Bc(x0, r), and its closed counterpart by B̄(x0, r). The indicator function of

the ball is written 1B(x0,r) and, in the particular case when x0 = 0, we employ the shorthand

1r := 1B(0,r). Put

〈f〉 :=
∫

Rd

fdx, 〈f, g〉 := 〈f ḡ〉
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2. Main result

Definition 1. A potential V ∈ L1
loc is said to be form-bounded if there exists δ > 0 such that

the following quadratic form inequality holds:

〈|V |ϕ,ϕ〉 ≤ δ〈∇ϕ,∇ϕ〉 + cδ〈ϕ,ϕ〉

for all ϕ ∈ C∞
c , for some constant cδ ≥ 0 (written as V ∈ Fδ).

The constant δ is called the form-bound of V . Equivalently, V ∈ Fδ can be re-stated as

‖|V | 12 (λ−∆)−
1
2 ‖2→2 ≤

√
δ,

where λ = cδ
δ .

The assumption V ∈ Fδ with δ < 1 ensures that the symmetric form t[u, v] = 〈∇u,∇v〉 +
〈V u, v〉, D(t) = W 1,2 is semi-bounded from below and closed, and hence determines a unique

self-adjoint operator H,

t[u, v] = 〈Hu, v〉, v ∈ D(t), u ∈ D(H) ⊂W 1,2 ∩ {u ∈ L2 | |V | 12u ∈ L2},

denoted by

H = −∆∔ V (the form-sum of −∆ and V ),

see e.g. [Ka, Ch.VI]. (When constructing a self-adjoint realization of −∆ + V in L2 one should

distinguish between the positive and the negative parts of V or, moreover, take into account the

cancellation phenomena [MV]. However, we are interested here in potentials whose positive part

is larger than the negative part so that the Green function vanishes rather than blows up, so the

fact that we impose a constraint on |V |, as is dictated by the method, does not appear to be too

restrictive.)

Subclasses. The following are some sub-classes of Fδ defined in elementary terms (listed in the

increasing order):

1) L
d
2 class (the inclusion follows easily from the Sobolev inequality);

2) weak L
d
2 class (see [KPS] for the proof of inclusion ⊂ Fδ), e.g.V (x) = δ (d−2)2

4 |x|−2 ∈ Fδ

with cδ = 0;

3) Campanato-Morrey class (s > 1),
{

V ∈ Lsloc :

(

1

|Q|

∫

Q
|V (x)|sdx

)
1
s

≤ csl(Q)−2 for all cubes Q

}

,

|Q| and l(Q) are the volume and the side length of a cube Q, respectively;

4) Chang-Wilson-Wolff class (s > 1),
{

V ∈ Lsloc : sup
Q

1

|Q|

∫

Q
|V (x)| l(Q)2ϕ

(

|v(x)| l(Q)2
)

dx <∞
}

,

where ϕ : [0,∞[→ [1,∞[ is an increasing function such that
∫∞
1

dx
xϕ(x) < ∞. See [CWW] for the

proof of inclusion of this class into Fδ.

In 1) the form-bound δ can be chosen arbitrarily small, while in 2)-4) δ depends on the norm

of V in these classes.
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Throughout the paper:

V ∈ Fδ with δ < 1,

u is the solution to µu+Hu = f for f ∈ L1 ∩ L∞, f = 0 in B(0, 1), µ > cδ
δ .

(C)

In order to work in Lp while keeping intact the form-boundedness (i.e.L2 → L2) assumption

on V , we will need the following result of Beliy-Semënov [BS]: the form-sum H = −∆∔V admits

a realization in Lp, p ∈]p−, p+[, p± := 2
1∓

√
1−δ as the generator Hp of the C0 semigroup

e−tHp :=
[

e−tH
]clos

Lp→Lp (the closure of operator).

The interval ]p−, p+[ is sharp. In particular, u = (µ + H)−1f is in general not in L∞
loc, even if

f ∈ C∞
c .

Definition 2. A function u ∈ Lploc is said to vanish in Lp at x ∈ R
d to order β > 0 if

lim
r↓0

1

rs
〈

1B(x,r)|u|p
〉

= 0 for every 0 < s < d+ pβ. (8)

The supremum of such β, called the order of vanishing of u in Lp at x, will be denoted by

ordpxu. If p = 2, we write simply ordxu.

