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REGULARITY FOR PARABOLIC EQUATIONS WITH SINGULAR NON-ZERO
DIVERGENCE VECTOR FIELDS

D.KINZEBULATOV AND YU. A. SEMENOV

ABSTRACT. We establish two-sided Gaussian bounds on the heat kernel of divergence-form parabolic
equation with singular time-inhomogeneous vector field satisfying some minimal assumptions.

1. INTRODUCTION

In this paper we study regularity properties of solutions of parabolic equation
(% —-V-a-V+b-V)u=0, onRyxRY d>3, (1)

under broad assumptions on a singular (that is, locally unbounded) time-inhomogeneous vector field
b: R, x R* — R? Here and everywhere below, R, := [0, oo,

d d
V-a-Vu(z) = Z Vi(aijVju(z)), b-Vu(z):= Z b Viu(x).
k=1

i,j=1
The matrix a : Ry x R? — R @ R? is symmetric, uniformly elliptic, i.e.
ol <a(t,x) <&I for some & o > 0 for a.e. (t,z), (Hop)
and, other than that, is assumed to be only measurable.

In the absence of drift term b-V, already the hypothesis a € H, ¢ provides local Holder continuity
of solutions to (). This is known since the works of E. De Giorgi [DG| and J. Nash [N]. Moreover,
the corresponding heat kernel satisfies two-sided Gaussian bounds, see Aronson [Ar], or see [N] and
Fabes-Stroock [ES].

However, with non-zero b - V, the regularity theory of (IJ) is not yet complete even in the case

a = I. Some particularly important classes of vector fields b are the divergence-free vector fields

1
loc*

equations with such vector fields, which are in the focus of this paper, arise in hydrodynamics and
other physical applications. We study one of the central questions in the regularity theory of (II):
what are the minimal assumptions on b so that the heat kernel of (Il admits upper and/or lower
Gaussian bounds? Such bounds, once established, open up the way to proving a number of other
regularity results for ().

(i.e. divb = 0) and, more generally, vector fields that have singular divergence divb € L; . Parabolic

The present paper continues [KS1] where we dealt with time-homogeneous a, b and investigated
how the lower and the upper Gaussian heat kernel bounds depend on the divergence of b. This
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paper also continues [S] where two-sided Gaussian bounds for divergence-free time-inhomogeneous
b were established.

In [KST] and [9], the proof of two-sided Gaussian bounds uses a condition on |b| := (34_, b2)1/2
(see Definition [[.2]). This condition, although quite general, does not allow to take into account
possible oscillations in vector field b. In the present paper we handle oscillations in b and also allow
b to have time-inhomogeneous singular divergence. This required a comprehensive modification of
the argument from the two cited papers. Possible oscillations of vector fields are taken into account
using the class L°BMO™! of divergence-free vector fields whose components are distributional
derivatives of functions of bounded mean oscillation (we recall the definition in the next section).
The results on the regularity theory of equation (1) with b € L°BMO~! include, in particular, the
parabolic Harnack inequality established, among other results, in Seregin-Silvestre-Sverak-Zlatos
[SSSZ], and global in time two-sided Gaussian bounds proved by Qian-Xi in [QX1]. Their Gaussian
bounds in the a priori form follow as a special case of our Theorems 2.2, 231 Earlier, Osada [O]
proved two-sided Gaussian heat kernel bounds for b in L>(L!) € L*BMO™!, where L3! is the
class of divergence-free vector fields whose components are distributional derivatives of functions in
L.

Let us now state our hypothesis on b and describe our results. For notations, see Section [I1]

DEFINITION 1.1. We say that a distributional vector field b: R, — [S/]? belongs to class Mj if for
a.e.t € Ry

(B0, )] < 8]V llale]l2 + (B3 (2)

for all ¥ in the L.Schwartz class S, for a non-negative function g that satisfies, on every finite
interval [0, 77,

/tg(T)dT <cvt—s, s,tel0,T)] (3)

for a constant ¢ = ¢ (written as b € My, “multiplicative class”).
The multiplicative class Mg will also appear in another, more restrictive form:

DEFINITION 1.2. A vector field b € [LL (R, x R%)]¢ belongs to class MF if for a.c.t € Ry
(o), w) < 8IVelllivllz + gOIIvI5, v e W 7

under the same assumption on g as in the previous definition (written as b € MFs, multiplicatively
form-bounded vector fields).

Note that both classes My and MF; are closed with respect to addition (up to change of §).

ExAMPLES. The following vector fields b are in MFg for appropriate §.
1. Vector fields in the critical Ladyzhenskaya-Prodi-Serrin class:
d 2
bl € L*(Ry, L"), —4+-<1, 2<s<o0, d<r <o (LPS.)
r s
2. Vector fields b that belong, uniformly in ¢ € R, to the scaling-invariant Morrey class My,
with € > 0 fixed arbitrarily small:

1
1 Tz
sup [6(8) lar,. = sup  sup {——— IWWW“@> < oo 5)
teR teR r>0,zerd  \|Br(2)| /B, (2)
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where B, (x) is the ball of radius r centered at x, and ¢ is fixed arbitrarily small.
See proofs of inclusions in Appendix [Cl
3.If g€ L? (R,), then condition (@) obviously holds. Another example is

loc
_1
g(t) = It|~>,
which still satisfies [B) but is not in L2 _(R4).

The function g describes singularities of the vector field b in the time variable. In particular, if b is
bounded in the spatial variables, then condition (3] says that |b| can have at most 3 singularities
in time, so the speed at which the streaming induced by b displaces the solution is comparable to
the speed at which the viscosity diffuses it. In this regard, see Carlen-Loss [CL] who showed that
the velocity fields in the Burgers and 2D Navier-Stokes vorticity equations have at most t~1/2 time
singularities. Let us add that if one is dealing with conditions on b that are invariant with respect
to the parabolic scaling, such as b € M (so that there is a hope of arriving at the regularity results
for parabolic equation ([I]) comparable to those for the heat equation, including two-sided Gaussian
bounds), then one cannot extend [|b(t)]|so < ct™ 2 to ||b(t)||ee < ct~1/27¢ regardless of how small

one fixes € > 0 without destroying the parabolic scaling. See also [QX2] in this regard.

