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REGULARITY FOR PARABOLIC EQUATIONS WITH SINGULAR NON-ZERO

DIVERGENCE VECTOR FIELDS

D.KINZEBULATOV AND YU.A. SEMËNOV

Abstract. We establish two-sided Gaussian bounds on the heat kernel of divergence-form parabolic

equation with singular time-inhomogeneous vector field satisfying some minimal assumptions.

1. Introduction

In this paper we study regularity properties of solutions of parabolic equation

(∂t −∇ · a · ∇+ b · ∇)u = 0, on R+ × R
d, d ≥ 3, (1)

under broad assumptions on a singular (that is, locally unbounded) time-inhomogeneous vector field

b : R+ × R
d → R

d. Here and everywhere below, R+ := [0,∞[,

∇ · a · ∇u(x) :=
d

∑

i,j=1

∇i

(

aij∇ju(x)
)

, b · ∇u(x) :=
d

∑

k=1

bk∇ku(x).

The matrix a : R+ × R
d → R

d ⊗ R
d is symmetric, uniformly elliptic, i.e.

σI ≤ a(t, x) ≤ ξI for some ξ, σ > 0 for a.e. (t, x), (Hσ,ξ)

and, other than that, is assumed to be only measurable.

In the absence of drift term b ·∇, already the hypothesis a ∈ Hσ,ξ provides local Hölder continuity

of solutions to (1). This is known since the works of E.De Giorgi [DG] and J.Nash [N]. Moreover,

the corresponding heat kernel satisfies two-sided Gaussian bounds, see Aronson [Ar], or see [N] and

Fabes-Stroock [FS].

However, with non-zero b · ∇, the regularity theory of (1) is not yet complete even in the case

a = I. Some particularly important classes of vector fields b are the divergence-free vector fields

(i.e. div b = 0) and, more generally, vector fields that have singular divergence div b ∈ L1
loc. Parabolic

equations with such vector fields, which are in the focus of this paper, arise in hydrodynamics and

other physical applications. We study one of the central questions in the regularity theory of (1):

what are the minimal assumptions on b so that the heat kernel of (1) admits upper and/or lower

Gaussian bounds? Such bounds, once established, open up the way to proving a number of other

regularity results for (1).

The present paper continues [KS1] where we dealt with time-homogeneous a, b and investigated

how the lower and the upper Gaussian heat kernel bounds depend on the divergence of b. This
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2 D.KINZEBULATOV AND YU.A. SEMËNOV

paper also continues [S] where two-sided Gaussian bounds for divergence-free time-inhomogeneous

b were established.

In [KS1] and [S], the proof of two-sided Gaussian bounds uses a condition on |b| := (
∑d

k=1 b
2
k)

1/2

(see Definition 1.2). This condition, although quite general, does not allow to take into account

possible oscillations in vector field b. In the present paper we handle oscillations in b and also allow

b to have time-inhomogeneous singular divergence. This required a comprehensive modification of

the argument from the two cited papers. Possible oscillations of vector fields are taken into account

using the class L∞BMO−1 of divergence-free vector fields whose components are distributional

derivatives of functions of bounded mean oscillation (we recall the definition in the next section).

The results on the regularity theory of equation (1) with b ∈ L∞BMO−1 include, in particular, the

parabolic Harnack inequality established, among other results, in Seregin-Silvestre-Šverak-Zlatos

[SSSZ], and global in time two-sided Gaussian bounds proved by Qian-Xi in [QX1]. Their Gaussian

bounds in the a priori form follow as a special case of our Theorems 2.2, 2.3. Earlier, Osada [O]

proved two-sided Gaussian heat kernel bounds for b in L∞(L−1
∞ ) ⊂ L∞BMO−1, where L−1

∞ is the

class of divergence-free vector fields whose components are distributional derivatives of functions in

L∞.

Let us now state our hypothesis on b and describe our results. For notations, see Section 1.1.

Definition 1.1. We say that a distributional vector field b : R+ → [S ′]d belongs to class Mδ if for

a.e. t ∈ R+

|〈b(t)ψ,ψ〉| ≤ δ‖∇ψ‖2‖ψ‖2 + g(t)‖ψ‖22 (2)

for all ψ in the L. Schwartz class S, for a non-negative function g that satisfies, on every finite

interval [0, T ],
∫ t

s
g(τ)dτ ≤ c

√
t− s, s, t ∈ [0, T ] (3)

for a constant c = cδ,T (written as b ∈ Mδ, “multiplicative class”).

The multiplicative class Mδ will also appear in another, more restrictive form:

Definition 1.2. A vector field b ∈ [L1
loc(R+ ×R

d)]d belongs to class MFδ if for a.e. t ∈ R+

〈|b(t)|ψ,ψ〉 ≤ δ‖∇ψ‖2‖ψ‖2 + g(t)‖ψ‖22, ψ ∈W 1,2 (4)

under the same assumption on g as in the previous definition (written as b ∈ MFδ, multiplicatively

form-bounded vector fields).

Note that both classes Mδ and MFδ are closed with respect to addition (up to change of δ).

Examples. The following vector fields b are in MFδ for appropriate δ.

1. Vector fields in the critical Ladyzhenskaya-Prodi-Serrin class:

|b| ∈ Ls(R+, L
r),

d

r
+

2

s
≤ 1, 2 ≤ s ≤ ∞, d ≤ r ≤ ∞. (LPSc)

2. Vector fields b that belong, uniformly in t ∈ R, to the scaling-invariant Morrey class M1+ε

with ε > 0 fixed arbitrarily small:

sup
t∈R

‖b(t)‖M1+ε = sup
t∈R

sup
r>0,x∈Rd

r

(

1

|Br(x)|

∫

Br(x)
|b(t, y)|1+εdy

)
1

1+ε

<∞ (5)
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where Br(x) is the ball of radius r centered at x, and ε is fixed arbitrarily small.

See proofs of inclusions in Appendix C.

3. If g ∈ L2
loc(R+), then condition (3) obviously holds. Another example is

g(t) = |t|− 1
2 ,

which still satisfies (3) but is not in L2
loc(R+).

The function g describes singularities of the vector field b in the time variable. In particular, if b is

bounded in the spatial variables, then condition (3) says that |b| can have at most t−
1
2 singularities

in time, so the speed at which the streaming induced by b displaces the solution is comparable to

the speed at which the viscosity diffuses it. In this regard, see Carlen-Loss [CL] who showed that

the velocity fields in the Burgers and 2D Navier-Stokes vorticity equations have at most t−1/2 time

singularities. Let us add that if one is dealing with conditions on b that are invariant with respect

to the parabolic scaling, such as b ∈ Mδ (so that there is a hope of arriving at the regularity results

for parabolic equation (1) comparable to those for the heat equation, including two-sided Gaussian

bounds), then one cannot extend ‖b(t)‖∞ ≤ ct−1/2 to ‖b(t)‖∞ ≤ ct−1/2−ε regardless of how small

one fixes ε > 0 without destroying the parabolic scaling. See also [QX2] in this regard.

In Theorem 2.2, we prove a priori upper Gaussian bound on the heat kernel of (1) assuming that

b ∈ Mδ for some finite δ and that the positive part (div b)+ of divergence div b has sufficiently small

Kato norm (cf. (19)). Here “a priori” refers to the fact that Theorem 2.2 is proved for smooth a, b,

but the constants in the upper Gaussian bound do not depend on the smoothness of a and b.

In Theorem 2.3, we prove lower Gaussian bound on a heat kernel of (1) under more restrictive

assumption on the vector field:

b = b̂+ b̃

where b̂ ∈ MFδ for some δ < ∞ and g ∈ L2(R+), with div b̂ having sufficiently small Kato norm,

and divergence-free b̃ is in the class L∞BMO−1.

The fact that the assumptions of Theorem 2.2 are broader than the assumptions of Theorem 2.3

is seen from the straightforward inclusion MFδ ⊂ Mδ and the following proposition.

Proposition 1.1. If b̃ ∈ L∞BMO−1, then b̃ ∈ Mδ.

The class Mδ is the largest class of vector fields considered in this paper.

The question of uniqueness of the heat kernel of (1) under the assumption b ∈ Mδ is non-trivial.

It is known that the heat kernel is unique if vector field b belongs to L∞BMO−1, a particular sub-

class of Mδ . This is a result of Qian-Xi [QX1], which they proved using the Lions’ approach in

the standard for equation (1) triple of Hilbert spaces W 1,2 ⊂ L2 ⊂ W−1,2. See detailed statement

below. In this paper we single out another important sub-class of Mδ for which one can prove

uniqueness of the heat kernel, although only in the case a = I.

Definition 1.3. A vector field b ∈ [L1
loc(R+ ×R

d)]d is said to be weakly form-bounded (written as

b ∈ L∞F1/2

δ ) if, for a.e. t ∈ R+,

‖|b(t)| 12ψ‖2 ≤
√
δ‖(λ−∆)

1
4ψ‖2 (6)

for all ψ ∈ W 1
2
,2 := (λ−∆)−

1
4L2 (Bessel potential space) for some constant λ = λδ ≥ 0.
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We have

L∞F1/2

δ ⊂ MFδ. (7)

Indeed, if b ∈ L∞F1/2

δ and ψ ∈W 1,2 then

〈|b(t)|ψ,ψ〉 ≤ δ〈(λ −∆)
1
4ψ, (λ−∆)

1
4ψ〉 = δ〈(λ−∆)

1
2ψ,ψ〉

≤ δ‖(λ −∆)
1
2ψ‖2‖ψ‖2 = δ

√

‖∇ψ‖22 + λ‖ψ‖22‖ψ‖2 ≤ δ‖∇ψ‖2‖ψ‖2 + δ
√
λ‖ψ‖2,

so b ∈ MFδ with g(t) = δ
√
λ.

The classes of vector fields mentioned in Examples 1 and 2 above are all contained in L∞F1/2

δ .

The class L∞F1/2

δ is quite different from L∞BMO−1. Indeed, the proof of uniqueness of the heat

kernel of the parabolic equation

(∂t −∆+ b · ∇)u = 0 (8)

with b ∈ L∞F1/2

δ requires one to run Lions’ approach in a non-standard triple of Hilbert spaces

W 3
2
,2 ⊂ W 1

2
,2 ⊂ W− 1

2
,2.

In particular, the solution of a Cauchy problem for (8) satisfies different energy inequalities depend-

ing on whether b is in L∞F1/2

δ or in L∞BMO−1, cf. (14) and (15). Put another way, the Sobolev

embedding properties of −∆+b·∇ change drastically as one transitions from L∞BMO−1 to L∞F1/2

δ .

This allows us to conclude that these two subclasses of Mδ are quite far apart.

Let us emphasize that the lower bound in Theorem 2.3 is new even in the case a = I, b = b(x).

Concerning the lower and upper Gaussian bounds for time-homogeneous singular drifts having

singular divergence, we refer, in addition to [KS1], to earlier results by Liskevich-Zhang [LZ] who also

considered form-boundedness and Kato class conditions on |b| and div b. See detailed comparison

of the results in [KS1, Sect. 1].

The proof of the upper bound in Theorem 2.2 uses the Moser iteration method. The proof of

the lower bound in Theorem 2.3 uses a rather non-standard version of Nash’s method [N]. More

precisely, the assumption b ∈ L∞F1/2

δ prohibits, even if div b = 0, the use of quadratic inequalities

in the analysis of the Nash G-functions in the proof of the a priori lower Gaussian bound (Theorem

6.1). As a consequence, one needs to use a relatively sophisticated regularization of the Nash

G-functions. Arguably, L∞F1/2

δ is the “hard part” of Mδ.

In this paper, the proof of the lower bound uses the upper bound. We mention, however, [KS1,

Theorem 1], where it was demonstrated that these bounds are, in principle, independent. Namely, a

lower Gaussian bound on the heat kernel of (1) (with time-homogeneous coefficients) holds provided

that b is form-bounded with δ < 4σ2 and div b ≥ 0 (in the sense of distributions), in which case

an upper Gaussian bound is in general invalid. Conversely, there are situations where an upper

Gaussian bound holds but there are no lower Gaussian bounds, see [KS1] for details.

It should be added that we prove global in time heat kernel bounds, so our conditions on g are

global, but it is straightforward to make them local in time with local conditions on g as above.
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Let us note that the classes of singular vector fields discussed in this paper are scaling-invariant. It

is known that one can venture beyond the scaling-invariance, considering (8) with b ∈ L2
loc(R+×R

d),

div b = 0 such that, for some 0 < a ≤ 1 and δ <∞,
∫ ∞

0
〈|b(t, ·)|1+aϕ2(t, ·)〉dt ≤ δ

∫ ∞

0
‖∇ϕ(t, ·)‖22dt, ∀ϕ ∈ C∞

c (R+ × R
d),

containing e.g. zero-divergence b = b(x) with |b| ∈ Lp, p > d
2 (essentially, twice more singular than

(8)), see [Z1]. See also [QX2]. Although in this case one has to sacrifice much of the regularity

theory of (8) and (1), some results can be salvaged. This includes boundedness of weak solutions,

a non-Gaussian upper bound, see cited papers for details.

1.1. Notations and auxiliary results. Let Lp = Lp(Rd), p ≥ 1 denote the standard Lebesgue

space with norm ‖ · ‖p, W 1,p = W 1,p(Rd) the Sobolev spaces, S ′ = S ′(Rd) the space of Schwartz

distributions.

Let B(X,Y ) be the space of bounded linear operators between Banach spaces X → Y with

operator norm ‖ · ‖X→Y . Let B(X) := B(X,X). Set ‖ · ‖p→q := ‖ · ‖Lp→Lq .

Given a d× d matrix P = (Pij)
d
i,j=1 with entries in X, we set ‖P‖X :=

(
∑d

i,j=1 ‖Pij‖2X
)

1
2 .

Put

〈f〉 :=
∫

Rd

fdx, 〈f, g〉 := 〈f ḡ〉.

The following class is well known:

Definition. A vector field b : R+ → [S ′]d with div b = 0 is said to be in the class L∞ BMO−1 if

bk(t) =

d
∑

i=1

∇iBik(t), t ∈ R+, (9)

for some skew-symmetric matrix B with entries Bik ∈ L∞BMO ≡ L∞(R+,BMO).

The class L∞BMO−1 is endowed with semi-norm

‖b‖L∞ BMO−1 = ‖B‖L∞ BMO := sup
t∈R+

‖B(t)‖BMO.

Here BMO is the space of functions of bounded mean oscillation on R
d; recall that a function

F ∈ L1
loc(R

d) is of bounded mean oscillation if

‖F‖BMO := sup
Q

1

|Q|

∫

Q
|F − F̄ |dx <∞, where F̄ :=

1

|Q|

∫

Q
Fdx.

with the supremum taken over all cubes Q ⊂ R
d with sides parallel to the axes, |Q| is the volume

of Q.