For example, if u(x) = |x|α, α > 0, then ordpx=0|x|α = α.

Theorem 1. Let d = 3. Assume (C). If, additionally,

‖1B(0,3)|V | 12 (−∆)−
1
2‖2→2 ≤

√
ν

with a sufficiently small local form-bound ν, then the following is true.

If u vanishes in Lp at x = 0 for some p ∈ [2, p+[ and its order of vanishing ordpx=0u is

“substantial” in the sense that we can fix a positive β 6∈ Z, β ≤ ordpx=0u, with the property that

p([β] + 1− β) < 1, then

‖1B(0,1)|x|−[β]−1u‖p ≤ K, (⋆)

where the constant K = K(‖f‖p, ‖f‖2, ν) <∞ is independent of β.

A few comments are in order:

1. If V ∈ Fδ, δ < 1, the resolvents (µ + H)−1, µ > cδ
δ are integral operators. This result is

due to Semënov [Se] who proved it by verifying Bukhvalov’s criterion (in the situation where the

Dunford-Pettis Theorem is inapplicable, since e−tH is not L2 → Lp bounded for p = ∞).

2. If ordpx=0u > n+ 1
p for an integer n ≥ 0, then we can fix β > n+ 1

p arbitrarily close to n+ 1
p .

3. If u vanishes to infinite order, then u = 0 in B(0, 1) by (⋆) (in this regard, see Section 5).

4. In fact, we prove a stronger result:

‖1B(0,1)(|V |+ 1)
1
p |x|−[β]−1u‖p ≤ K.

Remark 1 (Regarding d ≥ 4). In the case d ≥ 4 we have to impose, as in [KSh], a more restrictive

assumption on V (that, nevertheless, includes e.g.V ∈ L
d
2
,∞):

V ∈ L
d−1
2 (B̄(0, 3)) and ‖1B(0,3)|V | d−1

4 (−∆)−
d−1
4 ‖2→2 ≤

√
ν. (9)

The reason is that in dimensions d ≥ 4 the key bounds (S1), (S2) are valid for (−∆)
d−1
2 rather than

−∆. The assumption (9) then allows to run appropriate interpolation arguments, see [KSh]. On
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the one hand, due to this more restrictive condition (9) on V , the issue with the extra assumption

V ∈ L1+ε
loc discussed in the introduction is not present. On the other hand, by assuming (9) and

following the proof of the SUC in [KSh], one still gets an upper bound on the order of vanishing

that is rather unnatural in low dimensions but improves as d → ∞: If (C) holds with δ small

enough so that s := 2 d(d−1)
d2−d−4

< p+ and V satisfies (9) with ν sufficiently small, then the following

is true. If u vanishes in Ls at x = 0 and its order of vanishing ordsx=0u is substantial in the sense

that we can fix a positive β 6∈ Z, β ≤ ordsx=0u, with the property that

[β]− β + 2 +
(d

2
− 1

2

)d− 3

d− 1
<
d

s
,

then ‖1B(0,1)|x|−[β]−1u‖2 ≤ K, where K = K(‖f‖p, ‖f‖2, ν) <∞ is independent of β (see Remark

3 for the proof). One can improve this bound by reworking the proof of the SUC in [KSh] along the

lines of the proof in the present paper, i.e. excluding any essential use of Sobolev-type inequalities.

We will not do it here to keep the paper short, also because we do not have anything to add here

in what concerns a more important problem: to weaken (9) to ‖1B(0,3)|V | 12 (−∆)−
1
2‖2→2 ≤

√
ν.

Let us comment on the existence of a lower bound on the order of vanishing. Consider potential

V (x) = δ
(d− 2)2

4
|x|−2 + V0(x) with V0 ∈ Fδ0 , (10)

with δ0/δ assumed to be sufficiently small.

Definition 3. For u ∈ Lploc, denote by Ord pxu the supremum of β1 > 0 such that
〈

1B(x,1)| · −x|−s1 |u|p〉 <∞ for every 0 < s1 < d+ pβ1.

Analogously, for every α > 0, Ord px=0|x|α = α.