In Theorem 22 we prove a priori upper Gaussian bound on the heat kernel of (Il assuming that
b € M for some finite 0 and that the positive part (div d), of divergence div b has sufficiently small
Kato norm (cf. (I9)). Here “a priori” refers to the fact that Theorem is proved for smooth a, b,
but the constants in the upper Gaussian bound do not depend on the smoothness of a and b.

In Theorem 23] we prove lower Gaussian bound on a heat kernel of (II) under more restrictive
assumption on the vector field:

b=b+b
where b € MF; for some § < oo and g € L?(Ry), with div b having sufficiently small Kato norm,
and divergence-free b is in the class L°BMO™!.

The fact that the assumptions of Theorem are broader than the assumptions of Theorem 2.3
is seen from the straightforward inclusion MFs C My and the following proposition.

Proposition 1.1. IfZNJ € L°BMO™", then b € M.
The class Mg is the largest class of vector fields considered in this paper.

The question of uniqueness of the heat kernel of (II) under the assumption b € My is non-trivial.
It is known that the heat kernel is unique if vector field b belongs to L°BMO™!, a particular sub-
class of My. This is a result of Qian-Xi [QX1], which they proved using the Lions’ approach in
the standard for equation (I)) triple of Hilbert spaces W12 c L? ¢ W12, See detailed statement
below. In this paper we single out another important sub-class of Mg for which one can prove
uniqueness of the heat kernel, although only in the case a = I.

DEFINITION 1.3. A vector field b € [LL (R4 x R?)] is said to be weakly form-bounded (written as
be L™ F(lgm) if, for a.e.t € Ry,

116(8)| 29[|z < VB|[(A = A)Te2 (6)

for all ¢ € W22 = (A — A)_iL2 (Bessel potential space) for some constant A = A\s > 0.



4 D.KINZEBULATOV AND YU. A. SEMENOV
We have
L>®Fy* C MFs. (7)
Indeed, if b € L Fy? and v € W12 then
(b, < 8((A = A) T, (A — A)Tgh) = §(A — A) 29, 1))
<8I = A2 al9llz = 63/ 19013 + M1l < 819%ll2llllz + 6V,

so b € MF; with g(t) = 0v/\.

The classes of vector fields mentioned in Examples 1 and 2 above are all contained in L F(lg/ 2
The class L F(lg/ ? is quite different from L°BMO™!. Indeed, the proof of uniqueness of the heat
kernel of the parabolic equation

(O —A+b-V)u=0 (8)
with b € L™ F<15/ ? requires one to run Lions’ approach in a non-standard triple of Hilbert spaces
w2 c we c W,

In particular, the solution of a Cauchy problem for (8] satisfies different energy inequalities depend-
ing on whether b is in L* Fy* or in L°BMO™", cf. (I4) and (I5). Put another way, the Sobolev
1/2

embedding properties of —A+b-V change drastically as one transitions from L*BMO~! to L®°F 5
This allows us to conclude that these two subclasses of My are quite far apart.

Let us emphasize that the lower bound in Theorem [2.3] is new even in the case a = I, b = b(x).

Concerning the lower and upper Gaussian bounds for time-homogeneous singular drifts having
singular divergence, we refer, in addition to [KS1], to earlier results by Liskevich-Zhang [LZ] who also
considered form-boundedness and Kato class conditions on |b| and divb. See detailed comparison
of the results in [KSI1, Sect. 1].

The proof of the upper bound in Theorem uses the Moser iteration method. The proof of
the lower bound in Theorem [Z3] uses a rather non-standard version of Nash’s method [N]. More
precisely, the assumption b € LOOF(IS/ * prohibits, even if divb = 0, the use of quadratic inequalities
in the analysis of the Nash G-functions in the proof of the a priori lower Gaussian bound (Theorem
[61). As a consequence, one needs to use a relatively sophisticated regularization of the Nash

G-functions. Arguably, LOOF:;/ % is the “hard part” of Mj.

In this paper, the proof of the lower bound uses the upper bound. We mention, however, [KS1|
Theorem 1], where it was demonstrated that these bounds are, in principle, independent. Namely, a
lower Gaussian bound on the heat kernel of (IJ) (with time-homogeneous coefficients) holds provided
that b is form-bounded with § < 402 and divb > 0 (in the sense of distributions), in which case
an upper Gaussian bound is in general invalid. Conversely, there are situations where an upper
Gaussian bound holds but there are no lower Gaussian bounds, see [KSI] for details.

It should be added that we prove global in time heat kernel bounds, so our conditions on g are
global, but it is straightforward to make them local in time with local conditions on g as above.
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Let us note that the classes of singular vector fields discussed in this paper are scaling-invariant. It
is known that one can venture beyond the scaling-invariance, considering () with b € L2 (R x R9),
div b = 0 such that, for some 0 < a <1 and § < oo,

/0 (Ib(t, )2 (e, e < 8 /0 IVt )2dt, Vo € CX®R, x RY),

containing e.g. zero-divergence b = b(x) with |b| € LP, p > % (essentially, twice more singular than
@), see [Z1]. See also [QX2]. Although in this case one has to sacrifice much of the regularity
theory of (§) and (), some results can be salvaged. This includes boundedness of weak solutions,
a non-Gaussian upper bound, see cited papers for details.

1.1. Notations and auxiliary results. Let L? = LP(R%), p > 1 denote the standard Lebesgue
space with norm | - ||,, WP = WHP(R?) the Sobolev spaces, S’ = S'(RY) the space of Schwartz
distributions.