If b is time independent, then we write simply b ∈ BMO−1. (Occasionally, we will be adding

“div b = 0” to make the paper easier to follow although this is redundant.)

As it was demonstrated in [QX1], the functions Bik can always be modified to be in Lqloc(R+×R
d)

for all 1 ≤ q < ∞ (by adding functions that only depend on t). We assume in what follows that

this modification has been made.

Proposition 1.2 ([CLMS, Theorem 4]). Let b ∈ BMO−1, div b = 0. Then, for all u, v ∈W 1,2,

|〈b · ∇u, v〉| ≤ ‖B‖BMO‖∇u‖2‖∇v‖2.
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Proposition 1.3 ([QX1, Prop. 3.2]). Given a f ∈ W 1,2, one has |f |∇i|f | ∈ H1, where H1 is the

real Hardy space, and

‖|f |∇i|f |‖H1 ≤ C‖∇f‖2‖f‖2, C = C(d).

Definition. div b ∈ L1
loc(R+ ×R

d) is said to be form-bounded (with form-bound ν <∞) if
∥

∥|div b(t)| 12ψ
∥

∥

2

2
≤ ν‖∇ψ‖22 + h(t)‖ψ‖22 ∀ψ ∈W 1,2 (10)

for a.e. t ∈ R+, for some function 0 ≤ h ∈ L1
loc(R+).

2. Main results

We start with the basic results of the well-posedness of Cauchy problem for equations (8) and

(1) without any assumptions on div b.

Instead of (8), it will be convenient to work with equation

(∂t + λ−∆+ b · ∇)u = 0, (11)

where λ is from the condition b ∈ L∞F1/2

δ . In this regard, we introduce the scale of Bessel potential

spaces Wα,2 endowed with the norm

‖v‖Wα,2 := ‖(λ−∆)
α
2 v‖2.

Assertion (ii) in theorem below in the case case b ∈ L∞BMO−1 is due to [QX1, Theorem 5.2].

We included it for the sake of completeness. Regarding the elliptic setting, see [Zh, Theorem 3.1].

Theorem 2.1. Let d ≥ 3, T > 0. The following is true:

(i) Let b be weakly form-bounded:

b ∈ L∞F1/2

δ with δ < 1 (see (6)).

Then for every f ∈ W 1
2
,2 there exists a unique weak solution to Cauchy problem for (11) with initial

condition u(s+) = f , i.e. a unique in L∞
loc(]s, T [,W

1
2
,2) ∩ L2

loc(]s, T [,W
3
2
,2) function u satisfying

∫ T

s
〈(λ−∆)

1
4u, ∂t(λ−∆)

1
4ϕ〉dt =

∫ T

s
〈(λ−∆)

3
4u, (λ−∆)

3
4ϕ〉dt

+

∫ T

s
〈b(t) · ∇u, (λ−∆)

1
2ϕ〉 (12)

for all ϕ ∈ C∞
c (]s, T [,S) and

w-W 1
2
,2- lim

t↓s
u(t) = f. (13)

Furthermore, u ∈ C([s, T ],W 1
2
,2), and the following energy inequality holds:

‖u(t)‖2
W

1
2 ,2

+ 2(1 − δ)

∫ t

s
‖u(τ)‖2

W
3
2 ,2
dτ ≤ ‖f‖2

W
1
2 ,2
, 0 ≤ s < t ≤ T. (14)

The operators T t,sf(x) := u(t, s, x) constitute a contraction strongly continuous Markov evolution

family in W 1
2
,2. If {bε}ε>0 is a family of bounded smooth vector fields such that bε ∈ L∞F1/2

δ with
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the same λ as b, bε → b in [L1
loc(R+×R

d)]d as ε→ 0 (see example of such vector fields in Proposition

4.3), and if uε denotes the solution to Cauchy problem (11), (13) with the vector field bε, then

uε → u weakly in L2([s, T ],W 3
2
,2) as ε→ 0.

(ii) If either (|b| ∈ L2
loc(R+ × R

d), div b is form-bounded with form-bound ν < 1) or (b ∈
L∞ BMO−1, div b = 0), then for every f ∈ L2 there exists a unique weak solution u to the corre-

sponding Cauchy problem for (1) (in the standard triple W 1,2 ⊂ L2 ⊂ W−1,2), which satisfies the

classical energy inequality

‖u(t)‖22 + c

∫ t

s
‖∇u(τ)‖22dτ ≤ ‖f‖22, c > 0, 0 ≤ s < t. (15)

The notion of weak solution to equation (11) in assertion (i) is obtained by formally multiplying

(11) by test function (λ−∆)
1
2ϕ and integrating. The last term in (12) is well defined by Proposition

4.1.

The proof of Theorem 2.1(i) uses the Lions variational approach in the triple of Bessel potential

spaces W 3
2
,2 ⊂ W 1

2
,2 ⊂ W− 1

2
,2. Theorem 2.1(i) can be viewed as the first step towards a regularity

theory of (8) with weakly form-bounded b. In the time-homogeneous case b = b(x), the class (6)

provides sharp Lp → Lq bounds on the corresponding to (8) semigroup [S], a detailed Sobolev

regularity theory of elliptic operator −∆ + b · ∇ in Lp for p large and the corresponding Feller

semigroup [K], see discussion in Section 8. The latter determines, for every initial point x ∈ R
d, a

“sequentially unique” weak solution to the SDE

Xt = x−
∫ t

0
b(Xs)ds +

√
2Bt, t ≥ 0, (16)

where Bt is the standard d-dimensional Brownian motion, x ∈ R
d is the initial point, see [KS3].

(See, however, recent developments in [K2] regarding time-inhomogeneous b.)

Remark 2.1. One can extend the definition of the class L∞F1/2

δ by considering b ∈ [L1
loc(R+×R

d)]d

such that

‖|b(t)| 12ψ‖22 ≤ δ‖(λ −∆)
1
4ψ‖22 + g(t)‖ψ‖22, ψ ∈ (λ−∆)−

1
4L2, (17)

where 0 ≤ g ∈ L2
loc(R+), see Appendix A for details.

Next, we turn to the question of what assumptions on locally unbounded b provide upper and

lower Gaussian bounds on the heat kernel of equation (1). Compared to the previous theorem, we

will weaken the assumption on the vector field b even further to b ∈ Mδ, in particular taking into

account possible cancellations, but requiring the existence of div b ∈ L1
loc(R+ × R

d) and, moreover,

the smallness of the Kato norms of its positive and/or negative parts (div b)+, (div b)−. These

assumptions allow b and div b to be quite singular.

Put

kc(t, x, y) ≡ k(ct, x, y) := (4πct)−
d
2 e−

|x−y|2
4ct , c > 0.

Theorem 2.2. Let d ≥ 3. Let a ∈ Hσ,ξ, b ∈ Mδ with multiplicative bound δ < ∞ and function g

satisfying
∫ t

s
g(τ)dτ ≤ cδ

√
t− s, 0 ≤ s < t <∞ (18)
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for some constant cδ ≥ 0. Let µ+ denote the global in time Kato norm of “potential” (div b)+, i.e.

the maximum between

sup
t≥0,x∈Rd

∫ t

0
〈k(t− τ, x, ·)(div b)+(τ, ·)〉dτ, sup

s≥0,x∈Rd

∫ ∞

s
〈k(τ − s, x, ·)(div b)+(τ, ·)〉dτ. (19)

Also, assume that a, b, div b are bounded smooth.

The following is true. If µ+ is smaller than a certain generic constant (i.e. a constant that depends

only on d, σ, ξ, δ, cδ, but not on the smoothness of a or the boundedness and smoothness of b, div b),

then the heat kernel u(t, x; s, y) of equation (1) satisfies a global in time upper Gaussian bound

u(t, x; s, y) ≤ c3kc4(t− s;x− y) for all 0 ≤ s < t <∞, x, y ∈ R
d

with generic constants ci, i = 3, 4 that can also depend on µ+.

If the Kato norm µ+ of (div b̂)+ is finite, as in the theorem above, then we say that (div b̂)+
belongs to the Kato class.

Remark 2.2. Regarding the above condition on the smallness of the Kato norm µ+ of (div b)+,

recall that if (div b)+ ∈ 1{0≤t≤1}L
∞(R+, L

p), p > d
2 , then µ+ can be chosen arbitrarily small. There

also exist (div b)+(x) that are not even in Lploc for any p > 1 yet have µ+ finite (or sufficiently small

upon multiplying b by a small constant).

In the next theorem we assume that a ∈ Hσ,ξ and b are only measurable, but b satisfies a more

restrictive condition:

b = b̃+ b̂, (20)

where

b̃ ∈ L∞ BMO−1, div b̃ = 0, (21)

b̂ ∈ MFδ with g ∈ L2(R+), (22)

(div b̂)± ∈ L1
loc(R+ × R

d) belong to the Kato class with Kato norms µ±, respectively, and (23)

|(div b̂)±| are form-bounded:
〈∣

∣(div b̂)±(t)
∣

∣ψ,ψ
〉

≤ ν±‖∇ψ‖22 + h±(t)‖ψ‖22, ∀ψ ∈W 1,2

for a.e.t ∈ R+ for some 0 ≤ h± ∈ L1(R+).
(24)

Definition 2.1. Assume that (20)-(24) hold. We say that v ∈ L2([s, T ],W 1,2) is an approximation

solution to Cauchy problem for equation (1) with initial condition

s-L2- lim
t↓s

v(s) = f ∈ L2 (25)

if

v = w-L2
loc([s,∞[,W 1,2)- lim

ε↓0
lim
ε1↓0

vε1,ε,

where vε1,ε solve

(∂t −∇ · aε1 · ∇+ bε · ∇)vε1,ε = 0, vε1,ε(s) = f
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for some bounded smooth aε1 ∈ Hσ,ξ, b̂ε and (div b̂)±,ε ≥ 0 that have the same multiplicative bound

δ, g and the form-bounds ν±, the Kato norms µ±, respectively, and bounded smooth b̃ε = ∇Bε
with the property

‖b̃ε‖L∞ BMO−1 ≤ C‖b̃‖L∞ BMO−1

for a constant C independent of ε and Bε bounded smooth skew-symmetric matrices with entries

in L∞ BMO, such that

aε1 → a in [L2
loc(R+ ×R

d)]d×d,
b̂ε → b̂ in [L1

loc(R+ ×R
d)]d,

Bε → B in [L2
loc(R+ ×R

d)]d×d,
(div b̂)±,ε → (div b̂)± in L1

loc(R+ × R
d)

(26)

as ε1, ε ↓ 0.

It is easy to see that if v is an approximation solution to (1), then it is also a weak solution to

(1):

−
∫ t

s
〈v, ∂rϕ〉dr +

∫ t

s

〈

(a+B) · ∇v,∇ϕ
〉

dr −
∫ t

s

〈

b̂v,∇ϕ
〉

dr −
∫ t

s

〈

(div b̂)v, ϕ
〉

dr = 0 (27)

for all ϕ ∈ C∞
c (]s, t[,S). Here b̃ = ∇B where B is skew-symmetric in L∞BMO ∩ L2

loc(R+ × R
d),

see Section 1.1.

Definition 2.2. We call a constant generic∗ if it depends only on

d, σ, ξ, δ, ‖g‖L2 (R+), ν±, ‖h±‖L1(R+) and ‖b̃‖L∞ BMO−1 .

Theorem 2.3. Let d ≥ 3, a ∈ Hσ,ξ. There exist generic∗ constants µ∗± such that if (20)-(24) hold

with

δ <∞, ν± < σ and with Kato norms µ± < µ∗±,

then there exists a Hölder continuous heat kernel u(t, x; s, y) of equation (1) satisfying:

(a) A global in time lower Gaussian bound

c1kc2(t− s;x− y) ≤ u(t, x; s, y)

holds, in addition to the upper bound in Theorem 2.2, for all 0 ≤ s < t < ∞, x, y ∈ R
d, with

generic∗ constants c1-c4 that can also depend on µ±.

(b) The function

v(t, x) :=
〈

u(t, x; s, ·)f(·)
〉

, f ∈ L2,

is an approximation solution to Cauchy problem for (1).

(c) The operators T t,sf :=
〈

u(t, x; s, ·)f(·)
〉

determine a quasi bounded strongly continuous Feller

evolution family of integral operators in B(X), X = Lp, 1 ≤ p < ∞ or X = Cu. The heat kernel

u(t, x; s, y) is defined as the integral kernel of these operators, possibly after a modification on a

measure zero set.

(d) If either

f ∈ L2, a ∈ Hσ,ξ, b = b̃ (d1)
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or

f ∈ W 1
2
,2, a = I, b = b̂ = b̂(1) + b̂(2) (d2)

such that, for a.e. t ∈ R+,

‖|b̂(1)(t)|(λ−∆)−
1
2 ‖2→2 ≤

√

δ1, ‖(λ−∆)−
1
2 |b̂(2)(t)|‖∞ ≤

√

δ2

with
√
δ1 +

√
δ2 < 1, then an approximation solution to Cauchy problem (1), (25) is unique.

The last assertion in the case (d1) is due to [QX1] (in fact, valid for weak solutions in the standard

triple, not just approximation solutions). The case (d2) is a consequence of Theorem 2.1(ii).

If f ∈ L2 and |b| ∈ L2
loc(R+ × Rd), div b is form-bounded with form-bound ν < 1, then the

corresponding Cauchy problem for (1) has a unique weak solution, cf. Theorem 2.1(ii). Theorem

2.3(d) has the advantage that it does not require |b| ∈ L2
loc(R+ × R

d).

The constants µ∗± that bound the admissible values of the Kato norms in Theorem 2.3 are given

by, in principle, explicit but rather complicated expressions (e.g. they will depend on the constants

in the upper Gaussian bound of Theorem 2.2), so we will not attempt writing them down here.

Remark 2.3. The upper bound in Theorem 2.2 becomes local in time if g satisfies only (3), µ+ by

the local Kato norm of (div b)+, i.e. the maximum between

inf
ϑ>0

sup
t≥ϑ,x∈Rd

∫ t

t−ϑ
〈k(t− r, x, ·)(div b)+(r, ·)〉dr

and

inf
ϑ>0

sup
s≥0,x∈Rd

∫ s+ϑ

s
〈k(r − s, x, ·)(div b)+(r, ·)〉dr.

The two-sided bound in (a) becomes local in time if one requires g ∈ L2
loc(R+), h± ∈ L1

loc(R+) and

replaces the global in time Kato norms of (div b)± by their local counterparts.

Remark 2.4. Concerning the divergence form equation (1), the authors obtained in [KS4] an L1

strong solution theory of (1) with measurable uniformly elliptic a = a(x) and b = b(x) in the elliptic

Nash class

|b| ∈ L2
loc and sup

x∈Rd

∫ h

0

〈

k(t, x, ·)|b(·)|2
〉

1
2
dt√
t

is sufficiently small, for some h > 0,

without any assumptions on div b. These assumptions, moreover, provide two-sided Gaussian

bounds on the heat kernel of (1).