If one is willing to replace ordpxu by Ord pxu, then the problem of finding a lower bound on the

order of vanishing of u for potential (10) becomes easy (see Appendix A):

Ord
2d
d−2

x=0u ≥ d− 2

2
(
√

1 + δ − δ0 − 1). (11)

Remark 2. If δ0 = 0, then we get the same lower bound on Ord
2d
d−2

x=0u (in fact, the equality) as we

would get from (2). In this regard, we note that Ord px=0u with p = 2 gives a suboptimal result.

On the other hand, it is trivial to see that

Ord pxu ≤ ordpxu. (12)

The question arises: are ordpxu and Ord pxu comparable on solutions to µu+Hu = f? Combined

with (12), the estimate (⋆) of Theorem 1 yields in dimension d = 3: for a given β 6∈ Z

β ≤ ordpx=0u, p([β] + 1− β) < 1 ⇒ [β] + 1− 3

p
≤ Ord px=0u.
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3. Key estimates

We begin with few general definitions and results, valid in all dimensions d ≥ 3. Set

(−∆)−
α
2 (x, y) = cd,α|x− y|−d+α (0 < α < d), x, y ∈ R

d, x 6= y,

where cd,α := Γ
(d− α

2

)(

π
d
2 2αΓ

(d

2

))−1
,

so (−∆)−
α
2 f(x) =

〈

(−∆)−
α
2 (x, ·)f(·)

〉

for f ∈ Cc.
For N ≥ 1, we define the “truncated Riesz potential”

[(−∆)−
α
2 ]N (x, y) := (−∆)−

α
2 (x, y)− TN−1

x

(

(−∆)−
α
2 (x, y)

)

,

where TN−1
x stands for the (N − 1)-degree Taylor polynomial in the variable x at x = 0.

Define in an analogous way [∇xi(−∆)−
d−1
2 ]N (x, y), 1 ≤ i ≤ d.

We put

[(−∆)−1]Nf(x) :=
〈

[(−∆)−1]N (x, ·)f(·)
〉

, f ∈ Cc,

and define similarly operator [∇xi(−∆)−
d−1
2 ]N .

1. The following two estimates will play a crucial role. Define the singular weight

ϕt(x) := |x|−t, t > 0.

Proposition 1. There exist constants C1 = C1(d) and C2 = C2(d) such that, for every N ≥ 1,

∣

∣[(−∆)−
d−1
2 ]N (x, y)

∣

∣ ≤ C1
ϕN (y)

ϕN (x)
(−∆)−

d−1
2 (x, y), (S1)

∣

∣[∇xi(−∆)−
d−1
2 ]N (x, y)

∣

∣ ≤ C2N
ϕN (y)

ϕN (x)
(−∆)−

d−2
2 (x, y) (S2)

for each 1 ≤ i ≤ d, for all x, y ∈ R
d, x 6= y, y 6= 0.

The first estimate (S1) is proved in Sawyer [S]. The proof of the second estimate (S2) is

obtained via a modification of the proof of (S1) in [S]:

Proof of (S2). We will consider the case |x| < |y|. The case |x| ≥ |y| is dealt with in the same

way as in [S].

Following [S], we use dilation and rotation to reduce our task to the proof of the following two

estimates in the complex plane: for all |z| < 1
∣

∣∂z|1− z|−1 − TNz,z̄(∂z |1− z|−1)
∣

∣ ≤ CN |z|N |1− z|−2, (13)

∣

∣∂z̄|1− z|−1 − TNz,z̄(∂z̄ |1− z|−1)
∣

∣ ≤ CN |z|N |1− z|−2. (14)

Let us prove e.g. (13). Representing |1− z|−1 = (1− z)−
1
2 (1− z̄)−

1
2 , we have

2∂z|1− z|−1 = (1− z)−1(1− z)−
1
2 (1− z̄)−

1
2 ,

so we can expand

2∂z|1− z|−1 = (1 + z + z2 + . . . )
∞
∑

n+m≥0

cn,mz
nz̄m.
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We obtain ∂z|1− z|−1 − TNz,z̄(∂z |1− z|−1) from the previous expansion by excluding the terms of

order ≤ N − 1:

2∂z|1− z|−1 − TNz,z̄(2∂z |1− z|−1)

=
∑

n+m≥N
cn,mz

nz̄m + z
∑

n+m≥N−1

cn,mz
nz̄m + · · ·+ zN−1

∑

n+m≥1

cn,mz
nz̄m

+ (zN + zN+1 + . . . )
∑

n+m≥0

cn,mz
nz̄m.