Let B(X,Y) be the space of bounded linear operators between Banach spaces X — Y with
operator norm || - || x—y. Let B(X) := B(X, X). Set || - |lp—q == || - lLr—13-

Given a d x d matrix P = (Pij)g,jzl with entries in X, we set ||P||x := (sz:l | P;]1%)2.

Put

[NIES

)= [ fde. ()= )
The following class is well known:

DEFINITION. A vector field b : R, — [S']? with divb = 0 is said to be in the class L BMO™1 if

d
b(t) = Z ViBi(t), teRy, 9)
=1

for some skew-symmetric matrix B with entries B;;, € LBMO = L*° (R4, BMO).
The class L BMO ™! is endowed with semi-norm

1]l o Bmo-1 = [|Bllze BMo == sup [|B(t)||Bmo-
teRy
Here BMO is the space of functions of bounded mean oscillation on R%; recall that a function
F € L{ (R?) is of bounded mean oscillation if

1
”F”BMO : Sgp ‘Q’
with the supremum taken over all cubes @ C R? with sides parallel to the axes, |Q| is the volume
of Q.

If b is time independent, then we write simply b € BMO™!. (Occasionally, we will be adding
“divb = 0” to make the paper easier to follow although this is redundant.)

As it was demonstrated in [QX1], the functions By can always be modified to be in L (R4 xR9)
for all 1 < ¢ < oo (by adding functions that only depend on t). We assume in what follows that
this modification has been made.

_ _ 1
/ |F — Fldx < 0o, where F := —/ Fdx.
Q QI Jg

Proposition 1.2 (J[CLMS|, Theorem 4]). Let b€ BMO™!, divb = 0. Then, for all u,v € WhH2,
[{b- Vu, )| < |[Blpymo|[Vull2[[Voll2-
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Proposition 1.3 ([QX1, Prop.3.2]). Given a f € W2, one has |f|V;|f| € H1, where Hy is the
real Hardy space, and

IVl £l < CIV 2l fll2, €= C(d).
DEFINITION. divb € L{ (R4 x R%) is said to be form-bounded (with form-bound v < oo) if
: 1
lldive(e)2el; < vIVwl3 +h@lplE ve e W (10)

for a.e.t € Ry, for some function 0 < h € L{ (R,).

loc

2. MAIN RESULTS

We start with the basic results of the well-posedness of Cauchy problem for equations (8) and
(@) without any assumptions on div b.
Instead of (8], it will be convenient to work with equation
O+ A=A4+b-V)u=0, (11)
where A is from the condition b € L™ F(ls/ ?. In this regard, we introduce the scale of Bessel potential
spaces W*?2 endowed with the norm

lollwaz = [[(A = A)%v2.

Assertion (ii) in theorem below in the case case b € L°BMO™! is due to [QX1], Theorem 5.2].
We included it for the sake of completeness. Regarding the elliptic setting, see [Zh, Theorem 3.1].

Theorem 2.1. Let d > 3, T > 0. The following is true:
(i) Let b be weakly form-bounded:

be L°Fy?  withd <1 (see (@)).
Then for every f € W32 there exists a unique weak solution to Cauchy problem for (1) with initial

condition u(s+) = f, i.e. a unique in L3S (]s, T7, W%Q) NL2 (s, T, W%2) function u satisfying

loc loc

T 1 1 T 3 3
| 0= 8twain- g = [ (- a)tu (- a)ig

N

T
+ [ 00T 0= a)k) (12)
for all p € C°(]s,T],S) and

w—W%’z—ltiiIsl u(t) = f. (13)

Furthermore, u € C([s, T}, W%’2), and the following energy inequality holds:
t
)12,y + 2= ) [ Jur)IZ gudr <12 0<s<t<T. (14)

The operators TH® f(x) := u(t,s,x) constitute a contraction strongly continuous Markov evolution
family in Wi2, If {b:}e>0 is a family of bounded smooth vector fields such that b, € L™ F(lg/2 with
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the same \ as b, b — b in [Li (Ry xR)])4 ase — 0 (see ezample of such vector fields in Proposition
[4-3), and if us denotes the solution to Cauchy problem (), (I3) with the vector field b., then

ue — u  weakly in LQ([S,T],W%’z) as e — 0.

(i3) If either (b € L% (Ry x RY), divb is form-bounded with form-bound v < 1) or (b €
L*®BMO™!, divh = 0), then for every f € L? there erists a unique weak solution u to the corre-
sponding Cauchy problem for (1)) (in the standard triple W2 c L? ¢ W~12), which satisfies the

classical energy inequality
t
[+ [ IVulBar <178, >0, 0<s<t (15)

The notion of weak solution to equation (1] in assertion () is obtained by formally multiplying
() by test function (A—A)%go and integrating. The last term in (I2)) is well defined by Proposition
41l

The proof of Theorem 2I)(7) uses the Lions variational approach in the triple of Bessel potential
spaces W32 c W22 c W22, Theorem 2.1(7) can be viewed as the first step towards a regularity
theory of (8) with weakly form-bounded b. In the time-homogeneous case b = b(x), the class (@)
provides sharp LP — L% bounds on the corresponding to (§) semigroup [S], a detailed Sobolev
regularity theory of elliptic operator —A + b -V in LP for p large and the corresponding Feller
semigroup [K], see discussion in Section 8 The latter determines, for every initial point 2 € R?, a
“sequentially unique” weak solution to the SDE

t
X, —a- / b(X.)ds + V2B, >0, (16)
0

where B, is the standard d-dimensional Brownian motion, € R¢ is the initial point, see [KS3].
(See, however, recent developments in [K2|] regarding time-inhomogeneous b.)

Remark 2.1. One can extend the definition of the class L F}'* by considering b € [LL (R4 xR%)]4
such that

1 1 1
B2 9[I5 < 8l = A)39l5 + g@)[[¢l3, & e (A —A)77L? (17)
where 0 < g € L120C(]R+), see Appendix [A] for details.