The elliptic Nash class contains e.g. b = b(x) with |b| ∈ Lp+L∞, p > d, but it also contains some

b with |b| 6∈ L2+ε
loc , ε > 0. Despite the fact that equation (1) with b in the elliptic Nash class admits

L1 strong solution theory, it does not seem to admit even an L2 weak solution theory, see discussion

in [KS4].

Remark 2.5. Parabolic equation (1) admits weak solution theory in the standard tripe of Hilbert

spaces W 1,2 ⊂ L2 ⊂W−1,2 if either b ∈ L∞BMO−1 [QX1] or |b| is form-bounded with form-bound

δ < 1:
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Definition. A vector field b ∈ [L2
loc(R+ × R

d)]d is said to be form-bounded (with form-bound

δ > 0) if for a.e. t ∈ R+

‖b(t, ·)ψ‖22 ≤ δ‖∇ψ‖22 + g(t)‖ψ‖22, ∀ψ ∈W 1,2, (28)

for a function g ∈ L1
loc(R+).

For time-homogeneous a and b, Mazya-Verbitsky [MV] proved that the general second order

elliptic operator −∇·a ·∇+b ·∇+V with time-homogeneous coefficients is W 1,2 →W−1,2 bounded

if and only if b = b̂+ b̃, where b̂ is form-bounded with some δ, and b̃ ∈ BMO−1, and distributional

V is form-bounded in the sense that

|〈V ψ,ψ〉| ≤ ν‖∇ψ‖22 + c(ν)‖ψ‖22, ψ ∈ C∞
c

for suitable ν > 0, c(ν) <∞.

The results of the present paper show that if one deals with such aspects of the regularity theory

of −∆ + b · ∇, −∇ · a · ∇ + b · ∇ as the existence and uniqueness of weak solution, upper and

lower Gaussian bounds, one can consider even less restrictive assumptions on the vector field b. Let

us also add that the operator −∆ + b · ∇ + V also admits an L2 theory (but not W 1,2 → W−1,2

boundedness) if b is only weakly form-bounded, i.e. b ∈ F1/2

δb
, but the potential V satisfies a somewhat

more restrictive condition than the form-boundedness:

‖|V | 34 (λ−∆)−
3
4‖2→2 ≤ δ

3
4
V ,

where δb + δV < 1. See [KS2, Sect. 5.4].

See also further discussion and examples in Section 8.

3. Proof of Proposition 1.1

Given a b ∈ L∞ BMO−1, we write

〈bk(t)ψ,ψ〉 = −2

d
∑

i=1

〈Bik(t)|ψ|∇i|ψ|〉.

By the H1-BMO duality,

|〈bk(t)ψ,ψ〉| ≤ 2

d
∑

i=1

‖Bik(t)‖BMO‖|ψ|∇i|ψ|‖H1 .

Therefore, by Proposition 1.3,

|〈b(t)ψ,ψ〉| ≡
(

d
∑

k=1

〈bk(t)ψ,ψ〉2
)1/2 ≤ 2C‖B(t)‖BMO‖∇ψ‖2‖ψ‖2,

i.e. b ∈ Mδ with δ = 2C‖B‖L∞ BMO and g = 0.
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4. Proof of Theorem 2.1(i)

Put

H+ := W 3
2
,2, H := W 1

2
,2, H− := W− 1

2
,2.

Clearly, H− is the dual of H+ with respect to the inner product in H.

Proposition 4.1. Let u ∈ L2
loc(]s, T [,H+). Then, for every ϕ ∈ L2

com(]s, T [,H+), for all T > t1 >

s1 > s,
∫ t1

s1

〈|b(t) · ∇u, (λ−∆)
1
2ϕ|〉dt ≤ δ‖u‖L2([s1,t1],H+)‖ϕ‖L2([s1,t1],H+).

Proof. It suffices to consider b = bn, where bn = 1|b|≤nb, and then take n → ∞ using Fatou’s

Lemma. Thus, without loss of generality, b is bounded. We have, using Hölder’s inequality,

〈|b(t) · ∇u, (λ−∆)
1
2ϕ|〉 = 〈|b(t) 1

2 · (λ−∆)−
1
4 (λ−∆)

1
4∇u|,

∣

∣|b(t)| 12 (λ−∆)−
1
4 (λ−∆)

3
4ϕ

∣

∣〉
≤ ‖|b| 12 (λ−∆)−

1
4 ‖2→2‖(λ−∆)

1
4∇u‖2‖|b|

1
2 (λ−∆)−

1
4‖2→2‖(λ−∆)

3
4ϕ‖2.

Note that

‖(λ−∆)
1
4∇u‖22 = 〈∇(λ−∆)

1
4u,∇(λ−∆)

1
4u〉

≤ ‖(λ−∆)
3
4u‖22.

The result now follows upon applying condition b ∈ L∞F
1/2
δ . �

Proposition 4.2. Let δ < 1. Let u ∈ L∞
loc(]s, T ],H)∩L2

loc(]s, T ],H+) be a weak solution to equation

(11). Then the following is true:

(i) ∂tu ∈ L2
loc(]s, T ],H−);

(ii) u ∈ C(]s, T ],H) (after redefinition on a measure zero set);

(iii) for all T ≥ t1 ≥ s1 > s,

‖u(t1)‖2H + 2(1 − δ)

∫ t1

s1

‖u(t)‖2H+
dt ≤ ‖u(s1)‖2H .

We prove Proposition 4.2 in Appendix B by specifying the results in [LM] to tripeH+ ⊂ H ⊂ H−.

Armed with Proposition 4.2, we now prove Theorem 2.1(i) using some standard arguments. We

include the details for the sake of completeness, and also because some care need to be taken when

discussing approximation involving non-local operators.

1. First, let f ∈ S. Fix bn ∈ C∞(R+ ×R
d)∩L∞(R+ ×R

d) that have the same weak form-bound

δ and λ as b (so, independent of n), and converge to b in L1
loc(R+ × R

d) (see Proposition 4.3). Let

un denote the strong solution to Cauchy problem

(∂t + λ−∆+ bn · ∇)un = 0, un(s) = f.

Multiplying the last equation by (λ−∆)
1
2un and integrating, we obtain a uniform in n bound

sup
t∈[s,T ]

‖un(t)‖2H + 2(1 − δ)

∫ T

s
‖un(t)‖2H+

dt ≤ ‖f‖2H . (29)



PARABOLIC EQUATIONS WITH SINGULAR VECTOR FIELDS 13

Using a weak compactness argument, we can find a subsequence (also denoted by un) and a function

u ∈ L∞([s, T ],H) ∩ L2([s, T ],H+) such that

un → u weakly in L2([s, T ], L2), L2([s, T ],H+). (30)

2. Next, let us show that u is a weak solution to (11). Let ϕ ∈ C∞
c (]s, T [,S). Let us pass to the

limit n→ ∞ in

−
∫ T

s
〈un, ∂tϕ〉Hdt+

∫ T

s
〈un, ϕ〉H+dt+

∫ T

s
〈bn(t) · ∇un, (λ−∆)

1
2ϕ〉 = 0.

Only the last term requires a comment. We have

〈b(t) · ∇u− bn(t) · ∇un, (λ−∆)
1
2ϕ〉

= 〈b(t) · (∇u−∇un), (λ−∆)
1
2ϕ〉+ 〈(b(t)− bn(t)) · ∇un, (λ−∆)

1
2ϕ〉 = I1 + I2.

Let us show that
∫ T
s I1,

∫ T
s I2 → 0 as n→ ∞.

We have

I1 = −〈(λ−∆)
3
4 (u− un),∇(λ−∆)−

3
4 · b(t)(λ−∆)

1
2ϕ〉,

where, clearly,

‖∇(λ−∆)−
3
4 · b(t)(λ−∆)

1
2ϕ‖2 ≤ δ‖ϕ‖H+ ,

so ∇(λ−∆)−
3
4 · b(λ−∆)

1
2ϕ ∈ L2([s, T ], L2), and hence

∫ T
s I1dt→ 0 as n→ ∞.

Next,

I2 = 〈∇(λ−∆)
1
4un, (λ−∆)−

1
4 (b(t)− bn(t))(λ −∆)

1
2ϕ〉.

Here ∇(λ−∆)
1
4un is uniformly in n bounded in L2([s, T ], L2), while

‖(λ−∆)−
1
4 (b(t)− bn(t))(λ −∆)

1
2ϕ‖2 ≤ 2

√
δ‖|b(t)− bn(t)|

1
2 (λ−∆)

1
2ϕ‖2. (31)

Thus, we are left to show that

lim
n

∫ T

s
‖|b(r)− bn(r)|

1
2 (λ−∆)

1
2ϕ‖22dr = 0. (32)

Fix a smooth function σ on R+ taking values in [0, 1], such that σ(t) = 1 on [0, 1] and 0 on [2,∞[,

and put ζ(x) = σ( |x|R ), R > 0. Then |∇ζ(x)| ≤ c1R
−11|∇ζ| and |∆ζ(x)| ≤ c2R

−21|∇ζ|, where 1|∇ζ|
is the indicator of the set where |∇ζ| 6= 0. Put, for brevity, h := (λ−∆)

1
2ϕ. We have

lim
n

∫ T

s
‖|b(r)− bn(r)|

1
2h‖22dr ≤ lim

n
(

∫ T

s
‖|b(r) − bn(r)|

1
2 ζh‖22dr +

∫ T

s
‖|b(r)− bn(r)|

1
2 (1− ζ)h‖22dr)

(we use that bn → b in L1
loc(R+ × R

d))

= lim
n

∫ T

s
‖|b(r)− bn(r)|

1
2 (1− ζ)h‖22dr,
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and

‖|b(t)− bn(t)|
1
2 (1− ζ)h(t)‖2 ≤ 2

√
δ‖(λ−∆)

1
4 (1− ζ)h(t)‖2

= 2
√
δ‖(λ−∆)−

3
4 (λ−∆)(1− ζ)h(t)‖2

≤ 2
√
δ
(

λ
1
4‖(1 − ζ)h(t)‖2 + λ−

3
4 ‖∆[(1− ζ)h(t)]‖2

)

= o(R) as R→ ∞ due to the choice of ζ.

Thus (32) is proved.

We obtain
∫ T
s I2 → 0 as n→ ∞. Hence

−
∫ T

s
〈u, ∂tϕ〉Hdt+

∫ T

s
〈u, ϕ〉H+dt+

∫ T

s
〈b(t) · ∇u, (λ−∆)

1
2ϕ〉 = 0

for all ϕ ∈ C∞
c (]s, T [,S), i.e. u is a weak solution to (11).

3. We show that u satisfies the initial condition

lim
t↓s

〈u(t), ψ〉 = 〈f, ψ〉 for all ψ ∈ H−. (33)

First, consider ψ ∈ H. Put gn(t) := 〈un(t), ψ〉, t ∈ [s, T ]. Then, for all t, t+∆t ∈ [s, T ],

|gn(t+∆t)− gn(t)| ≤
∫ t+∆t

t
|〈(λ −∆)

3
4un, (λ−∆)

1
4ψ〉|dr +

∫ t+∆t

t
|〈bn · ∇un, ψ〉|dr

≤ ‖un‖L2([t,t+∆t],H+)‖ψ‖L2([t,t+∆t],H) + c(d)δ‖un‖L2([t,t+∆t],H+)‖ψ‖L2([t,t+∆t],H),

where, estimating the last term, we argued as in the proof of Proposition 4.1.

Also, ‖un‖L∞([s,T ]×Rd) ≤ ‖f‖∞, so we can apply the Arzelà-Ascoli Theorem. The latter, combined

with (30), allows to refine the subsequence {un} found earlier to obtain convergence of continuous

functions

〈un(t), ψ〉 → 〈u(t), ψ〉 uniformly on [T, s]− Ωψ,

where Ωψ is a measure zero set. Moreover, using the separability of H and the bound

sup
t∈[s,T ]

‖u(t)‖H ≤ C‖f‖H , (34)

and applying the diagonal argument, we can further refine {un} to obtain the uniform convergence

on [T, s]−Ω where Ω is a measure zero set independent of ψ. Further, since u is a weak solution to

(11) and hence is in C(]s, T ],H) by Proposition 4.1, we obtain that t 7→ 〈u(t), ψ〉 can be uniquely

extended to a continuous function on [s, T ] which must coincide at the endpoint t = s with 〈f, ψ〉,
i.e. we have (33) for ψ ∈ H. Finally, using

|〈u(t), ψ〉| ≤ ‖u(t)‖H‖ψ‖H−

and the fact that H is dense in H−, we obtain (33) for all ψ ∈ H−.

4.Given a weak solution u to Cauchy problem (11), (13), we note that Proposition 4.2(iii) gives

‖u(t1)‖2H + 2(1− δ)

∫ t1

s
‖u(t)‖2H+

dt ≤ ‖f‖2H . (35)
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Indeed, the initial condition u(t) → f weakly in H as t ↓ s gives ‖f‖H ≤ lim inft↓s ‖u(t)‖H . At the

same time, Proposition 4.2(iii) yields that t 7→ ‖u(t)‖H is a non-increasing function, so

‖f‖H = lim
t↓s

‖u(t)‖H

Hence u(t) → f (strongly) in H as t ↓ s, which yields (35). Combined with Proposition 4.2(ii),

this gives u ∈ C([s, T ],H). The uniqueness of weak solution follows from (35). The reproduction

property of the evolution family T t,sf := u(t) is a consequence of the uniqueness. The fact that

this evolution family is positivity preserving L∞ contraction (and hence is Markov) is immediate

from the construction of the weak solution u via approximation, cf. (30). The convergence result

follows from the weak compactness argument carried out above and the uniqueness of weak solution.

Finally, the energy inequality (35) and the fact that S is dense in H allow to extend these results

to an arbitrary f ∈ H.

To end the proof of Theorem 2.1(i), we need to address the question of existence of a bounded

smooth approximation of vector field b preserving its weak form-bound δ and constant λ = λδ. We

put b = 0 for t < 0.

Proposition 4.3. Set b̄ε(t) := eγε(t)∆1εb(t), t ∈ R,

bε := cεe
ε∆1 b̄ε,

where cε > 0, ∆1 :=
∂2

∂t2 , γε is a ]0, 1]-valued measurable function on R+, b and γε are extended by 0

to t < 0, 1ε is the indicator function of {(t, x) | t ∈ [0, ε−
1
2 ], |x| ≤ ε−1, |b(t, x)| ≤ ε−1}. There exist

cε ↑ 1, γε(t) ↓ 0 for every t ∈ R+ as ε ↓ 0 such that

bε ∈ L∞F1/2

δ with λ independent of ε,

and

bε → b in L1
loc(R+ × R

d).