By (S1), |
∑

n+m≥K cn,mz
nz̄m| ≤ C|z|K |1− z|−1. Therefore,

∣

∣2∂z |1− z|−1 − TNz,z̄(2∂z |1− z|−1)
∣

∣

≤ C|z|N |1− z|−1 + C|z||z|N−1|1− z|−1 + · · · + C|z|N−1|z||1 − z|−1 + |z|N 1

|1− z| |1− z|−1,

which yields (upon redefining C)
∣

∣∂z|1− z|−1 − TNz,z̄(∂z |1− z|−1)
∣

∣ ≤ CN |z|N |1− z|−2,

as needed. �

2. The next proposition is a special case of a result in [BS] (see also [LS]).

Proposition 2. Assume that 0 ≤ V ∈ L1
loc and

‖V 1
2 (−∆)−

1
2‖2→2 ≤

√
ν

for some ν > 0. Then, for every p ∈]1,∞[,

‖V
1
p (−∆)−1V

1
p′ ‖p→p ≤ κpν, κp =

pp′

4
,

where p′ = p
p−1 .

For the reader’s convenience, we include the proof.

Proof of Proposition 2. It suffices to carry out the proof for a bounded V having compact support,

and then use Fatou’s Lemma. Define A = −∆, D(A) = W 2,2 and Ap = −∆, D(Ap) = W 2,p.

Since A is a Markov generator, e−tA ↾ L2 ∩ Lp = e−tAp ↾ L2 ∩ Lp, we have by [LS, Theorem 2.1]

0 ≤ u ∈ D(Ap) ⇒ v := u
p
2 ∈ D(A) and κ−1

p ‖A 1
2 v‖22 ≤ 〈Apu, up−1〉.

Now, let u be the solution of Apu = V
1
p′ |f |, f ∈ L1 ∩ L∞. Then, by our assumption on V ,

(κpν)
−1‖V 1

2 v‖22 ≤ 〈Apu, up−1〉,

i.e. (κpν)
−1‖V

1
pu‖pp ≤ 〈Apu, up−1〉. Hence ‖V

1
pu‖pp ≤ κpν‖f‖p‖V

1
p′ up−1‖p′ = κpν‖f‖p‖V

1
pu‖p−1

p ,

and the result follows. �
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4. Proof of Theorem 1

Throughout this section, d = 3. We will keep writing d rather than 3 to make the argument

easier to follow. We introduce some notations first.

1. We fix smooth cutoff functions 0 ≤ η ≤ 1 and 0 ≤ ξj ≤ 1 (j ≥ 1) such that

η = 1 in B(0, 2), η = 0 in Bc(0, 3), |∇η| ≤ c, |∆η| ≤ c2,

ξj = 1 in Bc(0, 2j−1), ξj = 0 in B(0, j−1), |∇ξj(x)| ≤ cj, |∆ξj(x)| ≤ c2j2

for a generic constant c. Set

ηj := ξjη, j ≥ 2.

2. We have µu + Hu = f . By a standard result, D(H) is contained in the domain of the

maximal operator D(Hmax) = {v ∈ L2 | V v ∈ L1
loc,−∆v + V v ∈ L2}, so

−∆u ∈ L1
loc and −∆u = −V u− µu+ f a.e. (15)

3. We start the proof of (⋆). We have

uj = (−∆)−1(−∆uj),

where uj := uηj . We evaluate

−∆uj = ηj(−∆u) +∇Ej(u) + Ẽj(u),

where

Ej(u) := −2uη∇ξj ,
Ẽj(u) := −uξj∆η − 2∇u · (∇η)ξj + uη∆ξj.

are the “error terms”. The first error term will be disposed of using (S2), while the easier second

term will be dealt with using (S1).

Thus,

uj = (−∆)−1ηj(−∆u) +∇(−∆)−1Ej(u) + (−∆)−1Ẽj(u). (16)

Now, we apply in both sides of (16) C∞ mollifiers. Let N := [β] + 1, where [β] is the largest

integer at most β. We subtract from both sides the Taylor polynomial of order N − 1 at x = 0,

and then pass to the limit. At this point we use the fact that uj is identically zero around the

origin, arriving at

uj =
[

(−∆)−1
]

N
ηj(−∆u) +

[

∇(−∆)−1
]

N
Ej(u) +

[

(−∆)−1
]

N
Ẽj(u).