Next, we turn to the question of what assumptions on locally unbounded b provide upper and
lower Gaussian bounds on the heat kernel of equation (Il). Compared to the previous theorem, we
will weaken the assumption on the vector field b even further to b € Mg, in particular taking into
account possible cancellations, but requiring the existence of divb € Llloc(RJr x R?) and, moreover,
the smallness of the Kato norms of its positive and/or negative parts (divd)y, (divd)_. These
assumptions allow b and div b to be quite singular.

Put
le—y|?

ko(t,x,y) = k(ct,z,y) := (47rct)_%e_ et ¢>0.

Theorem 2.2. Letd > 3. Let a € H,¢, b € My with multiplicative bound 6 < oo and function g
satisfying

t
/ g(T)dr <ecsvt—s, 0<s<t< oo (18)
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for some constant cs > 0. Let py denote the global in time Kato norm of “potential” (divb)y, i.e.
the maximum between

t o]
sup jf<k(t-T,x,g(divb)+(7,g>d7, sup jf (k(r — 5,2, ) (divb), (r, dr.  (19)
t>0,0€R4 JO 5>0,z€Re Js
Also, assume that a, b, divb are bounded smooth.

The following is true. If uy is smaller than a certain generic constant (i.e. a constant that depends
only ond, o, &, 6, cs, but not on the smoothness of a or the boundedness and smoothness of b, divb),
then the heat kernel u(t,x;s,y) of equation () satisfies a global in time upper Gaussian bound

u(t,x; s,y) < cske,(t —s;x—y) forall0<s<t<oo, x,yé€E R?
with generic constants ¢;, i = 3,4 that can also depend on .

If the Kato norm gy of (divb)y is finite, as in the theorem above, then we say that (divb),
belongs to the Kato class.

Remark 2.2. Regarding the above condition on the smallness of the Kato norm py of (divb),,
recall that if (divbd); € 1yo<y<} L (R4, LP), p > g, then p4 can be chosen arbitrarily small. There
also exist (divb) (z) that are not even in L _for any p > 1 yet have . finite (or sufficiently small
upon multiplying b by a small constant).

In the next theorem we assume that a € H,¢ and b are only measurable, but b satisfies a more
restrictive condition:

b=b+b, (20)

where
be L®BMO™!, divb =0, (21)
b € MF; with g € L*(R,), (22)

(divh)+ € Li (R, x R?) belong to the Kato class with Kato norms pi+, respectively, and  (23)

|(div b)| are form-bounded: (|(div E)i(t)‘z/},z/}> <va||[ VY3 + he @03, Vi € W2

24
for a.e.t € R, for some 0 < hy € LY(Ry). (24)

DEFINITION 2.1. Assume that (20)-(24) hold. We say that v € L%([s,T], W'?) is an approximation
solution to Cauchy problem for equation (II) with initial condition
s-L*-limu(s) = f € L* (25)
tls
if

v = w-Lige([s, 00, W?)-lim lim v,

where v, . solve

(Or =V -ae -V4b-V)vg, e =0, ve(s)=f
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for some bounded smooth a., € H,¢, 135 and (div B)i,a > 0 that have the same multiplicative bound
0, g and the form-bounds v+, the Kato norms u4, respectively, and bounded smooth b, = VB,
with the property

16| oo Bpo-1 < ClIbll oo BrO-

for a constant C' independent of ¢ and B. bounded smooth skew-symmetric matrices with entries
in L*° BMO, such that

ae, — a in  [L2 (R4 x R%)]4xd,

loc
be — b in  [LL (R, x R4,
B. - B in  [L2 . (Ry x RY)jdxd,

loc (26)
(divd)t. — (divb)y  in Ll (Ry x RY)
as e, €] 0.
It is easy to see that if v is an approximation solution to (), then it is also a weak solution to
(@):
¢ ¢ t ¢ .
—/ (v, Orp)dr + / ((a+ B)-Vv,Vp)dr — / (bv, V)dr — / ((div b)v, p)dr =0 (27)
S S S S
for all ¢ € C°(]s,t[,S). Here b = VB where B is skew-symmetric in L>°BMO N L2 (R; x R?),
see Section [L.11
DEFINITION 2.2. We call a constant genericx if it depends only on
d,0,8,6, |9l 2 ®) v+, |ha 1 r,y and 18]/ oo Bar0-1-
Theorem 2.3. Let d > 3, a € H,¢. There exist genericx constants p% such that if [20)-24) hold
with
0 <00, vy <o andwith Kato norms py < i,
then there exists a Hoélder continuous heat kernel u(t,xz;s,y) of equation ([d) satisfying:
(a) A global in time lower Gaussian bound
ke, (t — s;z —y) < u(t,z;s,y)

holds, in addition to the upper bound in Theorem [2.2, for all 0 < s < t < oo, x, y € RY, with
generick constants c1-c4 that can also depend on .

(b) The function
v(t,x) == <u(t,m;s, )f()>, fe L2

is an approximation solution to Cauchy problem for ().

(c) The operators TS f := <u(t,:17; s, )f()> determine a quasi bounded strongly continuous Feller
evolution family of integral operators in B(X), X = LP, 1 < p < oo or X = C,. The heat kernel
u(t,x;s,y) is defined as the integral kernel of these operators, possibly after a modification on a
measure zero set.

(d) If either
fel? acH,e b=b (dy)
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or
Fews? a=1I b=b=5bV4+p® (d2)
such that, for a.e.t € Ry,

1B @A = A)Fama < VO, (A= A) 2P (1)l < V32
with /81 + /02 < 1, then an approximation solution to Cauchy problem (), 28] is unique.

The last assertion in the case (d;) is due to [QX1] (in fact, valid for weak solutions in the standard
triple, not just approximation solutions). The case (dz) is a consequence of Theorem 2.1](47).