Proof. First, we note that the convergence b̄ε → b in L1
loc(R+ × R

d) is straightforward, provided

that γε(t) ↓ 0 sufficiently rapidly as ε ↓ 0. Let us show that for any δε ↓ δ we can select γε ↓ 0 fast

enough so that

b̄ε ∈ L∞F1/2

δε
with the same λ.

We have

b̄ε = 1εb+ (b̄ε − 1εb),

where, clearly, ‖|1εb|
1
2 (t)(λ−∆)−

1
4 ‖2→2 ≤

√
δ for a.e. t ∈ R+, for all ε, while b̄ε−1εb ∈ L∞(R+, L

d).

It follows from Hölder’s inequality and the Sobolev Embedding Theorem that for any g ∈ L2, for

a.e. t ∈ R+,

‖|b̄ε(t)− 1εb(t)|
1
2 (λ−∆)−

1
4 g‖2 ≤ ‖|b̄ε(t)− 1εb(t)|

1
2 ‖2d‖(λ−∆)−

1
4 g‖ 2d

d−1

≤ c‖b̄ε(t)− 1εb(t)‖
1
2
d ‖g‖2.

For every ε > 0 and every t ∈ R+, we can select γε(t) sufficiently small so that ‖b̄ε(t)− 1εb(t)‖
1
2
d ≤

c−1
√
δε − δ. Thus supt∈R+

‖|b̄ε(t)−1εb(t)|
1
2 (λ−∆)−

1
4 g‖2 ≤ √

δε − δ‖g‖2. It follows that for a.e. t ∈
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R+, 〈|b̄ε(t)|[(λ−∆)−
1
4 g]2〉 ≤ δε‖g‖22, g ∈ L2, and hence

‖|b̄ε(t)|
1
2 (λ−∆)−

1
4 ‖2→2 ≤

√

δε.

Finally, recalling that bε = cεb̄ε, it is clear now that we can take cε :=
δ
δε

obtaining

‖|bε|
1
2 (t)(λ−∆)−

1
4‖2→2 ≤

√
δ.

�

5. Proof of Theorem 2.2

Set A = −∇ · a · ∇. We prove Theorem 2.2 by first establishing an upper Gaussian bound on the

heat kernel of the auxiliary operator

H+ = A+ b · ∇+ div b+.

Let Ht,sf denote the solution of
{ − d

dtH
t,sf = H+Ht,sf , 0 ≤ s < t <∞

0 ≤ f ∈ L1 ∩ L∞

in Lp = Lp(Rd), p ∈ [1,∞[. Let h(t, x; s, y) denote the heat kernel of H+, that is,

Ht,sf = 〈h(t, x; s, ·)f(·)〉.

Theorem 5.1. There exist generic constants c3, c4 > 0, ω ≥ 0 such that

h(t, x; s, y) ≤ c3kc4(t− s, x− y) (UGBh+)

for all 0 ≤ s < t <∞.

Proof of Theorem 5.1. We follow [FS]. We consider
{ − d

dtH
t,s
α f = H+

αH
t,s
α f , 0 ≤ s < t <∞,

0 ≤ f ∈ L1 ∩ L∞

in Lp = Lp(Rd), p ∈ [1,∞[, where Ht,s
α := eα·xHt,se−α·x and

H+
α := eα·xH+e−α·x = H+ − α · b− α · a · α+ α · a · ∇+∇ · a · α.

Lemma 5.2. There are generic constants c, c4 such that, for all 0 ≤ s < t <∞,

‖Ht,s
α ‖2→∞, ‖Ht,s

α ‖1→2 ≤ c(t− s)−d/4ec4α
2(t−s).

Proof of Lemma. Set uα(t) := Ht,s
α f , f = Ref ∈ C∞

c , v(t) := u
p/2
α (t), p ≥ 2. Noticing that

〈b · ∇uα, up−1
α 〉 = 2

p
〈∇v, bv〉 = −1

p
〈v2,div b〉,

we have, using the equation,

−1

p

d

dt
〈v2(t)〉 = 4

pp′
‖A1/2v(t)‖22 +

1

p′
〈v2(t),div b+〉+

1

p
〈v2(t),div b−〉

− 2(p− 2)

p
〈α · a · ∇v(t), v(t)〉 − 〈α · b, v2(t)〉 − 〈α · a · α, v2(t)〉.
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By b ∈ Mδ,

|〈α · b, v2〉| ≤ |α||〈b, v2〉| ≤ |α|δ‖∇v‖2‖v‖2 + |α|g‖v‖22

≤ 4γ

pp′
‖A 1

2 v‖22 +
(

|α|g + 1

4γ

pp′

4

δ2

σ
|α|2

)

‖v‖22 (γ > 0),

and so, applying the quadratic inequality, we have

− d

dt
‖v‖22 ≥ 4

p′
(1− 2γ)‖A1/2v‖22 −

(

p|α|g + p2p′

4γ

[

4γ

pp′
ξ +

(

p− 2

p

)2

ξ +
δ2

4σ

]

α2

)

‖v‖22

Putting p = 2 and γ = 1
2 , we have, taking into our assumption on g, i.e.

∫ t
s gds ≤ cδ

√
t− s,

‖uα(t)‖2 ≤ ‖f‖2 exp
[(

ξ +
δ2

2σ

)

α2(t− s) + cδ |α|
√
t− s

]

(⋆a)

Also, using Nash’s inequality

‖∇ψ‖22 ≥ CN‖ψ‖2+4/d
2 ‖ψ‖−4/d

1 , ψ ∈W 1,2 ∩ L1, (36)

we have, putting γ = 1
4 , p ≥ 4 and setting F (t, α) = p|α|g(t) + p2

(

ξ + δ2

3σ

)

α2,

− d

dt
‖v‖22 ≥ 2

p′
‖A1/2v‖22 − F (t, α)‖v‖22

≥ 2

p′
σCN‖v‖

2+ 4
d

2 ‖v‖−
4
d

1 − F (t, α)‖v‖22,

so

d

dt
‖v‖−4/d

2 ≥ 4σCN
dp′

‖v‖−
4
d

1 − 2

d
F (t, α)‖v‖−4/d

2 .

Setting cg =
4σCN
dp′ , w(t) = ‖v‖−

4
d

2 and µ(t) = 2
d

∫ t
s F (r, α)dr, we have

wp(t) ≥ cge
−µp(t)

∫ t

s
eµp(r)w p

2
(r)dr

≥ cge
−µp(t) V p

2
(t)

∫ t

s
eµp(r)(r − s)qdr,

where q = p
2 − 2 and V p

2
(t) :=

{

sup

[

(r − s)
qd
2p ‖uα(r)‖p/2 | s ≤ r ≤ t

]}− 2p
d

.
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Set κ = 2
d

(

3
2ξ +

δ2

3σ

)

α2. Since for s ≤ r ≤ t,

−µp(t) + µp(r) = −2

d

[

p2
(

ξ +
δ2

3σ

)

α2(t− r) + p|α|
∫ t

r
g(τ)dτ

]

≥ −2

d

[

p2
(

ξ +
δ2

3σ

)

α2(t− r) + p|α|cδ
√
t− r

]

≥ −2

d

[

p2
(

3

2
ξ +

δ2

3σ

)

α2(t− r) +
c2δ
2ξ

]

= −
[

κp2(t− s) +
c2δ
dξ

]

+ κp2(r − s), and so

e−µp(t)
∫ t

s
eµp(r)(r − s)qdr ≥ e

−κp2(t−s)− c2δ
dξ

∫ t

s
eκp

2(r−s)(r − s)qdr and

∫ t

s
eκp

2(r−s)(r − s)qdr ≥ Kp−2(t− s)
p−2
2 eκ(p

2−1)(t−s),

where K := 2 inf
{

p
[

1− (1− p−2)p−1
]

| p ≥ 2
}

> 0, we obtain

wp(t) ≥ cgKp
−2e−κ(t−s)−

c2δ
dξ (t− s)

p−2
2 V p

2
(t),

or, setting Wp(t) := sup
[

(r − s)
d(p−2)

4p ‖uα(r)‖p | s ≤ r ≤ t
]

,

Wp(t) ≤ (cgKe
− 2c2δ

dξ )
− d

2p p
d
p e

( 3
2
ξ+ δ2

3σ
)α

2

p
(t−s)

Wp/2(t), p = 2k, k = 1, 2, . . . .

Iterating this inequality, starting with k = 2, yields

(t− s)
d
4 ‖uα(t)‖∞ ≤ Cge

( 3
2
ξ+ δ2

3σ
)α2(t−s)W2(t).

Finally, taking into account (⋆a), we arrive at

‖Ht,s
α ‖2→∞ ≤ (t− s)−d/4Cge

(3ξ+ δ2

σ
)α2(t−s).

The same bound holds for ‖Ht,s
α (b)‖1→2 = ‖

(

Ht,s
−α(−b)

)∗‖2→∞. This ends the proof of Lemma

5.2. �

From Lemma 5.2 we obtain

h(t, x; s, y) ≤ C2
g (t− s)−

d
2 eα·(y−x)+c4α

2(t−s), c4 = 3ξ + 2
δ2

3σ
.

Putting α = x−y
2c4(t−s) , we obtain (UGBh+). This completes the proof of Theorem 5.1. �

We are in position to complete the proof of Theorem 2.2. We consider operator A+ b · ∇ as H+

perturbed by potential −div b+. Hence, the sought upper bound on the heat kernel of A + b · ∇
follows from Theorem 5.1 and a standard argument based on the Duhamel formula using that the

Kato norm µ+ of (div b)+ is sufficiently small. �
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6. A priori lower bound

In this section, u(t, x; s, y) denotes the heat kernel of operator −∇ · a · ∇ + b · ∇ with matrix

a ∈ Hσ,ξ, vector field b and div b assumed to be bounded C∞ smooth.

Theorem 6.1 (a priori lower bound). In the assumptions of Theorem 2.3, a global in time lower

Gaussian bound

c1kc2(t− s;x− y) ≤ u(t, x; s, y) (LGB)

holds for all 0 ≤ s < t < ∞, x, y ∈ R
d with generic∗ constants ci, i = 1, 2 that can also depend on

the Kato norms µ±.

Throughout the rest of the proof, the constants that we find are generic∗ that can also depend

on µ±.

The proof of Theorem 6.1 (given in the end of this section) is based on the following estimates

of Nash’s G-functions.

6.1. Ĝ-function for −∇ · a · ∇+ (b̂+ b̃) · ∇. Since b̂+ b̃ is in Mδ, Theorem 2.2 applies and gives

u(t, x; s, y) ≤ ĉ3kc4(t− s;x− y) (37)

where, recall, u(t, x; s, y) is the heat kernel Λ = −∇ · a · ∇+ (b̂+ b̃) · ∇. The constants in the next

proposition depend on the same parameters as the constants in the theorem except for the Kato

norms µ± and div b±.
Set

Q̃(t− s) :=
d

2
log(t− s).

Proposition 6.1. Let x, y ∈ R
d. Put o = x+y

2 , ts =
t+s
2 . There exist constants β and C such that

G(ts) := 〈kβ(t− ts, o− ·) log u(t, z; ts, ·)〉 ≥ −Q̃(t− ts)−C

for all z ∈ B(o,
√
t− ts).

Proof of Proposition 6.1. Fix ε > 0 and define

Gε(τ) := 〈kβ(t, o; ts, ·) log
[

εkβ(t, o; ts, ·) + u(t, z; τ, ·)
]

〉.

Then

G(τ) = inf
ε>0

Gε(τ), τ ∈
[

ts,
t+ ts
2

]

and G(ts) = Θβ(t, ts, z).

Below we are using the following shorthand:

Gε(τ) ≡
〈

Γ log
[

εΓ + U
]〉

≡
〈

Γ log
[

εΓ + U(τ)
]〉

,

where Γ ≡ Γβ ≡ kβ(t, o; ts, ·), U ≡ U(τ) ≡ u(t, z; τ, ·).
Also set

V := c0(t− ts)
d/2

[

εΓ + U
]

, c0 = (4πc4)
d/2e−1

[

ε+ c3e
1

4c4

]−1
,

where c3, c4 are the constant from the upper Gaussian bound for U.
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If β ≥ 2c4, then clearly

V (τ, y) exp
|o− y|2

4β(t− ts)
≤ e−1 for all y ∈ R

d, ε ∈]0, 1] and τ ∈
[

ts,
t+ ts
2

]

. (38)

Let us calculate −∂τGε(τ):

− ∂τGε(τ) =

〈

Γ
−∂τU
εΓ + U

〉

=

〈

Γ

εΓ + U
(∇ · a · ∇+∇ · (b̂+ b̃))U

〉

=

〈

∇ log V · aΓ · ∇U
εΓ + U

〉

−
〈

∇Γ · a · ∇U
εΓ + U

〉

+

〈

Γ
(b̂+ b̃) · ∇U
εΓ + U

〉

+

〈

Γ
divb̂ U

εΓ + U

〉

=
〈

∇ log V · aΓ · ∇ log V
〉

−
〈

∇ log V · aΓ · ε∇Γ

εΓ + U

〉

−
〈

∇Γ · a · ∇ log V
〉

+

〈

∇Γ · a · ε∇Γ

εΓ + U

〉

+
〈

Γ(b̂+ b̃) · ∇ log V
〉

−
〈

Γ
(b̂+ b̃) · ε∇Γ

εΓ + U

〉

+

〈

Γ
Udivb̂

εΓ + U

〉

.

Setting

N (τ) :=
〈

∇ log V · aΓ · ∇ log V
〉

,

applying the quadratic inequality and estimating
〈

ΓUdivb̂
εΓ+U

〉

≥ −
〈

Γdivb̂−
〉

, we have

−∂τGε(τ) ≥ N − 2N 1/2

〈

∇Γ · a
Γ
· ∇Γ

〉1/2

+ J

≥ (1− γ)N − ξ

γ

〈

(∇Γ)2

Γ

〉

+ J (0 < γ < 1),

where

J :=
〈

Γb̃ · ∇ log V
〉

−
〈

Γ
b̃ · ε∇Γ

εΓ + U

〉

+
〈

Γb̂ · ∇ log V
〉

−
〈

Γ
b̂ · ε∇Γ

εΓ + U

〉

−
〈

Γdivb̂−
〉

.

Applying 〈 |∇Γ|2
Γ 〉 = ξ d

2β(t−ts) , we arrive at

−∂τGε(τ) ≥ (1 − γ)N (τ) − ξ

γ

d

2β(t− ts)
+ J. (39)

Define

Y (τ) := Gε(τ) + Q̃(t− τ).