Put V1 := |V |+ µ ∨ 1. Multiplying the last equality by 1B(0,1)V
1
p

1 ϕN , we obtain

1B(0,1)V
1
p

1 ϕNηj|u| ≤ 1B(0,1)V
1
p

1 ϕN
∣

∣

[

(−∆)−1
]

N
1B(0,1)ηj(−∆u)

∣

∣

+1B(0,1)V
1
p

1 ϕN
∣

∣

[

(−∆)−1
]

N
1cB(0,1)ηj(−∆u)

∣

∣

+1B(0,1)V
1
p

1 ϕN
∣

∣

[

∇(−∆)−1
]

N
Ej(u)

∣

∣

+1B(0,1)V
1
p

1 ϕN
∣

∣

[

(−∆)−1
]

N
Ẽj(u)

∣

∣



VANISHING OF GREEN’S FUNCTION 11

or

I ≤ J + Jc + JE + JẼ .

Note that V
1
p

1 u ∈ Lp, and so I ∈ Lp, see [LS, Theorem 6.3] (the proof essentially consists of

applying Proposition 2 to the Neumann series for u). In fact,

‖V
1
p

1 u‖p ≤ C‖f‖p (17)

(we will need this later).

By (S1),

‖J‖p ≤ C1

∥

∥1B(0,1)V
1
p

1 (−∆)−1|V |
1
p′ 1B(0,1)

∥

∥

p→p
‖1B(0,1)ϕNηj |V |−

1
p′ ∆u‖p

(we apply Proposition 2

and use “(15) ⇒ ηj |∆u| ≤ ηjV1|u| because ηjf = 0”)

≤ C1κpν‖1B(0,1)ϕNηj |V |
1
pu‖p,

hence ‖J‖p ≤ C1κpν‖I‖p.
Thus, we arrive at

(1− C1κpν)‖I‖p ≤ ‖Jc‖p + ‖JE‖p + ‖JẼ‖p. (18)

From now on, we assume that ν is sufficiently small so that C1κpν < 1. The inequality (18) will

yield the estimate (⋆) of Theorem 1 upon taking j → ∞, once we estimate the remaining terms

‖Jc‖p, ‖JE‖p, ‖JẼ‖p:
1) By (S1),

‖Jc‖p ≤ C1

∥

∥1B(0,1)V
1
p

1 (−∆)−1V
1
p′

1 1B(0,3)−B(0,1)

∥

∥

p→p
‖1B(0,3)−B(0,1)ϕNV

1
p

1 u‖p
(we have used sprt ηj ⊂ B(0, 3))

≤ K1‖1B(0,3)V
1
p

1 u‖p.

2) ‖JE‖p vanishes as j → ∞. (This is the first place where we take into account that u vanishes

at least to order β at x = 0.) Namely, by (S2),

‖JE‖p ≤ C2N‖1B(0,1)V
1
p

1 (−∆)−
1
2ϕN |u||∇ξj|‖p

(we estimate |∇ψ| ≤ jc12j−1 and ϕN12j−1 ≤ c1j
N )

≤ CNjN+1‖1B(0,1)V
1
p

1 (−∆)−
1
2 |u|12j−1‖p = . . .1

We now apply the estimate 1B(0,1)(x)(−∆)−
1
2 (x, y)1B(0,1)(y) ≤ C01B(0,1)(x)(1−∆)−

1
2 (x, y)1B(0,1)(y)

for appropriate C0 > 1. Strictly speaking, the latter is not necessary, but we will make the argu-

ment somewhat shorter by passing to a Bessel potential. So, we continue: for 2 ≤ s < p if p > 2
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or s = 2 if p = 2, and q = dp
d+(1−2s−1)p

,

. . .1 ≤ CC0Nj
N+1‖1B(0,1)V

1
p

1 (1−∆)−
1
2 |u|12j−1‖p

≤ CC0Nj
N+1‖1B(0,1)V

1
p

1 (1−∆)−
1
s ‖p→p‖(1 −∆)−

1
2
+ 1

s ‖q→p‖u12j−1‖q (∗)

(we are applying ‖1B(0,1)V
1
p

1 (1−∆)−
1
s ‖p→p <∞ [LS, Theorem 6.1])