If f e L?and|b € L2 (R x RY), divb is form-bounded with form-bound v < 1, then the
corresponding Cauchy problem for (Il) has a unique weak solution, cf. Theorem [21)7i). Theorem

2.3(d) has the advantage that it does not require |b| € L2 (R, x R9).

loc

The constants p’. that bound the admissible values of the Kato norms in Theorem 2.3] are given
by, in principle, explicit but rather complicated expressions (e.g. they will depend on the constants
in the upper Gaussian bound of Theorem 2.2]), so we will not attempt writing them down here.

Remark 2.3. The upper bound in Theorem becomes local in time if g satisfies only (3)), p4 by
the local Kato norm of (divb)4, i.e. the maximum between

t
inf sup / (k(t —r,z,-)(div b) 4 (r,-))dr
>0 4>9 peRd Jt—0

and

s+v

inf  sup / Ue(r — 5,2, )(div b) 4 (r, -))dr.
0>0520,x6Rd s

The two-sided bound in (a) becomes local in time if one requires g € L% (Ry), hy € L] (Ry) and

replaces the global in time Kato norms of (divb)4 by their local counterparts.

Remark 2.4. Concerning the divergence form equation (IJ), the authors obtained in [KS4] an L!
strong solution theory of ([II) with measurable uniformly elliptic a = a(z) and b = b(x) in the elliptic
Nash class

h 1 dt
b€ LE,. and  sup / (k(t,,-)|b(-)]*)2 — is sufficiently small, for some h > 0,
0

x€R4 \/%

without any assumptions on divb. These assumptions, moreover, provide two-sided Gaussian
bounds on the heat kernel of ().

The elliptic Nash class contains e.g. b = b(z) with |b| € LP + L®, p > d, but it also contains some
b with |b| & Lijga, e > 0. Despite the fact that equation (II) with b in the elliptic Nash class admits
L' strong solution theory, it does not seem to admit even an L? weak solution theory, see discussion
in [KS4].

Remark 2.5. Parabolic equation (Il) admits weak solution theory in the standard tripe of Hilbert
spaces W12 Cc L? ¢ W12 if either b € L°BMO~! [QX1] or |b] is form-bounded with form-bound
o< 1
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DEFINITION. A vector field b € [LZ (R; x RY)]? is said to be form-bounded (with form-bound
9 > 0) if for a.e.t € Ry

bt, )13 < 8IIVoII3 + g®)lIpll3, Vo € W2, (28)
for a function g € L{ (Ry).

For time-homogeneous a and b, Mazya-Verbitsky [MV] proved that the general second order
elliptic operator —V-a-V +b-V +V with time-homogeneous coefficients is W12 — W12 bounded
if and only if b = b+ b, where b is form-bounded with some &, and b € BMO™!, and distributional
V' is form-bounded in the sense that

(Vb )| < v V|5 + cw)Yll5, o € C

for suitable v > 0, ¢(v) < co.

The results of the present paper show that if one deals with such aspects of the regularity theory
of —A+b-V, =V-a-V+b-V as the existence and uniqueness of weak solution, upper and
lower Gaussian bounds, one can consider even less restrictive assumptions on the vector field b. Let
us also add that the operator —A +b-V + V also admits an L? theory (but not Wh? — W—12

boundedness) if b is only weakly form-bounded, i.e. b € F;Z ?. but the potential V satisfies a somewhat

more restrictive condition than the form-boundedness:
3 _3 3
[VIT(A = A)"1]la2 < by,
where d, + 0y < 1. See [KS2, Sect. 5.4].

See also further discussion and examples in Section [8l

3. PrROOF oF PRrRoPOSITION [T.1]

Given a b € L° BMO™!, we write

d

(br(t)h, ) = =2 (B () [| Vo))

i=1

By the H1-BMO duality,

d
(e ()1, )] < 2> 1Ba () IBpo 11V, -

i=1

Therefore, by Proposition [[.3],

d
(e, )] = (O (k). )?) " < 2C1B®) lsmo I VElI2 12,
k=

1

ie.b € My with § = 2C/||B||~ Mo and g = 0.
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4. PROOF OF THEOREM [2.7](¢)
Put
Hy:=W322  H:=W32 H_.=W 32
Clearly, H_ is the dual of Hy with respect to the inner product in H.

Proposition 4.1. Let v € L2 (]s,T[, Hy). Then, for every p € L?,.,(]s,T[, Hy), for all T > t; >
S1 > S,

t1 1
/ (16(t) - Vu, (A = A)2p)dt < 6llullp2((sy 01,50 1PN L2 (51,42, 1) -

S1

Proof. 1t suffices to consider b = b,, where b, = 1j<,b, and then take n — oo using Fatou’s
Lemma. Thus, without loss of generality, b is bounded. We have, using Holder’s inequality,

(b(t) - Vu, (A = A)Z) = ([b(H)7 - (A — A)"T(A = A) TV, |[p(1)| 2(A — A) T (A — A)ig])
< B2 (A = A) T [las2ll (A — A)TVul2[[B]Z (A — A) 7T [|as2]| (A — A) T]l2.

Note that
I = A)3Vulff = (VA =~ A)iu, V(A — A)ru)
< I3 = &) Tl
The result now follows upon applying condition b € L> F(lg/ 2, O

Proposition 4.2. Let § < 1. Letu € LS (s, T], H)NLE
(). Then the following is true:

(i) Opu € L2 (s, T), H-);

(i) w e C(]s,T|,H) (after redefinition on a measure zero set);

(@) for allT > t; > s1 > s,

(s, T], Hy) be a weak solution to equation

(bl +2(1 - 6) / I, dt < sl

S1

We prove Proposition [4.2lin Appendix[Blby specifying the results in [LM] to tripe Hy € H C H_.

Armed with Proposition 421 we now prove Theorem [2](7) using some standard arguments. We
include the details for the sake of completeness, and also because some care need to be taken when
discussing approximation involving non-local operators.