Our goal is to show that Y is bounded from below by a constant. Note that (39) can be rewritten

as

−∂τY (τ) ≥ (1− γ)N (τ)− ξ

γ

d

2β(t− ts)
+ J. (40)

Here we have used that −∂τ Q̃(t− τ) = d
2(t−τ) > 0. Multiplying (40) by eµ(τ), where

µ(τ) := − t− τ

t− ts
− F (τ)

√

β(t− ts)
− P (τ)−H(τ)
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where F (τ) :=
√
2
∫ t
τ g(r)dr, P (τ) :=

∫ t
τ g

2(r)dr, H(τ) :=
∫ t
τ h(r)dr, we obtain

−∂τ
[

eµ(τ)Y (τ)
]

≥ eµ(τ)
[

−Y (τ)∂τµ(τ) + (1− γ)N (τ)− ξ

γ

d

2β(t− ts)
+ J

]

.

Note that, due to our assumptions on g, g2 and h, the function µ is uniformly bounded in variables

τ ∈ [ts, (t+ ts)/2] and 0 ≤ s < t <∞.

Lemma 6.2. Let c > log(1 + c3) with c3 from u(t, x; τ, ·) ≤ c3(t − τ)−d/2. Then, for all ε > 0

sufficiently small,

Y (τ) < c

for all τ ∈ [ts,
t+ts
2 ].

Proof. Indeed, for ε ≤ (4πβ)
d
2 sufficiently small,

Gε(τ) =
〈

Γ log(εΓ + U)
〉

≤
〈

Γ
〉

log
[

(1 + c3)(t− τ)−d/2]

< −Q̃(t− τ) + log(1 + c3).

�

From now on, let c and ε be as in Lemma 6.2. Then we obtain from (40)

∂τ
(

eµ(τ)(Y (τ)− c)
)−1 ≥

[

γN (τ) +M(τ)
]

e−µ(τ)(Y (τ)− c)−2, (41)

(division by zero is ruled out by Lemma 6.2), where

M(τ) := −(Y (τ)− c)∂τµ(τ) + (1− 2γ)N (τ)− ξ

γ

d

2β(t− ts)
+ J.

Lemma 6.3. M(τ) ≥ 0 for all τ ∈
[

ts,
t+ts
2

]

, provided that ν− < σ, γ is sufficiently small and c is

sufficiently large.

We prove Lemma 6.3 below.

Now, taking Lemma 6.3 for granted, we complete the proof of Proposition 6.1. Lemma 6.3 and

(41) give

∂τ
(

eµ(τ)(Y (τ)− c)
)−1 ≥ γσN1(τ)e

−µ(τ)(Y (τ)− c)−2, (42)

where, recall, N1(τ) := 〈Γ|∇ log V |2〉. By the Spectral Gap Inequality (see e.g. [N, Sect. 2]),

N1 ≥
1

2β(t− ts)

〈

Γ| log V − 〈Γ log V 〉|2
〉

=
1

2β(t− ts)

〈

Γ| log
[

εΓ + U
]

− 〈Γ log
[

εΓ + U
]

〉|2
〉

≡ 1

2β(t− ts)

〈

Γ| log
[

εΓ + U
]

−Gε|2
〉

.

In turn, Γ ≥ CU for a generic∗ constant C. (Indeed, 1
2 |o − ·|2 ≤ |z − ·|2 + |o − z|2. Clearly,

1
t−ts ≤ 1

t−τ ≤ 2
t−ts combined with |z − o| ≤ √

t− ts implies that − |z−·|2
4c4(t−τ) ≤ − |o−·|2

8c4(t−ts) +
|o−z|2

2c4(t−ts) .
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Thus, if β ≥ 2c4, then

kc4(t, z; τ, ·) ≤
(2β

c4

)
d
2 e

1
2c4 kβ(t, o; ts, ·).

Therefore, by U ≤ c3kc4(t, z; τ, ·), see (37), and β = 2c4, we have the required inequality Γ ≥ CU

with C−1 = c32
de

1
β .) Hence

N1(τ) ≥
C

2β(t− ts)

〈

U | log
[

εΓ + U
]

−Gε|2
〉

,

and so, by 〈U〉 = 1,

N1(τ) ≥
C

2β(t− ts)

〈

U | log
[

εΓ + U
]

−Gε|
〉2
.

Now,
〈

U | log
[

εΓ + U
]

−Gε|
〉

≥
〈

U log
[

εΓ + U
]〉

−Gε
〈

U
〉

≥
〈

U logU
〉

−Gε
〈

U
〉

≥ −Gε(τ)− Q̃(t− τ)− C
≡ −Y (τ)− C.

Here we again have used identity 〈U〉 = 1 and the Nash entropy estimate −
〈

U logU
〉

≤ Q̃(t−τ)+C.
(The latter follows from e

Q
d ≤ CM , where Q := −

〈

U logU
〉

, and M(t, τ) = 〈|z − ·|U〉 ≤ C
√
t− τ ,

which is a consequence of the upper bound U ≤ c3kc4(t, z; τ, ·). The inequality e
Q
d ≤ CM , in turn,

follows from 〈u〉 = 1 and u log u ≥ −αu− e−1−α for all real α.)

Case (a): For all τ ∈ [ts, (t+ ts)/2], −Y (τ)− c− 2C ≥ 0. Here c is from (42).

Then −Y (τ)− C ≥ 1
2(−Y (τ) + c) > c+ C > 0 and hence

N1(τ) ≥
C

8β(t− ts)

(

− Y (τ) + c
)2
.

Thus, by (42),

(

c− Y (ts)
)−1 ≥ γσC

8(t− ts)
eµ(ts)

∫ (t+ts)/2

ts

e−µ(τ)dτ ≥ γσC

8(t− ts)

∫ (t+ts)/2

ts

dτ,

and so c− Y (ts) ≤ 16
γσC = 2d+4c3

γσ e
1
β , or

Gε(ts) ≥ −Q̃(t− ts) + c− 2d+4c3
γσ

e
1
β .

Case (b): For some τ ∈ [ts, (t+ ts)/2], −Y (τ)− c− 2C < 0.

By (42),

(

eµ(τ)(Y (τ)− c)
)−1 ≥

(

eµ(ts)(Y (ts)− c)
)−1

,

or c− Y (ts) ≤ eµ(τ)−µ(ts)(c− Y (τ)). Therefore, c− Y (ts) ≤ eµ(τ)−µ(ts)2(c+ C) ≤ e−µ(ts)2(c+ C), or

Gε(ts) ≥ −Q̃(t− ts) + c− 2(c + C)e1+
d+2
4
√

β
cδ+‖g‖2

L2(R+)
+‖h‖L1(R+) .

This ends the proof of Proposition 6.1. �
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6.2. Proof of Lemma 6.3. The main task is to estimate J = 〈Γb̃ ·∇ log V 〉−〈Γ b̃·ε∇Γ
εΓ+U 〉−〈Γ b̂·ε∇Γ

εΓ+U 〉−
〈Γ(divb̂)−〉+ 〈Γb̂ · ∇ log V 〉 in the definition of M.

1. Term “〈Γb̃ · ∇ log V 〉”. There exists a bounded smooth skew-symmetric matrix B ∈ L∞ BMO

such that b̃ = ∇B. We have

〈Γb̃ · ∇ log V 〉 = −〈b̃ · ∇Γ, log V 〉
= −2〈b̃ · ∇

√
Γ,

√
Γ log V 〉.

Hence, by Proposition 1.2,

|〈Γb̃ · ∇ log V 〉| ≤ 2‖B‖BMO‖∇
√
Γ‖2‖∇(

√
Γ log V )‖2,

where

‖∇
√
Γ‖2 =

√

d

8β

1

t− ts
,

‖∇(
√
Γ log V )‖22 =

〈(

(∇
√
Γ) log V +

√
Γ∇ log V

)2〉

=:
〈

(p+ q)2
〉

=
〈

p2 + 2p · q + q2
〉

.

Note that 〈2p · q〉 = 1
2 〈∇Γ · ∇ log2 V 〉 = −1

2〈∆Γ, log2 V 〉. Using the equality ∆Γ = (∇Γ)2

Γ − d
2β(t−ts)Γ

we have 〈2p · q〉 = −2〈p2〉+ d
4β(t−ts)〈Γ log2 V 〉. Thus,

‖∇(
√
Γ log V )‖2 ≤ ‖q‖2 +

√

d

4β(t − ts)
‖
√
Γ log V ‖2

= N
1
2
1 (τ) +

√

d

4β(t− ts)
‖
√
Γ log V ‖2,

where N1(τ) := 〈Γ|∇ log V |2〉 (≤ σ−1N (τ)). Therefore,

|〈Γb̃ · ∇ log V 〉| ≤ γ

2
N1 + ‖B‖2BMO

1

γ

d

4β(t− ts)
+ ‖B‖BMO

d

2
√
2β(t− ts)

‖
√
Γ log V ‖2.

Let us estimate the third term in the RHS of this inequality. We have

1

t− ts
‖
√
Γ log V ‖22 =

1

t− ts
〈Γ(log V − 〈Γ log V 〉)2〉+ 1

t− ts
〈Γ log V 〉2

(we are applying the Spectral Gap Inequality in the first term)

≤ 2βN1(τ) +
1

t− ts
〈Γ log V 〉2,

so

1√
t− ts

‖
√
Γ log V ‖2 ≤

√

2β
√

N1 +
〈Γ(− log V )〉√

t− ts
(we use − log V ≥ 1, see (38)).

Setting ϕ := Γ(− log V ), we arrive at

|〈Γb̃ · ∇ log V 〉| ≤ γN1(τ) + ‖B‖2BMO

d2

8γ

1

2β(t− ts)
+ ‖B‖BMO

d

2
√
2β(t− ts)

〈ϕ〉.
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2. Term “〈Γ b̃·ε∇Γ
εΓ+U 〉”. By Proposition 1.2,

|
〈

Γ
b̃ · ε∇Γ

εΓ + U

〉

| = 2|
〈

b̃ · ∇
√
Γ,

εΓ
3
2

εΓ + U

〉

| ≤ 2‖B‖BMO‖∇
√
Γ‖2‖∇

εΓ
3
2

εΓ + U
‖2,

and

∥

∥∇ εΓ
3
2

εΓ + U

∥

∥

2
=

∥

∥

3εΓ∇
√
Γ

εΓ + U
− εΓ

εΓ + U

√
Γ∇ log V

∥

∥

2

≤ 3‖∇
√
Γ‖2 + ‖

√
Γ∇ log V ‖2 ≤

3

2

√
d

√

2β(t− ts)
+N

1
2
1 (τ).

Thus, upon applying quadratic inequality, we have

|
〈

Γ
b̃ · ε∇Γ

εΓ + U

〉

| ≤ γN1(τ) +
1

γ
‖B‖2BMO

d

8β(t− ts)
+ ‖B‖BMO

d

2β(t− ts)
.

Remark 6.1. Instead of b̃ above we could have considered b̃+b̌ with b̌ = ∇P , P ∈ [L∞(R+×R
d)]d×d,

with div b̌ form-bounded and in the Kato class. Indeed, we could modify Step 1 as follows:

|〈Γb̌ · ∇ log V 〉| ≤ 〈(div b̌)−,−Γ log V 〉+ 2‖P‖∞‖∇2
√
Γ‖2‖

√
Γ log V ‖2

+ 2‖P‖∞‖∇
√
Γ‖2‖∇(

√
Γ log V )‖2.

We estimate the first term in the same way as Adiv(τ) below, in the last two terms use ‖∇2
√
Γ‖2 ≤

C(t − ts)
−1, ‖∇

√
Γ‖2 ≤ C(t − ts)

− 1
2 so that we can argue as in Step 1 above. Step 2 is modified

similarly.

3. Term “〈εΓ b̂·∇Γ
εΓ+U 〉”. We have

∣

∣

∣

∣

∣

〈

εΓ
b̂ · ∇Γ

εΓ + U

〉

∣

∣

∣

∣

∣

≤ 〈|b̂||∇Γ|〉 ≤
√
2

√

β(t− ts)
〈|b̂|Γ2β〉,

where, using that b̂ ∈ MFδ with multiplicative bound δ ≡ δb̂ and function g ≡ gδ̂, we estimate:

〈|b̂|Γ2β〉 ≤ δ‖∇
√

Γ2β‖2‖
√

Γ2β‖2 + g(τ)

=
δ

2

√
d

√

2β(t− ts)
+ g(τ).

Thus,
∣

∣

∣

∣

∣

〈

εΓ
b̂ · ∇Γ

εΓ + U

〉

∣

∣

∣

∣

∣

≤ δ

2

√
d

β(t− ts)
+

√
2g(τ)

√

β(t− ts)
.

4. Term “〈Γ(div b̂)−〉”. Since (div b̂)− is form-bounded with form-bound ν ≡ ν− and function

h ≡ hν , we have

〈Γ(div b̂)−〉 ≤
ν

4

d

2β

1

t− ts
+ h(τ).
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5. Term “
〈

Γb̂ · ∇ log V
〉

”. This is the most difficult term. Using b̂ ∈ MFδ and the form-

boundedness of div b̂−, we will prove that there exists a constant c̃ such that

|
〈

Γb̂ · ∇ log V
〉

| ≤ (2γ + νσ−1)N

+

(

c∗0
t− ts

+
g(τ)

2
√

β(t− ts)
+

c∗2
t− ts

+
d g(τ)

4
√

β(t− ts)
+

νd

4β(t− ts)
+ h(τ)

)

(−Y (τ)− c)

+
c∗1 + c∗3 +

νd
16β

t− ts
+

d

4γσ
g2(τ). (43)

Proof of (43). We estimate

|
〈

Γb̂ · ∇ log V
〉

| ≤ |
〈

b̂ · ∇Γ,− log V
〉

|+ 〈Γ(divb̂)−,− log V 〉

≤ 1
√

β(t− ts)

〈

|b̂|Γ,− log V
〉1/2

〈

|b̂| |o− ·|2
4β(t− ts)

Γ,− log V

〉1/2

+ 〈Γ(divb̂)−,− log V 〉

=:
1

√

β(t− ts)
A

1/2
0 A

1/2
2 +Adiv

≤ 1

2
√

β(t− ts)
(A0 +A2) +Adiv,

where

A0(τ) :=
〈

|b̂|Γ(− log V )
〉

=: 〈|b̂|ϕ〉,

A2(τ) :=

〈

|b̂| |o− ·|2
4β(t− ts)

Γ(− log V )

〉

=: 〈|b̂|ψ〉,

Adiv(τ) := 〈(divb̂)−,Γ(− log V )〉 =: 〈(divb̂)−ϕ〉.

Let us estimate A0(τ).