≤ C ′NjN+1‖u12j−1‖q = . . .2

It is seen that q can be chosen to be arbitrarily close dp
d+p−2 (by selecting s close to p). Thus,

applying Hölder’s inequality, we obtain, for every ǫ > 0,

. . .2 ≤ C ′NjN+1‖12j−1‖ dp
p−2

+ǫ
‖u12j−1‖p

≤ C ′′NjN+1− p−2
p

+ǫ′‖u12j−1‖p (ǫ′ is as small as needed)

≤ C ′′N
(

jp(N+1)−p+2+ǫ′′
〈

|u|p12j−1

〉)
1
p (ǫ′′ is as small as needed).

Recalling that u vanishes in Lp at least to order β, and that N = [β] + 1, we obtain that the last

term in the previous formula tends to 0 as j → ∞ provided that p([β] + 2) − p + 2 < d + pβ,

i.e. p([β]− β) + p+2 < d. (Recall d = 3.) Since the last condition is satisfied by the assumptions

of the theorem, we can make ‖KE‖p as small as needed by selecting j sufficiently large. (Let us

note that if p([β] + 2)− p+ 2 > d+ pβ, then we cannot exclude the possibility that ‖KE‖p → ∞
as j → ∞.)

Next, recall that Ẽj(u) := −uξj∆η − 2∇u · (∇η)ξj + uη∆ξj .

3) By (S1),

‖JẼ‖p ≤ A1 +A2 +A3,

where

A1 := C1‖1B(0,1)V
1
p

1 (−∆)−1ϕN |u|ξj |∆η|‖p

≤ C1C0c
2‖1B(0,1)V

1
p

1 (1−∆)−1|u|1B(0,3)‖p
(we represent (1−∆)−1 = (1−∆)−

1
s (1−∆)−1+ 1

s and argue as in (∗))
≤ K2‖1B(0,3)u‖p,

and

A2 := 2C1‖1B(0,1)V
1
p

1 (−∆)−1ϕN |∇u||∇η|ξj‖p

≤ 2C1C0c‖1B(0,1)V
1
p

1 (1−∆)−1|∇u|1B(0,3)‖p

≤ K3‖1B(0,3)∇u‖r, r =
dp

d+ 2p− 2
+ ǫ,

where ǫ > 0 can be chosen arbitrarily small. (It is easy to see ‖1B(0,3)∇u‖r is finite: since d = 3,

r = 3p
2p+1 + ǫ < 2, so Hölder’s inequality and u ∈W 1,2 immediately yield the conclusion.)
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Finally, we take care of A3. (This is the second place where we take into account that u

vanishes at least to order β at x = 0.)

A3 :=C1‖1B(0,1)V
1
p

1 (−∆)−1ϕN |u|η|∆ξj |‖p

≤ C1C0c
2jN+2‖1B(0,1)V

1
p

1 (1−∆)−1|u|12j−1‖p
(again, we write (−∆)−1 = (−∆)−

1
s (−∆)−1+ 1

s and argue as in (∗))

≤ C ′jN+2− 2p−2
p

+ǫ‖u12j−1‖p (ǫ is as small as needed).

Since u vanishes in Lp at least to order β at x = 0, we have j
N+2− 2p−2

p
+ǫ‖u12j−1‖p → 0 as j → ∞

provided that p([β] + 3) − 2p + 2 < d + pβ. That is, p([β] − β) + p+ 2 < d, i.e. we arrive at the

same condition as above. Hence A3 can be made as small as needed by selecting j sufficiently

large.

Applying the above estimates to (18), we thus obtain

(1− C1κpν)‖I‖p ≤ K1‖1B(0,3)V
1
p

1 u‖p
+K2‖1B(0,3)u‖p +K3‖1B(0,3)∇u‖r
+ terms that vanish as j → ∞.

Taking j → ∞, we have

‖1B(0,1)V
1
p

1 ϕNu‖p ≤ K̃,

where K̃ := K1‖1B(0,3)V
1
p

1 u‖p + K2‖1B(0,3)u‖p + K3‖1B(0,3)∇u‖r. Hence ‖1B(0,1)ϕNu‖p ≤ K̃

(recall N = [β] + 1).