1. First, let f € S. Fix b, € C®(Ry x RY) N L®(R, x R%) that have the same weak form-bound
§ and A as b (so, independent of n), and converge to b in Li _(R; x RY) (see Proposition Z3). Let
uy, denote the strong solution to Cauchy problem

(O +A—A+4+by-Vu, =0, wuy(s)=f.

Multiplying the last equation by (A — A)%un and integrating, we obtain a uniform in n bound

T
Sup llun ()7 +2(1 — 5)/ l[un (112, dt < || £1IF- (29)
€ls, S
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Using a weak compactness argument, we can find a subsequence (also denoted by w,) and a function

u € L>®([s,T), H) N L*([s,T], Hy) such that

u, —u weakly in L*([s,T], L*), L*([s,T], Hy).

(30)

2. Next, let us show that u is a weak solution to (IIJ). Let ¢ € C2°(]s,T[,S). Let us pass to the

limit n — oo in

T T T
~ [ttt [t + [ o) Fun = 2)Eg) =0
Only the last term requires a comment. We have

(B() - Vu = bu(t) - Vi, (A — A)79)

— (b(t) - (V= V), (A = A)30) + {(b(t) — bu(t)) - Vi, (A= A)2g) = I + L.

Let us show that fsT Iy, fsT I, — 0 asn — oo.
We have

L= (A= A)T(u—u,), VA= A)T-b(t)(A — A)Z ),
where, clearly,
_3 1
[V =A)"7 - b(t) (A = A)2¢ll2 < dllella,,

so V(A — A)_% “b(A — A)%gp € L?([s,T], L?), and hence fsT Lidt — 0 as n — oo.
Next,

Uny (A = A)TE(b(E) — bu(1)) (A — A)Z ).

e

I =(V(A—A)
Here V(A — A)iun is uniformly in n bounded in L?([s, T], L?), while
1= 2)7(0(1) = ba(B)(A = A)2e]lz < 2V3[B(1) — ba(1)|2 (A = A)2 el

Thus, we are left to show that

T
lim / 1B(r) — B} [ (A — A) 3| 3dr = 0.

(32)

Fix a smooth function o on Ry taking values in [0, 1], such that o(t) =1 on [0, 1] and 0 on [2, oo,
and put ((z) = O'(‘—g), R > 0. Then |V({(z)| < clR_llwq and |A((z)] < czR_21|v<‘, where 1|y |

is the indicator of the set where |V(| # 0. Put, for brevity, h := (A — A)%gp. We have

T 1 T 1 T 1
i [ 16r) ~ b0 e < i [ 1000~ b (I BCRIRr + [ 116(r) = ba (B~ C)hlr)

S S

(we use that b, — bin LL (Ry x RY))

T 1
~ tim / 11b(r) — ba(r)|2 (1 = C)h]3dr,
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and
1[B(E) = ba(£)]2 (1 = Oh(B)[|2 < 2V (A — A)3 (1 = O)h(t)]|2
= 2V3)[(A = A)"T (A = A)(1 — Oh(D)]2
< 2VE(NH[[(1 = Oh(t)]la + AT AL = Oh(t)]]2)
= 0o(R) as R — oo due to the choice of (.

Thus (32 is proved.
We obtain fsT I, — 0 as n — oo. Hence

T T T
- / (. Beig) st + / () pr dt + / (b(t) - Vu, (A — A)rg) =0

for all p € C°(]s,T[,S), i.e.u is a weak solution to (III).

3. We show that u satisfies the initial condition

1tigl<U(t),¢> = (f,9) forally e H_. (33)

First, consider v € H. Put g, (t) := (u,(t), %), t € [s,T]. Then, for all ¢, t + At € [s,T],
t+At 3 1 t+At
ot + 80 = g1 < [ (0= &) bun = D)l + [ [0 Vs,
t t
< Mlunll L2t a0, 720 10 L2 (taran,m5) + (@0l unll L2 ata, 50 10 2 (14 a0, 7Y

where, estimating the last term, we argued as in the proof of Proposition 1]

Also, [Jun || oo (s, xr) < [ floo, S0 We can apply the Arzela-Ascoli Theorem. The latter, combined
with (B0), allows to refine the subsequence {u,} found earlier to obtain convergence of continuous
functions

(un(t), ) = (u(t),v) uniformly on [T, s] — Qy,
where €, is a measure zero set. Moreover, using the separability of H and the bound

sup [[u(t)||lm < C|flln, (34)
te(s,T)

and applying the diagonal argument, we can further refine {u,} to obtain the uniform convergence
on [T, s] — ) where  is a measure zero set independent of . Further, since u is a weak solution to
(1) and hence is in C(]s,T], H) by Proposition [4.I], we obtain that ¢ — (u(t), %) can be uniquely
extended to a continuous function on [s,7T] which must coincide at the endpoint ¢t = s with (f, ),
i.e. we have ([B3) for ¢» € H. Finally, using

[(u(@®), V)] < [lu®)l|z ¢l

and the fact that H is dense in H_, we obtain (33) for all » € H_.
4. Given a weak solution u to Cauchy problem (III), (I3]), we note that Proposition d2l(iii) gives

Jluta) I3 +2(1 — 5)/ 1 w17, dt < [|£117- (35)
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Indeed, the initial condition u(t) — f weakly in H as t | s gives || f||g < liminf; s ||u(t)||mz. At the
same time, Proposition F.2)(4i) yields that ¢ — ||Ju(t)||z is a non-increasing function, so

11l = Yoo [fu(t)] o

Hence u(t) — f (strongly) in H as t | s, which yields ([B3). Combined with Proposition [4.2)),
this gives u € C([s,T], H). The uniqueness of weak solution follows from (B5]). The reproduction
property of the evolution family T%*f := u(t) is a consequence of the uniqueness. The fact that
this evolution family is positivity preserving L contraction (and hence is Markov) is immediate
from the construction of the weak solution u via approximation, cf. (80]). The convergence result
follows from the weak compactness argument carried out above and the uniqueness of weak solution.
Finally, the energy inequality (B3] and the fact that S is dense in H allow to extend these results
to an arbitrary f € H.