A0(τ) =
〈

|b|Γ(− log V )
〉

≡ 〈|b|ϕ〉
≤ δ‖∇√

ϕ‖2〈ϕ〉1/2 + g〈ϕ〉

=
1

2
δ
〈

(∇ϕ)2/ϕ
〉1/2〈ϕ〉1/2 + g〈ϕ〉,

∇ϕ =

(∇Γ

Γ
+

∇ log V

log V

)

ϕ,
(∇ϕ)2
ϕ

=

(∇Γ

Γ
+

∇(− log V )

− log V

)2

ϕ,

(∇ϕ)2
ϕ

≤ 2

(

(∇Γ)2

Γ
(− log V ) +

(∇ log V )2

− log V
Γ

)

≤ 2

( |o− ·|2
(2β(t − ts))2

Γ(− log V ) + Γ(∇ log V )2
)

( because − log V > 1).
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By the equality |o−·|2
4β(t−ts)Γ = β(t− ts)∆Γ + d

2Γ,

1

2

〈

(∇ϕ)2
ϕ

〉

≤
〈

Γ(∇ log V )2
〉

+
1

β(t− ts)

〈(

β(t− ts)∆Γ +
d

2
Γ
)

(− log V )
〉

≤ σ−1N +
〈

∇Γ,∇ log V
〉

+
d

2β(t− ts)
〈ϕ〉

≤ 2σ−1N +
1

4

〈

(∇Γ)2

Γ

〉

+
d

2β(t− ts)
〈ϕ〉

≤ 2σ−1N +
d

8β(t− ts)
+

d

2β(t− ts)
〈ϕ〉.

Therefore, by inequalities (B + C +D)1/2 ≤ (B + C)1/2 +D1/2 and E1/2(B + C)1/2M1/2 ≤ (B +

C)ε+ (4ε)−1EM for positive numbers with ε = σγ/2,

A0(τ)

2
√

β(t− ts)
≤ δ

4
√

β(t− ts)

(

2σ−1N (τ) +
d

8β(t− ts)
+

d

2β(t− ts)
〈ϕ〉

)1/2

〈ϕ〉1/2 + g(τ)

2
√

β(t− ts)
〈ϕ〉

≤ γN (τ) +

(

c∗0
t− ts

+
g(τ)

2
√

β(t− ts)

)

〈ϕ〉 + c∗1
t− ts

,

where c∗i = c∗i (d, σ, ξ, δ, γ) > 0, i = 0, 1.

Analogous calculations show that there are constants c∗i = c∗i (d, σ, ξ, δ, γ) > 0, i = 2, 3, such that

A2(τ)

2
√

β(t− ts)
≤ γN (τ) +

(

c∗2
t− ts

+
d g(τ)

4
√

β(t− ts)

)

〈ϕ〉+ c∗3
t− ts

+
d

4γσ
g2(τ). (•)

Indeed, A2(τ) ≤ 1
2δ
〈 (∇ψ)2

ψ

〉
1
2 〈ψ〉 1

2 + g(τ)〈ψ〉, ψ := |o−·|2
4β(t−ts)Γ(− log V ).

∇ψ =
· − o

2β(t− ts)
Γ(− log V ) +

|o− ·|2
4β(t− ts)

∇Γ(− log V ) +
|o− ·|2

4β(t− ts)
Γ∇(− log V ),

(∇ψ)2 ≤ 3

( |o− ·|2
4β2(t− ts)2

Γ2(log V )2 +
|o− ·|4

16β2(t− ts)2
(∇Γ)2(log V )2 +

|o− ·|4
16β2(t− ts)2

Γ2(∇ log V )2
)

,

(∇ψ)2
ψ

≤ 3

(

1

β(t− ts)
Γ(− log V ) +

|o− ·|2
4β(t− ts)

(∇Γ)2

Γ
(− log V ) +

|o− ·|2
4β(t− ts)

Γ
(∇ log V )2

− log V

)

,

Using inequality − log V > |o−·|2
4β(t−ts) and equality (∇Γ)2

Γ = ∆Γ+ d
2β(t−ts)Γ we have

〈

(∇ψ)2
ψ

〉

≤ 3

(

1

β(t− ts)
〈ϕ〉+ d

2β(t− ts)
〈ψ〉+

〈 |o− ·|2
4β(t− ts)

∆Γ, (− log V )

〉

+ 〈Γ(∇ log V )2〉
)

,

〈 |o− ·|2
4β(t− ts)

∆Γ, (− log V )

〉

=

〈

o− ·
2β(t− ts)

· ∇Γ,− log V

〉

−
〈 |o− ·|2
4β(t− ts)

∇Γ,∇(− log V )

〉

≤
〈 |o− ·|2
4β2(t− ts)2

Γ(− log V )

〉

+

〈 |o− ·|3
8β2(t− ts)2

Γ
1
2 ,Γ

1
2 |∇ log V |

〉

≤ 1

β(t− ts)
〈ψ〉+ C(d)

√

β(t− ts)
(σ−1N )

1
2
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Thus
〈

(∇ψ)2
ψ

〉

≤ 3

(

1

β(t− ts)
〈ϕ〉 + d+ 2

2β(t− ts)
〈ψ〉 + 2σ−1N +

C2(d)

4β(t− ts)

)

,

Also 〈ψ〉 = β(t− ts)
〈 (∇Γ)2

Γ (− log V )
〉

= d
2〈ϕ〉+ β(t− ts)〈∆Γ,− log V 〉 and so

〈ψ〉 ≤ d

2
〈ϕ〉+

(

d

2
β(t− ts)

)
1
2

(σ−1N )
1
2 ,

〈

(∇ψ)2
ψ

〉

≤ 3

(

3σ−1N +
(d+ 2)2

4β(t− ts)
〈ϕ〉+ C ′(d)

4β(t− ts)

)

,

and (•) follows.

Remark 6.2. Estimate (•) requires g ∈ L2(R+). Everywhere else in the proof it suffices to assume

(18).

Finally, since (div b̂)− is form-bounded,

Adiv(τ) ≤
ν

4

〈

(∇ϕ)2
ϕ

〉

+ h(τ)〈ϕ〉

≤ νσ−1N +

(

νd

4β(t− ts)
+ h(τ)

)

〈ϕ〉+ νd

16β(t− ts)

Therefore,

1

2
√

β(t− ts)
(A0 +A2) +Adiv

≤ (2γ + νσ−1)N +

(

c∗0
t− ts

+
g(τ)

2
√

β(t− ts)
+

c∗2
t− ts

+
d g(τ)

4
√

β(t− ts)
+

νd

4β(t− ts)
+ h(τ)

)

〈ϕ〉

+
c∗1 + c∗3 +

νd
16β

t− ts
+

d

4γσ
g2(τ).

The latter gives (43) upon noticing that 〈ϕ〉 = −Y (τ) + d
2 log

t−τ
t−ts − log c0 ≤ −Y (τ) − c̃ for c̃ =

d
2 log 2 + log c0. This ends the proof of 5.

We are in position to complete the proof of Lemma 6.3. By estimates 1-5,

J ≥ −
[

2γ + (2γ + ν)σ−1
]

N (τ)− C1

t− ts
− (d+ 2)g(τ)

4
√

β(t− ts)
− d

4γσ
g2(τ)− h(τ)

−
(

C2

t− ts
+

√
2g(τ)

√

β(t− ts)
+ h(τ)

)

(−Y (τ)− c̃).

Therefore,

M(τ) ≥ (1− (4 + 2σ−1)γ − σ−1ν)N (τ)− (Y (τ)− c)∂τµ(τ)

− C1

t− ts
− (d+ 2)g(τ)

4
√

β(t− ts)
− d

4γσ
g2(τ)− h(τ)−

(

C2

t− ts
+

√
2g(τ)

√

β(t− ts)
+ h(τ)

)

(−Y (τ)− c̃),
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where, recalling that ν < σ, we select γ > 0 sufficiently small to keep the coefficient of N (τ)

non-negative. Next, recall that

∂τµ(τ) =
1

t− ts
+

√
2g(τ)

√

β(t− ts)
+ g2(τ) + h(τ).

It is now easily seen that we can select c sufficiently large so that M(τ) ≥ 0. The proof of Lemma

6.3 is completed.

6.3. Ĝ-function for −∇ · a · ∇+∇ · (b̂+ b̃). Let u∗(t, x; s, y) denote the heat kernel of

Λ∗ = −∇ · a · ∇+∇ · (b̂+ b̃).

By (37), by duality, u∗(t, x; s, y) satisfies the upper Gaussian bound

u∗(t, x; s, y) ≤ ĉ3kc4(t− s;x− y). (44)

The constants in the next proposition depend on the same parameters as the constants in the

theorem except of the Kato bounds µ± and (div b)±.

Proposition 6.2. Let β and C be constants from Proposition 6.1. Set o = x+y
2 , x, y ∈ R

d, ts =
t+s
2 .

Then

Ĝ(ts) := 〈kβ(ts − s, o− ·) log u∗(ts, ·; s, z) ≥ −Q̃(ts − s)− C, z ∈ B(o,
√
ts − s).

Proof. The proof repeats the proof of Proposition 6.1, except that we have to deal with the positive

part div b̂+ of the divergence of b̂. �

6.4. Auxiliary operator −∇·a·∇+(b̂+b̃)·∇−(div b̂)−. Recall the notation Λ = −∇·a·∇+(b̂+b̃)·∇,

Λ∗ = −∇ · a · ∇+∇ · (b̂+ b̃). Set

H− := Λ− (div b̂)−.

Let Ht,sf denote the solution of

{ − d
dtH

t,sf = H−Ht,sf ,

0 ≤ f ∈ L1 ∩ L∞.

Let h(t) := Ht,sf. It is seen (for example, using the Duhamel formula) that

u(t, x; ts, y) ≤ h(t, x; ts, y),

u∗(ts, x; s, y) ≤ h(ts, x; s, y),

where u, u∗ are the heat kernels of Λ, Λ∗, respectively. It is seen that

h(t, x; s, y) ≥ (4πβ(t − ts))
d/2〈kβ(t− ts, o− ·)h(t, x; ts, ·)h(ts, ·; s, y)〉,

kβ(t− ts, o− ·) = kβ(ts − s, o− ·),
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and, for all 2|x− y| ≤
√

β(t− ts) , due to Proposition 6.1 and Proposition 6.2,

log h(t, x; s, y) ≥ log(4πβ)d/2 + Q̃(t− ts)

+ 〈kβ(t− ts, o− ·) log u(t, x; ts, ·)〉+ 〈kβ(t− ts, o− ·) log u∗(ts, ·; s, y)〉
≥ log(4πβ)d/2 − Q̃(t− ts)− 2C

= −Q̃(t− s)− 2C+ log(8πβ)d/2,

i.e. we have proved a lower Gaussian bound for h(t, x; s, y) but only for 2|x− y| ≤
√

β(t− ts). Now,

the standard argument (“small gains yield large gain”), see e.g. [D, Theorem 3.3.4], gives

Theorem 6.4. There exist constants c1, c2 > 0 such that, for all x, y ∈ R
d, 0 ≤ s < t <∞,

c1kc2(t− s, x− y) ≤ h(t, x; s, y) (LGBh− .)

6.5. Proof of Theorem 6.1 (a priori lower bound). Step 1. First, we establish an upper bound

on the heat kernel h(t, x; s, y) of H− = A+ (b̂+ b̃) · ∇ − (div b̂)−:

h(t, x; s, y) ≤ c̃3kc4(t− s;x− y) (∗∗)
for all x, y ∈ R

d and 0 ≤ s < t < ∞. Indeed, we can write the Duhamel series for h(t, x; s, y), with

H− is viewed as A+ (b̂+ b̃) · ∇ perturbed by potential −(div b̂)−. Then the upper Gaussian bound

on u(t, x; s, y), established in Theorem 2.2, and the hypothesis that the Kato norm µ− of (divb̂)−
is sufficiently small, yield (∗∗) via a standard argument.

Step 2. Let us consider A+ (b̂+ b̃) · ∇ as the perturbation of H− by (div b̂)−. Then

u(t, x; s, y) = h(t, x; s, y)−
∫ t

s

〈

u(t, x; τ, ·)(div b̂)−(·)h(τ, ·; s, y)
〉

dτ.

We apply Theorem 6.4 to the first term. In the second term, we can apply the upper Gaussian

bound on u(t, x; τ, ·) established in Theorem 2.2, apply (∗∗), and use the hypothesis that the Kato

norm µ− of div b̂− is sufficiently small to obtain

u(t, x; s, y) ≥ C1

(t− s)
d
2

− C2µ−

(t− s)
d
2

whenever |x − y| ≤ √
t− s, for all 0 ≤ s < t < ∞ (see [Z3, Sect. 5] for detailed argument). This

yields u(t, x; s, y) ≥ C0(t− s)−
d
2 provided that µ− is sufficiently small. Now, a standard argument

([D, Theorem 3.3.4]) gives the required lower Gaussian bound on u(t, x; s, y) for all x, y ∈ R
d,

0 ≤ s < t <∞.

7. Proof of Theorem 2.3

We fix the following bounded smooth approximation of a, b̂, b̃. In what follows, we extend a, b̂,

b̃ to t < 0 by zero. Let Eε be the De Giorgi mollifier on R× R
d,

Eεf(t, x) :=

∫

R

〈eε∆d+1(t, x; s, ·)f(s, ·)〉ds, f ∈ L1
loc(R× R

d)

(∆d+1 is the Laplacian on R×R
d). Let

Edε f(x) := 〈eε∆(x, ·)f(·)〉, f ∈ L1
loc.
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For a Banach-valued measurable function h = h(t), we define its Steklov averaging

[h]ε(t) :=
1

ε

∫ t+ε

t
h(r)dr.

Put

aε1 := Eε1a.

Clearly, aε1 is C∞ smooth, symmetric and uniformly elliptic with the same constants as a.

Set

b̂ε :=
[

Edε b̂
]

c(ε)
,

(div b̂)±,ε := [Edε (div b̂)±]c(ε),

where c(ε) > 0 is to be chosen. Then, clearly, (div b̂)ε = (div b̂)+,ε − (div b̂)−,ε.
(Note that we can not use the same regularization of b̂ as in Proposition 4.3 since the indicator

function 1ε there would not allow us to control div b̂ε.)

Finally, given a vector field (b̃ ∈ L∞BMO−1,div b̃ = 0), we define its bounded smooth approxima-

tion as in [QX1, Sect. 3]. There exist a skew-symmetric matrix B ∈ [L∞ BMO]d×d∩ [Lploc(R+×R
d)]d

for all 1 ≤ p <∞ such that b = ∇B. Set

Bε := eε∆d+1(B ∧ Uε ∨ Vε) (max and min are taken component-wise),

where Uε := (−c log |x|+ ε−1)∧ ε−1 ∨ 0, Vε := (c log |x| − ε−1)∧ 0∨ (−ε−1) are BMO functions with

compact support. The constant c is chosen so that ‖c log |x|‖BMO ≤ ‖B‖L∞ BMO. Define

b̃ε := ∇Bε
(since Bε are skew-symmetric, div b̃ε = 0).

Proposition 7.1. Let b̂ ∈ MFδ. Then the following are true:

(i) For every t ≥ 0, x ∈ R
d,

|Edε b̂(t, x)| ≤
√

d

8ε
δ + g(t).

(ii) Edε b̂ ∈ L2
loc(R+, Cb(R

d)).