It remains to show that K̃ ≤ K for some K = K(‖f‖p, ‖f‖2, ν). Indeed, in view of (17), the

first two terms in K̃ are bounded from above by K4‖f‖p. Next, since r < 2, ‖1B(0,3)∇u‖r ≤
‖∇u‖2 ≤ K5‖f‖2, where the last inequality is valid by the construction of the form-sum. �

Remark 3. Here we comment on the proof of the result in Remark 1 (d ≥ 4). Following the

proof of the SUC in [KSh], we arrive at the error term ‖12/j\1/jϕNδ
(−2∇ξj · ∇u)‖q, q = 2d

d+2 ,

which is estimated using the Gagliardo-Nirenberg inequality

‖1B(0,2/j)−B(0,1/j)ϕNδ
(−2∇ξj·∇u)‖p ≤ jNδ+1‖12/j∇u‖p ≤ CjNδ+1‖12/j∆u‖ 2d

d+4
+CjNδ+1‖12/ju‖2,

where Nδ := [β] + 1 +
(

d
2 − γ

)

d−3
d−1 for any 0 < γ < 1

2 . The latter term vanishes as j → ∞ since

2([β] − β) + 4 + 2
(

d
2 − γ

)

d−3
d−1 < d (indeed, by our assumption [β] − β + 2 +

(

d
2 − γ

)

d−3
d−1 <

d
s for

γ sufficiently close to 1
2). For the former term, we estimate

‖12/j∆u‖ 2d
d+4

≤ ‖12/jV1u‖ 2d
d+4

≤ ‖12/jV1‖d−1
2
‖12/ju‖s, s = 2

d(d− 1)

d2 − d− 4
,

where jNδ+1‖12/ju‖s → 0 as j → ∞ by our assumption on the order of vanishing of u, i.e. [β] −
β + 2 +

(

d
2 − γ

)

d−3
d−1 <

d
s .
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5. Further discussion

1. Repeating the proof of Theorem 1 for solutions to the differential inequality (⋆⋆) below, we

obtain the following strong unique continuation result, strengthening the corresponding result in

[KSh] (i.e. removing the extra assumption V ∈ L1+ε
loc for some ε > 0).

Theorem 2. Let d = 3. Assume that V ∈ L1
loc satisfies

sup
x∈Rd

‖1B(x,ρ)|V | 12 (−∆)−
1
2‖2→2 ≤ ν (19)

for a sufficiently small ν. Then any solution

u ∈ Y str
V := {f ∈ L1

loc | ∆f ∈ L1
loc, |V | 12 f ∈ L2

loc, |∇f | ∈ L
6
5 }

to the differential inequality

|∆u| ≤ |V u| a.e. in R
3 (⋆⋆)

that vanishes in L2 to infinite order at some point is, in fact, identically equal to zero on R
3.

The space of solutions Y str
V is large enough to contain the eigenfunctions of the Schrödinger

operator H, see [KSh] for details.

2. As a consequence of (⋆) in Theorem 1, we have for any 0 < a < 1

ordpx=0u ≤ log1/a
K

‖1B(0,a)u‖p
+ 1.

Indeed, we select β such that β ≤ ordpx=0u ≤ β + 1 and note that by (⋆)

‖1B(0,a)a
−[β]−1u‖p ≤ K,

and so

(1/a)[β]+1‖1B(0,a)u‖p ≤ K ⇒ [β] + 1 ≤ log1/a
K

‖1B(0,a)u‖p
,

as required.

3. In [MeSS, MeNS] the authors consider operators Λ = −∆ − b · ∇, Λ∗ = −∆+∇ · b, where
b(x) =

√
δ d−2

2 |x|−2x is the Hardy-type drift, and establish two-sided bounds on their Green

functions:

(µ+ Λ)−1(x, y) ≃ e−
√
µ|x−y||x− y|−d+2

[

1 ∧ |x||y|
|x− y|2

]
γ
2

|x|−
γ
2 |y|

γ
2 , γ :=

√
δ
d− 2

2
,

(µ+ Λ∗)−1(x, y) ≃ e−
√
µ|x−y||x− y|−d+2

[

1 ∧ |x||y|
|x− y|2

]
γ
2

|x| γ2 |y|− γ
2 .

Since we are interested in the vanishing of the Green function in x, is the operator Λ∗ that is of

interest to us. The proof of estimate (⋆) in Theorem 1 extends to this operator easily (use (S2)

instead of (S1)), although with the assumption ν dependent on the order of vanishing.