To end the proof of Theorem [21(7), we need to address the question of existence of a bounded
smooth approximation of vector field b preserving its weak form-bound § and constant A = 5. We
put b= 0 for ¢ < 0.

Proposition 4.3. Set b.(t) := 2 1,b(t), t € R,
be = c.e"Pb,,
where ¢. > 0, Ay := g—;, Ve 18 a |0, 1]-valued measurable function on Ry, b and 7. are extended by 0
tot <0, 1. is the indicator function of {(t,x) |t € [0,5_%], lz| < &L, |b(t,z)| < e71}. There exist
e T1,7(t) L 0 for every t € Ry as e ] 0 such that
b. € L™ F:;/Q with A independent of ¢,

and

be = b in Li (Ry x RY).

LRy x R%) is straightforward, provided

that v.(t) | 0 sufficiently rapidly as € | 0. Let us show that for any d. | & we can select 7. | 0 fast
enough so that

Proof. First, we note that the convergence b, — b in L

b € L™ F(lgf with the same .
We have
b. = 1.0+ (b — 1.b),

where, clearly, ||[1.b]2 (£)(A— A)~#[la_y2 < v/ for a.e.t € Ry, for all £, while b, — 1.b € L® (R, L).
It follows from Holder’s inequality and the Sobolev Embedding Theorem that for any g € L?, for
a.e.t € Ry,

_ 1 _1 - 1 1
I[:(t) = 1:b()|2 (A = A) gl < [[be(£) = 1:b(0) 2 [l2all (A = A)7g]] 20
_ 1
< el (t) = 1013 gll>

_ 1
For every € > 0 and every ¢t € R, we can select 7.(t) sufficiently small so that ||b.(t) — 1.b(t)||; <
¢ 1/6. — 6. Thus supeg, [|[b<(t) — lgb(t)|%()\ - A)_%g||2 < V0. — 8l|gll2. Tt follows that for a.e.t €
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- 1
R, ([b=(1)|[(A — A)77g]*) < d:|lgl13. g € L?, and hence

1[5=(£)]2 (A — A) 5 [|ay0 < /62,

Finally, recalling that b, = c.b,, it is clear now that we can take c. := % obtaining

11212 (£)(A — A) "1 las2 < V.

5. PROOF OF THEOREM

Set A= —V-a-V. We prove Theorem by first establishing an upper Gaussian bound on the
heat kernel of the auxiliary operator

H"=A+b-V +divb,.
Let H%*f denote the solution of

—dHbsf=HYHYf | 0<s<t<oo
0< feL'NnL®

in LP = LP(R?), p € [1,00[. Let h(t,z;s,y) denote the heat kernel of H¥, that is,
HY f = (h(t,a3s,) f())-
Theorem 5.1. There exist generic constants cs,cq > 0, w > 0 such that
h(t,z;s,y) < cske,(t — s,z —y) (UGBM+)
for all 0 < s <t < 0.
Proof of Theorem [5.1l. We follow [FS]. We consider

~SHCf=HYHYf , 0<s<t<oo,
0< feL'nL®

in LP = LP(R%), p € [1, 00[, where HS® := e** HbSe~ % and
Hl =e*"H e “*=Ht-a-b—a-a-at+a-a-V+V-a-a
Lemma 5.2. There are generic constants c,cq such that, for all 0 < s <t < oo,
| ll2msocs | HE sz < et — 5)~ ¥ terer9),
Proof of Lemma. Set uq(t) := Hy f, f = Ref € C2, v(t) := ug/2(t), p > 2. Noticing that
(b- Vug,uP™ 1) = %(Vu,bw = —%(vz,div b),

we have, using the equation,

_li 2 — i 1/21) 2 l V2 iv 1 v? iv
(v°(2)) pp,HA @)z + = {v(t),d b+>+p< (t),divb-)

pdt Y
20=2) (o Vo), o(t) — (- b, o) — (- a,03(D).
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By b € Mg,
[ b,0%)] < o[ (b, v%)] < [ald]|Vll2]lv]lz + |algllv]3

4y 1 2 p’52 2 2
—||A
<l wm+<mm+4 =l ) [ol3 (7> 0),

and so, applying the quadratic inequality, we have

d 4 52
ol = A0 oot — (vlalg + B [T (222) 64 2o

Putting p =2 and v = %, w

u%wMSHNwm[@+5> @—@+mqﬁtﬂ

Also, using Nash’s inequality

V)12 > Cnll gl )T, e WAL,

we have, putting v = %, p > 4 and setting F(t,a) = plalg(t) + p? (f + %)az,

2
=0l = A0l — Fit, ) ol
2 245 -3
2 SoCnlloly ol * - Pt @)l
SO
—4/d 40C'N 4/d
nn/ ol % - <tmmm/-

_4
19ON w(t) = ||v]ly ¢ and pu(t) = %f; F(r,a)dr, we have

Setting ¢, = oy
wp(t) > cqe —Hp(t /

> cye 0 Vi (1 )/ e ™) (1 — 5)idr,

s

dr

NN

2p
d

where ¢ = £ — 2 and Vg(t) = {Sup [(r - S)g_ZHua(T)pr |s <r< t] }

e have, taking into our assumption on g, i.e. f; gds < cs\/t — s,

17
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Set kK = %(%{ + %)az. Since for s < r <,

)+ (1) = =2 [ (e + Tae =) +plal [ otryir]
> 2o (e+ 2ot =)+ plales T 7]
> —% _p2<§§ + g—i>a2(t —7) + %
=— {me(t — )+ ;—‘%] + kp*(r — s), and so