Proof. (i) We have

|Edε b̂(t, x)| = |〈b̂(t, ·)
√

eε∆(x, ·),
√

eε∆(x, ·)〉|

≤ δ〈
∣

∣∇
√

eε∆(x, ·)
∣

∣

2〉 1
2 + g(t)

(we use
〈
∣

∣∇
√

eε∆(x, ·)
∣

∣

2〉
=

d

8ε
)

≤
√

d

8ε
δ + g(t).

(ii) Since Edε = Edε/2E
d
ε/2, we have for a.e. t ∈ R+ Edε b̂(t, ·) ∈ Cb. Since g ∈ L2(R+), we have

Edε b̂ ∈ L2
loc(R+, Cb(R

d)). �
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Recall that

b̂ε =
[

Edε b̂
]

c(ε)
,

where the rate of Steklov averaging c(ε) ↓ 0 is to be chosen.

Proposition 7.2. Let b̂ ∈ MFδ. Then

(i) b̂ε ∈ [L∞(R+ × R
d) ∩C∞(R+ × R

d)]d.

(ii) b̂ε ∈ MFδ with ‖gε‖L2(R+) ≤ ‖g‖L2(R+).

Proof. (i) follows immediately from Proposition 7.1(ii) and the properties of Steklov averaging.

(ii) First, let us note that ‖∇
√

Edε |ϕ|2‖2 ≤ ‖∇ϕ‖2. Indeed,

‖∇
√

Edε |ϕ|2‖2 =
∥

∥

Edε (|ϕ||∇|ϕ|)
√

Edε |ϕ|2
∥

∥

2
≤ ‖

√

Edε |∇|ϕ||2‖2 = ‖Eε|∇|ϕ||2‖
1
2
1 ≤ ‖∇|ϕ|‖2 ≤ ‖∇ϕ‖2.

By b̂ ∈ MFδ, we have for a.e. t ∈ R+ and all ϕ ∈ S,
〈|Edε b̂(t)|ϕ,ϕ〉 ≤ 〈|b(t)|, Edε |ϕ|2〉

≤ δ‖∇
√

Edε |ϕ|2‖2‖
√

Edε |ϕ|2‖2 + g(t)‖
√

Edε |ϕ|2‖2
≤ δ‖∇ϕ‖2‖ϕ‖2 + g(t)‖ϕ‖22.

Hence for a.e. t ∈ R+

〈|
[

Edε b̂
]

c(ε)
(t)|ϕ,ϕ〉 ≤

[

〈|Edε b̂|ϕ,ϕ〉
]

c(ε)
(t)

≤ δ‖∇ϕ‖2‖ϕ‖2 + [g]c(ε)(t)‖ϕ‖22.

Hence b̂ε ∈ Mδ,gε with gε := [g]c(ε), and, clearly, ‖gε‖2 ≤ ‖g‖2. �

Recall

(div b̂)±,ε := [Edε (div b̂)±]c(ε).

Proposition 7.3. Let (div b̂)± be form-bounded, i.e. (div b̂)± ∈ L1
loc(R+ ×R

d), the inequality

〈(div b̂)±ϕ,ϕ〉 ≤ ν±‖∇ϕ‖22 + h±(t)‖ϕ‖22, ϕ ∈W 1,2

holds for a.e. t ∈ R+ and some functions 0 ≤ h± ∈ L1
loc(R+).

Let µ± be the Kato norms of (div b̂)±. Then the following is true:

(i) (div b̂)±,ε ∈ L∞(R+ × R
d) ∩C∞(R+ × R

d).

(ii) (div b̂)±,ε is form-bounded with the same form-bounds ν± and ‖h±,ε‖L1(R+) ≤ ‖h±‖L1(R+).

(iii) (div b̂)±,ε have Kato norms µ±, for all ε > 0.

Proof. The proof of (i), (ii) follows closely the proof of Proposition 7.2.

(iii) Since the translations of (div b)+(s, ·) in s belong to the Kato class with the same Kato

norm, we have

sup
t≥0,x∈Rd

∫ t

0
〈k(t− s, x, ·)(div b)+,ε(s, ·)〉ds

= sup
t≥0,x∈Rd

1

c(ε)

∫ c(ε)

0

∫ t

0
〈k(t− s, x, ·)Edε (div b)+(s+ r, ·)〉dsdr ≤ 1

c(ε)

∫ c(ε)

0
µ+dr = µ+.
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The second integral in the definition of the Kato norm is treated in the same way. �

Let us prove the convergence results in (26). The convergence aε1 → a in [L2
loc(R+ × R

d)]d×d is

evident. Next,

b̂ε ≡ [Edε b̂]c(ε) → b̂ in [L1
loc(R+, L

1
loc)]

d as ε ↓ 0 (45)

provided that c(ε) ↓ 0 sufficiently rapidly. Indeed, for any T > 0, r > 0,

1[0,T ]1B(0,r)[E
d
ε b̂]c(ε) = 1[0,T ][1B(0,r)E

d
ε b̂]c(ε).

Since C(B̄(0, r)) is a separable Banach space, by known properties of the Steklov averaging of

Banach-valued functions, we have, for every fixed ε > 0,

1[0,T ][1B(0,r)E
d
ε b̂]ε2 → 1[0,T ]1B(0,r)E

d
ε b̂ in [L1([0, T ], C(B̄(0, r)))]d as ε2 ↓ 0.

Therefore, for every ε > 0 can find ε2 such that

‖1[0,T ][1B(0,r)E
d
ε b̂]ε2 − 1[0,T ]1B(0,r)E

d
ε b̂‖L1([0,T ],L1(B̄(0,r))) < ε.

We put c(ε) := ε2. In turn,

1[0,T ]1B(0,r)E
d
ε b̂→ 1[0,T ]1B(0,r)b̂ in [L1([0, T ], L1(B̄(0, r)))]d as ε ↓ 0.

Hence

b̂ε ≡ [Edε b̂]c(ε) → b̂ in [L1([0, T ], L1(B̄(0, r)))]d as ε ↓ 0.

Our choice of c(ε) depends on T and r. It is clear however that, using a diagonal argument, we can

select c(ε) even smaller to have (45).

The same argument yields

(div b̂)±,ε ≡ [Edεdiv b̂±]c(ε) → div b̂± in [L1
loc(R+ ×R

d)]d as ε ↓ 0

(we take c(ε) ↓ 0 as ε ↓ 0 even more rapidly, if needed).

Proposition 7.4 ([QX1, Sect. 3]). Let b̃ ∈ L∞ BMO−1, div b̃ = 0. Then

(i) b̃ε ∈ [L∞(R+ × R
d) ∩C∞(R+ × R

d)]d.

(ii) ‖Bε‖L∞ BMO ≤ C‖B‖L∞ BMO for a constant C that only depends on the dimension d, and

Bε → B in Lploc(R+ × R
d) for all 1 ≤ p <∞.

By the definition of ‖ · ‖L∞ BMO−1 , it follows from assertion (ii) that

‖b̃ε‖L∞ BMO−1 ≤ C‖b̃‖L∞ BMO−1 .

We are in position to end the proof of Theorem 2.3. Arguing as in [FS], we obtain from the a priori

two-sided Gaussian heat kernel bounds established in Theorems 2.2, 6.1: for all ε1, ε > 0, given a

solution vε1,ε ∈ C∞([r−R2, r]× B̄(z,R)) to (∂t−∇·aε1 ·∇+ bε ·∇)vε1,ε = 0 in ]r−R2, r[×B(z,R),

where R ≤ 1, z ∈ R
d, one have for every 0 < α < 1

|vε1,ε(t, x)− vε1,ε(t
′, x′)| ≤ C‖vε1,ε‖L∞([r−R2,r]×B̄(z,R))

( |t− t′| 12 + |x− x′|
R

)β

for all (t, x), (t′, x′) ∈ [r − (1 − α2)R2, r] × B̄(z, (1 − α)R) for some constants C and β ∈]0, 1[
(i.e. independent of ε1, ε). This result applies, in particular, to the heat kernel uε1,ε(t, x; s, y) of

−∇ · aε1 · ∇ + bε · ∇ with s and y fixed. Therefore, applying Arzelà-Ascoli Theorem on sets
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{(t, x) | t ≥ s + 1
n , |x| ≤ n} coupled with a diagonal argument, we can extract sequences ε1, ε ↓ 0

such that

uε1,ε(·, ·; s, y) → u(·, ·; s, y) uniformly on every Un, n = 1, 2, . . .

to some function u(·, ·; s, y). By construction, u(t, x; s, y) satisfies two-sided Gaussian bounds and

is Hölder continuous in (t, x). Moreover, using again two-sided Gaussian bounds and a weak com-

pactness argument, we may assume that, for every m = 1, 2, . . . ,

uε1,ε → u weakly in L2({ 1

m
≤ t− s ≤ m} × {|x− y| ≥ 1

m
}),

so u(t, x; s, y) as a function of variables (t, x; s, y) is measurable.

Furthermore, two-sided Gaussian bounds on u and a standard mollifier argument yield

〈u(t, x; s, ·)f(·)〉 → f(x) as t ↓ s
in Lp (1 ≤ p < ∞) or Cu depending on where f is. We define the sought evolution family T t,s ≡
T t,s(a, b) by

T t,sf(x) := 〈u(t, x; ; s, ·)f(·)〉.

The assertions (a), (c) of the theorem now follow. Assertion (b) follows via a standard compactness

argument. The integral kernel u(t, x; s, y) is, by definition, a heat kernel of the formal operator

−∇a · ∇+ (b̂+ b̃) · ∇.

Finally, to prove the second statement in (d), let us regularize b̂ = b̂(1) + b̂(2) as above. That is,

put b̂
(1)
ε := [Eεb̂

(1)]c(ε) and note that it satisfies

‖|b̂(1)ε (t)|(λ−∆)−
1
2 ‖2→2 ≤

√

δ1

(by an argument similar to the one in the proof of Proposition 7.2), while b̂
(2)
ε := [Eεb̂

(2)]c(ε) satisfies

‖(λ−∆)−
1
2 |b̂(2)ε (t)|‖∞ ≤

√

δ2

(by the integration by parts). Hence b̂ε := b̂
(1)
ε + b̂

(2)
ε ∈ L∞F1/2

δ , so we can apply the convergence

result in Theorem 2.1, which yields the required.

8. Further discussion and examples

Remark 8.1. The theory of operator −∆+b ·∇ is quite different from the theory of −∇·a ·∇+b ·∇
with general uniformly elliptic measurable matrix a. This is clear already from the existence of the

Kato class of vector fieldsKd+1
δ , which is specific to −∆+b·∇. Recall that, in the time-homogeneous

case (for brevity),

Kato class Kd+1
δ : |b| ∈ L1

loc and ‖(λ−∆)−
1
2 |b|‖∞ ≤

√
δ

for some λ = λδ ≥ 0. Also, recall:

class of form-bounded vector fields Fδ : |b| ∈ L2
loc and ‖|b|(λ−∆)−

1
2 ‖2→2 ≤

√
δ.

The Kato class Kd+1
δ provides two-sided Gaussian bounds on the heat kernel of (8) [Z2] and ensures

uniqueness in law for the corresponding SDE, at least as long as the relative bound δ can be chosen

arbitrarily small [BC]. The Kato class contains vector fields b with |b| 6∈ Lploc(R+ × R
d) for any
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p > 1. Clearly, they cannot be form-bounded. On the other hand, the Kato class does not contain

even b = b(x) with |b| ∈ Ld(Rd), so the two classes are incomparable.

The Kato class condition implies, by duality, that

‖b · ∇(λ−∆)−1‖1→1 ≤ c(d)
√
δ ≡

√

δ1,

i.e. that b ·∇ is strongly subordinate to λ−∆ in L1. Then, if δ1 < 1, the Miyadera Theorem ensures

that the algebraic sum −∆+ b · ∇ of domain (1−∆)−1L1 generates a quasi bounded C0 semigroup

in L1. (This is one instance where the Miyadera Theorem is indispensable.) On the other hand,

if b ∈ Fδ with δ < 1, then the KLMN Theorem ensures that the quadratic form of −∆ + b · ∇
of domain W 1,2 determines the (minus) generator of a quasi contraction C0 semigroup in L2. The

former semigroup cannot be a quasi contraction in L2, while the latter semigroup cannot be strongly

continuous in L1. The bases of these solution theories of (8) are, essentially, mutually exclusive.

One arrives at the problem of unification of the two solution theories of equation (8), for instance,

to treat b = b(1) + b(2), where b(1) is form-bounded and b(2) is from the Kato class. The two classes

can be unified: by the Heinz inequality and the interpolation, we have

b(1) ∈ Fδ21 , b(2) ∈ Kd+1
δ22

⇒ b(1) + b(2) ∈ F1/2

δ ,

where δ = δ1 + δ2 (we used the fact that b ∈ F
1/2
δ is equivalent to ‖|b| 12 (λ − ∆)−

1
4 ‖2→2 ≤

√
δ ).

However, as Theorem 2.1(ii) shows, one should not be looking for the unification in the scale of Lp

solution spaces.

Example 8.1. Speaking of elementary examples of b̂ in assertion (iii), we single out the following

class of time-homogeneous vector fields:

M′
ν :=

{

b̂ : Rd → R
d | b̂ = ∇(−∆)−1W for some W ∈ Kd

ν

}

,

where (time-homogeneous) W ∈ Kd
ν if and only if ‖(−∆)−1|W |‖∞ ≤ ν.

To see that any b̂ from M′
ν satisfies the hypothesis of Theorem 2.3, note that, for a given b̂ ∈ M′

ν ,

one automatically has div b̂ ∈ Kd
ν . It is also clear that M′

ν ⊂ Kd+1
ν .

In fact, any b̂ from M′
ν is form-bounded. Indeed,

〈b̂2|ψ|2〉 = 〈(−∆)−1W,W |ψ|2〉 − 2〈(−∆)−1W, b̂|ψ||∇|ψ|〉 ψ ∈ C∞
c (Rd)

≤ ν〈|W ||ψ|2〉+ 2ν〈b̂2|ψ|2〉 1
2‖∇|ψ|‖2

≤ ν〈|W ||ψ|2〉+ 1

2
〈b̂2|ψ|2〉+ 2ν2‖∇|ψ|‖22.

Thus 〈b̂2|ψ|2〉 ≤ 2ν〈|W ||ψ|2〉+ 4ν2‖∇ψ‖22. It remains to note that Kd
ν ⊂ Fν .

Example 8.2. One can modify the previous example by considering b̂ = b̂(1)+ b̂(2), where b̂(1) ∈ M′
ν

and

b̂(2) := (φ1(x)|x2|−1+ε, φ2(x)|x1|−1+ε, 0, . . . , 0), ε ∈]0, 1],

where φ1, φ2 ∈ C∞
c (Rd). Clearly, b̂(2) ∈ Kd+1

δ , has divergence in Kd
ν , but is not in L

2
loc and hence is

not form-bounded. This vector field satisfies the assumptions of assertion (d) in Theorem 2.3.