The phenomenon of vanishing of Green’s function exists in the non-local setting, see [BGJP,

CKSV, JW] (fractional Laplacian (−∆)
α
2 with Hardy potential c|x|−α) and [KS, KSS] (Hardy-

type drift c∇ · |x|−αx), and so the question addressed in this paper is also of interest for the

operators considered in these papers.
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Appendix A. Proof of (11)

Set |x|ε :=
√

|x|2 + ε for ε > 0 and

Vε(x) := δ
(d − 2)2

4
|x|−2

ε + V0,ε,

where V0,ε ∈ C∞
c is such that |V0,ε| ↑ |V | as ε ↓ 0, so that V0,ε ∈ Fδ0 with the same constants δ0,

λ0 = λ(δ0). Such V0,ε can easily be constructed by truncating and mollifying V0. Let

Hε := −∆+ Vε, D(Hε) =W 2,2,

u ≡ uε := (µ+Hε)−1f, 0 ≤ f ∈ L1 ∩ L∞, f 6≡ 0, f = 0 in B(0, 1),

ψ(x) ≡ ψε(x) := |x|−sε , 0 ≤ s <
d− 2

2

√

1 + δ − δ0, v := ψu.

Then v satisfies

(µ+Hε
ψ)v = ψf, where Hε

ψ := −∆+ 2
∇ψ
ψ

· ∇+
∆ψ

ψ
− 2

(∇ψ)2
ψ2

+ Vε, D(Hε
ψ) =W 2,2.

We will show below that Hε
ψ satisfies

‖∇v‖2 ≤ c‖ψf‖2, µ > δ0λ0. (20)

This inequality yields ‖ψu‖ 2d
d−2

≤ CSc‖ψf‖2 <∞, so

‖1B(0,1)|x|
− k

p
ε uε‖p <∞, where p =

2d

d− 2
,
k

p
= s.

Now, using the standard convergence result (µ + H)−1 = s-L2- limε↓0(µ + Hε)−1 and applying

Fatou’s Lemma, we obtain ‖1B(0,1)|x|−
k
pu‖p < ∞. Comparing the latter with our hypothesis on

s, we obtain that Ord px=0u ≥ d−2
2 (

√
1 + δ − δ0 − 1), as claimed.

The inequality (20) will follow from µ〈w,w〉+Re〈Hε
ψw,w〉 ≥ (µ− δ0λ0)‖w‖22 + c‖∇w‖22, c > 0,

applied to w = Re(v). By integration by parts,

2Re〈∇ψ
ψ

· ∇w,w〉 ≡ −2sRe〈|x|−2
ε x · ∇w,w〉 = s(d− 2)〈|x|−2

ε w,w〉 + 2sε〈|x|−4
ε w,w〉.

Thus, using Hardy’s inequality 〈∇w,∇w〉 ≥ (d−2)2

4 〈|x|−2w,w〉 ≥ (d−2)2

4 〈|x|−2
ε w,w〉, we obtain

Re〈Hε
ψw,w〉 ≥ 〈∇w,∇w〉 +

[

−s2 + δ
(d − 2)2

4

]

〈|x|−2
ε w,w〉 + s2ε〈|x|−4

ε w,w〉 + 〈V0w,w〉

(we discard the term s2ε〈|x|−4
ε w,w〉 and use V0 ∈ Fδ0)

≥ (1− δ0)〈∇w,∇w〉 +
[

−s2 + δ
(d − 2)2

4

]

〈|x|−2
ε w,w〉 − δ0λ0〈w,w〉

≥ c〈∇w,∇w〉 + (1− δ0 − c)
(d − 2)2

4
〈|x|−2

ε w,w〉

+

[

−s2 + δ
(d − 2)2

4

]

〈|x|−2
ε w,w〉 − δ0λ0〈w,w〉

where c is chosen sufficiently small so that 1 + δ − δ0 − c > s2 4
(d−2)2

, using the fact that our

assumption on s is a strict inequality. Then Re〈Hε
ψw,w〉 ≥ c〈∇w,∇w〉 − δ0λ0〈w,w〉, as needed.
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Université Laval, Département de mathématiques et de statistique, 1045 av. de la Médecine,
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