Remark 8.2. In Theorem 2.3 we could consider

b = b̂+ b̃+ b̌,
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where b̂ and b̃ are as above, and b̌ = ∇P , P ∈ [L∞(R+ × R
d)]d×d, with div b̌ form-bounded and in

the Kato class. The corresponding analysis of Nash’s G-functions follows the argument below and

requires few modifications, see Remark 6.1. Theorem 2.2 does not require a modification since, as

is easily seen, b̌ ∈ Mδ with δ = ‖P‖∞.

Remark 8.3. The problem of unification of the class of form-bounded vector fields and the Kato

class was addressed earlier in the simpler case of time-homogeneous vector fields b = b(x) in [S, K].

First, it was noticed in [S] that neither the form-boundedness nor the Kato class condition for

b = b(x) are responsible for the (Lp, Lq) bound

‖u(t)‖q ≤ cT t
− d

2
( 1
p
− 1

q
)‖f‖p, f ∈ Lp ∩ Lq, 2

2− σ−1
√
δ
< p < q ≤ ∞. (46)

for the semigroup of −∆+b ·∇. In fact, it suffices to require that b ∈ F1/2

δ , i.e. ‖|b| 12 (λ−∆)−
1
4 ‖2→2 ≤√

δ. It turned out that this new class of weakly form-bounded vector fields contains the sums of

vector fields Fδ2 and Kd+1
δ2

. [S] also proposed a way to construct the semigroup generated by

−∆+ b · ∇, b ∈ F1/2

δ , δ < 1 in L2 by “guessing” the resolvent of an appropriate operator realization

Λ2 of −∆+ b · ∇:
(

ζ + Λ2

)−1
:= (ζ −∆)−

3
4
(

1 + S
)−1

(ζ −∆)−
1
4 , (47)

where Reζ ≥ d
d−1λ, the operator S(ζ) := (ζ −∆)−

1
4 b · ∇(ζ −∆)−

3
4 is bounded in L2 by b ∈ F1/2

δ .

The RHS of (47) coincides, after expanding (1 + S)−1 in the geometric series, with the Neumann

series for −∆+ b · ∇.

Next, it was shown in [K] that equation (8) with b ∈ F1/2

δ has a detailed Lp regularity theory for

p ∈ Iδ, where the open interval Iδ, centered around 2, expands to ]1,∞[ as δ ↓ 0. However one has

to guess the resolvent differently:
(

ζ + Λp
)−1

:= (ζ −∆)−1 − (ζ −∆)
− 1

2
− 1

2qQp(q)
(

1 + Tp
)−1

Rp(r)(ζ −∆)−
1

2r′ , (48)

where 1 ≤ r < p < q <∞, Tp(ζ) := b
1
p ·∇(ζ−∆)−1|b|

1
p′ ∈ B(Lp) and Qp(q), Rp(r) ∈ B(Lp) are such

that one obtains again, after expanding (1 + Tp)
−1 in the geometric series, the Neumann series for

−∆+ b ·∇. (Note that the direct analogue of (47) in Lp requires a much more restrictive condition:

|b| is in the weak Ld space.) From (48), one obtains right away Lp regularity of the 1 + 1
q -order

spatial derivatives of solutions to the corresponding parabolic equation, hence the corresponding

Feller semigroup. See also further developments in [KS2]. The Feller semigroup determines, for

every starting point, a weak solution to the corresponding SDE [KS3]. The crucial point here is

that one works in Lp while keeping intact the L2 → L2 assumption on the vector field b (i.e. weak

form-boundedness) and hence the class of its admissible singularities, except for requiring a smaller

δ.

The proof that the operator-valued function in the RHS of (47) determines the resolvent of the

generator of a C0 semigroup is delicate. For (48) the situation is more difficult. In both proofs,

one needs the Trotter Approximation Theorem and Hille’s theory of pseudo-resolvents. Both proofs

depend crucially on the holomorphy of the constructed semigroup since the latter are only quasi-

bounded.

This paper concerns with the time-inhomogeneous case b = b(t, x), which presents the next level

of difficulty. Having at hand the evolution family for (8) in W 1
2
,2, provided by Theorem 2.1(ii),

we now approach the problem of constructing the evolution family in L2 as a separate problem.
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The construction in [S, K] of the semigroup directly in L2 and in Lp can be viewed now as solving

several problems at the same time. We expect that the spatial W1+1/q,p regularity of the evolution

family constructed in Theorem 2.1, for q > p and p large, can be obtained with additional effort, as

well as the ensuing Feller property and a weak well-posedness of the corresponding SDE.

Appendix A.

Below we obtain the energy inequality (14) on a fixed interval 0 ≤ s < t ≤ T assuming that b

satisfies (17) with g ∈ L2
loc(R+). We will be working at the a priori level, i.e. with b, f additionally

assumed to be bounded and smooth, and u(s) = f .

We use notations introduced in the beginning of the proof of Theorem 2.1.

Multiplying (8) by (λ−∆)
1
2u and integrating, we obtain

‖u(t)‖2H + 2

∫ t

s
‖u(r)‖2H+

dr + 2

∫ r

s
〈b(r) · ∇u, (λ−∆)

1
2u〉dr ≤ ‖f‖2H .

The term to control:
∣

∣〈b(t) · ∇u, (λ−∆)
1
2u〉

∣

∣ ≤
∥

∥|b(t)| 12 |∇u|
∥

∥

2

∥

∥|b(t)| 12 |(λ−∆)
1
2u|

∥

∥

2
.

By (17),

‖|b(t)| 12 |(λ−∆)
1
2u|

∥

∥

2

2
≤ δ‖(λ −∆)

1
4 |(λ−∆)

1
2u|‖22 + g(t)‖u‖2W1,2

(we are using the Beurling-Deny inequality)

≤ δ‖u‖2H+
+ g(t)‖u‖2W1,2 .

Similarly, a variant of the Beurling-Deny inequality: ‖(λ − ∆)
1
4 |∇u|‖2 ≤ ‖(λ − ∆)

1
4∇u‖2 and

integration by parts yield
∥

∥|b(t)| 12 |∇u|
∥

∥

2

2
≤ δ‖u‖2H+

+ g(t)‖u‖2W1,2 .

Finally, we estimate g(t)‖u‖2W1,2 ≤ g(t)‖u‖H+‖u‖H , so
∫ t

s
g(r)‖u‖2W1,2dr ≤ ε

∫ t

s
‖u(r)‖2H+

dr +
1

4ε

∫ t

s
g2(r)‖u‖2Hdr.

Hence

‖u(t)‖2H + 2(1 − δ − ε)

∫ t

s
‖u(r)‖2H+

dr − 1

4ε

∫ t

s
g2(r)‖u‖2Hdr ≤ ‖f‖2H ,

where ε is sufficiently small so that 1− δ − ε > 0. It follows that

sup
r∈[0,t]

‖u(r)‖2H + 2(1 − δ − ε)

∫ t

s
‖u(r)‖2H+

dr ≤ 1

4ε

∫ t

s
g2(r)‖u‖2Hdr + ‖f‖2H ,

so, assuming first that s, t are sufficiently close so that 1
4ε

∫ t
s g

2(r)dr < 1, and then using the

reproduction property, we obtain

C1 sup
r∈[0,t]

‖u(r)‖2H + C2

∫ t

s
‖u(r)‖2H+

dr ≤ ‖f‖2H

for appropriate C1, C2 > 0, as required.
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Appendix B. Proof of Proposition 4.2

1. Fix some [s1, t1] ⊂]s, T [. Let us show that ∂tu ∈ L2([s1, t1],H−). Put

Ft(ϕ) := 〈(λ−∆)
3
4u, (λ−∆)

3
4ϕ〉+ 〈b(t) · ∇u, (λ−∆)

1
2ϕ〉 ϕ ∈ L2

com(]s, T [,H+).

By Proposition 4.1,

|Ft(ϕ)| ≤ (1 + δ)‖u(t)‖
W

3
2 2‖ϕ(t)‖W 3

2 2 .

Hence by the Riesz Representation Theorem there exists a unique w(t) ∈ H+ such that

Ft(ϕ)) = 〈(λ−∆)
3
4w(t), (λ −∆)

3
4ϕ(t)〉,

where ‖w(t)‖H+ ≤ (1 + δ)‖u(t)‖H+ , so w ∈ L2([s1, t1],H+).

In terms of w(t), the hypothesis that u is a weak solution becomes

−
∫ T

s
〈u(t), ∂tϕ〉Hdt+

∫ T

s
〈w(t), ϕ(t)〉H+dt = 0.

In particular, taking ϕ = ψη, where ψ ∈ H+, η ∈ C∞
c (]s1, t1[), we have

−
∫ t1

s1

〈u(t), ψ〉Hη′dt+
∫ t1

s1

〈w(t), ψ〉H+ηdt = 0.

Since

∣

∣

∫ t1

s1

〈w(t), ψ〉H+ηdt
∣

∣ ≤ ‖ψ‖H+‖w‖L2([s1,t1],H+)‖η‖L2[s1,t1],

we have

∣

∣

∫ t1

s1

〈u(t), ψ〉Hη′dt
∣

∣ ≤ (1 + δ)‖ψ‖H+‖u‖L2([s1,t1],H+)‖η‖L2[s1,t1].

It follows that d
dt〈u(t), ψ〉H ∈ L2[s1, t1], ψ ∈ H+ and, furthermore,

∥

∥

d

dt
〈u(t), ψ〉H

∥

∥

L2[s1,t1]
≤ (1 + δ)‖ψ‖H+‖u‖L2([s1,t1],H+).

Hence there exists ∂tu ∈ L2([s1, t1],H−) such that

−
∫ T

s
〈∂tu(t), ψ〉H− ,H+ηdt =

∫ T

s
〈u(t), ψ〉Hη′dt,

where 〈·, ·〉H− ,H+ denotes the H+, H− pairing, so

−
∫ T

s
〈∂tu(t), ψη〉H− ,H+dt =

∫ T

s
〈u(t), (ψη)′〉Hdt

=

∫ T

s

(

〈(λ−∆)
3
4u, (λ−∆)

3
4ψη〉+ 〈b(t) · ∇u, (λ−∆)

1
2ψη〉

)

dt.

Since {ψη | ψ ∈ H+, η ∈ C∞
c (]s1, t1[)} is dense in L2([s1, t1],H+), we have

−
∫ T

s
〈∂tu(t), ϕ〉H− ,H+dt =

∫ T

s

(

〈(λ−∆)
3
4u, (λ−∆)

3
4ϕ〉+ 〈b(t) · ∇u, (λ−∆)

1
2ϕ〉

)

dt

for all ϕ ∈ L2([s1, t1],H+).
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In particular, taking ϕ = u and using b ∈ L∞F1/2 as in the proof of Proposition 4.1, we have
∫ t1

s1

〈∂tu(t), u〉H− ,H+dt+ (1− δ)

∫ t1

s1

‖(λ−∆)
3
4u‖22dt ≤ 0. (49)

2. We put uε := ξε ∗ u, where ξε is a Friedrichs mollifier of compact support. Since H−, H+ are

separable spaces, we have uε(t) → u(t) in H+ for a.e. t ∈]s, T [, uε → u in L2([s1, t1],H+], u
′
ε → u′

in L2([s1, t1],H−]
Further, we have

d

dt
‖uε(t)− uδ(t)‖H =

d

dt
‖(λ−∆)

1
4uε(t)− (λ−∆)

1
4uδ(t)‖2

= 2〈(λ −∆)
1
4∂tuε(t)− (λ−∆)

1
4 ∂tuδ(t), (λ−∆)

1
4uε(t)− (λ−∆)

1
4uδ(t)〉

so

‖uε(t1)− uδ(t1)‖H − ‖uε(s1)− uδ(s1)‖H

= 2

∫ t1

s1

〈(λ−∆)−
1
4∂ruε − (λ−∆)−

1
4∂ruδ, (λ−∆)

3
4uε − (λ−∆)

3
4uδ〉dr.

Hence, fixing s1 ∈]s, T [ such that uε(s1) → u(s1) in H+, we obtain

lim sup
ε,δ↓0

sup
t∈[s1,t1]

‖uε(t)− uδ(t)‖H ≤
∫ 1

0
‖∂ruε − ∂ruδ‖2H−dr +

∫ t1

s1

‖uε − uδ‖2H+
dr → 0

as ε, δ ↓ 0. It follows that {uε} converges in L∞([s1, t1],H) to u, and so u ∈ C([s1, t1],H). This

gives (ii).

3. Finally, we note that d
dt‖u(t)‖2H = 2〈u′(t), u(t)〉H , as follows from

‖uε(t1)‖2H − ‖uε(s1)‖2H = 2

∫ t1

s1

〈(uε)′, uε〉Hdr

upon taking the limit ε ↓ 0. Combining this with (49) we obtain (iii).

Appendix C.

1. Let us first show that if b ∈ L∞(R+, L
d), then for a.e. t ∈ R+

‖|b(t)|ψ‖22 ≤ δ‖(−∆)
1
2ψ‖22, ψ ∈W 1,2, (50)

for δ := supt∈R+
‖b(t)‖2d <∞. Indeed,

‖b(t)ψ‖22 ≤ ‖b(t)‖2d‖ψ‖22d
d−2

(we are applying the Sobolev Embedding Theorem)

≤ CS‖b(t)‖2d‖∇ψ‖22,

as claimed. Now, applying Heinz’ inequality in (50), we obtain b ∈ L∞F1/2√
δ
, so b ∈ MF√

δ by (7).

If b belongs to the critical Ladyzhenskaya-Prodi-Serrin class (LPSc), i.e.

b ∈ Lp([0,∞[, Lq),
d

q
+

2

p
≤ 1, p ≥ 2, q ≥ d
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then we estimate

|b(t, x)| = |b(t, x)|
〈|b(t, ·)|q〉

1
q

〈|b(t, ·)|q〉
1
q ≤ d

q

( |b(t, x)|q
〈|b(t, ·)|q〉

)
1
d

+
2

p

(

〈|b(t, ·)|q〉
1
q
)

p
2 ,

where the first term is in L∞([0,∞[, Ld) and the second term is in L2([0,∞[, L∞). In view of the

previous example, it is clear that b ∈ MFδ.

2. One has

sup
t∈R

‖b(t)‖M1+ε <∞ (see (5)) ⇒ b ∈ L∞F1/2

δ

with δ proportional to the Morrey norm supt∈R ‖b(t)‖M1+ε , see [A, Theorem 7.3]. So, in particular,

if supt∈R ‖b(t)‖M1+ε <∞, then b ∈ MFδ.
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[KS1] D.Kinzebulatov and Yu.A. Semënov, Heat kernel bounds for parabolic equations with singular (form-bounded)

vector fields, Math. Ann., 384 (2022), 1883-1929.
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