2
s

¢ ¢
et () / et (") (r — 5)ldr > ¢~ / "’ (=9)(r — 5)9dr and
¢
/ e =8) (p — §)4dr > Kp~2(t — 8)¥e“(p2_1)(t_8),

where K := 2inf {p[1 — (1 —p~2)P~!] | p > 2} > 0, we obtain

S
|
N

C2
wy(t) > e, Kp~2e ™ TR (- 5) TV (1),

d(p—2)
or, setting W, (t) := sup [(r — s) W ua(r)|lp | s <r <t],

2¢ d d (3¢, 6%\a2
Wy(t) < (che_d_g)_5]95e(5§+3_0)7(t_s)Wp/2(t), p=2% k=1,2,....
Iterating this inequality, starting with k = 2, yields
2
(t — )1 Jua ()] < Cge(%&g—g)az(t_s)%(t»
Finally, taking into account (x%), we arrive at
_ 02N 02 (1
”HZSH2—>00 < (t i S) d/4cge(3§+ ) (t s)'

The same bound holds for ||HS(b)|l1—2 = H(Ht_f;(—b))*Hg_)oo This ends the proof of Lemma
5.2 O

From Lemma we obtain

62
h(t,z;s,y) < C’g(t - 8)_%ea'(y_x)+c4o‘2(t_5), cy =36+ 23—.
o
Putting o = %, we obtain (UGB”+). This completes the proof of Theorem 511 O

We are in position to complete the proof of Theorem We consider operator A+b-V as HT
perturbed by potential —divb,. Hence, the sought upper bound on the heat kernel of A + b -V
follows from Theorem [5.I] and a standard argument based on the Duhamel formula using that the
Kato norm g4 of (divb)4 is sufficiently small. O
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6. A PRIORI LOWER BOUND

In this section, u(t,z;s,y) denotes the heat kernel of operator —V - a -V 4 b -V with matrix
a € Hy ¢, vector field b and divb assumed to be bounded C*° smooth.

Theorem 6.1 (a priori lower bound). In the assumptions of Theorem [2Z.3, a global in time lower
Gaussian bound

clkcz(t_s;x_y) Su(t,a:;s,y) (LGB)
holds for all 0 < s < t < 00, x,y € R* with genericx constants ¢;, i = 1,2 that can also depend on
the Kato norms pi.
Throughout the rest of the proof, the constants that we find are genericx that can also depend
on [i4.

The proof of Theorem (given in the end of this section) is based on the following estimates
of Nash’s G-functions.

6.1. G-function for -V -a -V + (3 + 5) - V. Since b+ b is in My, Theorem applies and gives
u(tax;37y) < é3kC4(t_S;x_y) (37)

where, recall, u(t,z; s, y) is the heat kernel A = —V -a -V + (b+b) - V. The constants in the next
proposition depend on the same parameters as the constants in the theorem except for the Kato
norms p+ and div b4.

Set

Q(t—s):= glog(t —s).

Proposition 6.1. Let 2,y € R, Put o = %Y ¢, = “’Ts There exist constants 8 and C such that

2
G(ts) = (kp(t —ts,0— ) logu(t, z;ts,-)) > —Q(t —ts) — C
for all z € B(o,JT—%5).
Proof of Proposition [6.1. Fix ¢ > 0 and define
Ge(7) == (kg(t, 05 ts,")log [ekp(t, 05ts, ) + ult, z;7,-)]).

Then
G(t) =inf G.(1), T € [t Ette ts] and G(ts) = ©5(t, ts, 2).
>0 € ) e 2 s PAZRZD)

Below we are using the following shorthand:
Ge(1) =(Tlog [eT + U]) = (T'log [eT + U(7)] ),

where I' =T'g = kg(t,0;ts,-), U=U(T) = u(t, 2;7,-).
Also set

1

Vo= co(t — t)Y? [eD + U], co = (47cy)Y2e! [e+ 6365]_17

where c3, ¢4 are the constant from the upper Gaussian bound for U.
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If 8 > 2¢y, then clearly

‘O_ y‘2 -1 d t+1s
V(7,y)exp 10—t ) for all y € RY, € €]0,1] and 7 € [ts, 5 |- (38)
Let us calculate —0;G.(7):
—-0.U r -
— 0;G(1) = < 5I‘+U> = <€F+U(V'a'V+V'(b+b))U>
VU (b+b)- divb U
= 1 I — . T
ViegV-a F+U> < Tt U> < L +U >+< 5F+U>
:<VlogV al- VlogV> <VlogV'aF U> VF a- VlogV>
eVl ( +b) - eV Udivb

+<vr . EF+U> (D +5)- Vieg V) — < U >+<r€F+U>.

Setting
N(7) :=(VlogV -al'-Vlog V),
applying the quadratic inequality and estimating <F grdivllﬁ <Fd1vb > we have
“ 1/2
-4LG4¢)2Af—2N“ﬂ<vr-f-vr> +J
VI)?
zﬂ—wN—§<L—L>+J(0<V<M
¥ T
where
~ b-eVD . b-eVD -
=(I'b- V1 —«(T I'v-Vi —«(T — (T'divb_).
J = (Th-Viog V') < EP+U>+< b-Vlog V) < EF+U> (Tdivb_)
Applying <‘ > £2B(t oy we arrive at
13 d
—0;G. (1) > (1 =YN(1T) = 2 + J. (39)

v ZB(t - ts)
Define
Y(7) = Ge(7) + Q(t — 7).

Our goal is to show that Y is bounded from below by a constant. Note that (89) can be rewritten
as

—0.Y (1) > (1 — )N(r) — %ﬁ Ty (40)

Here we have used that —9,Q(t — 7) = 2(t 7y > 0. Multiplying @Q) by e, where

t—1 F(7)
t—1s B(t_ts)

p(r) = — — P(r) — H(7)
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where F(7) := \/if: g(r)dr, P(7) := f: g*(r)dr, H(T) := f: h(r)dr, we obtain
_E 4
Y 25(75 - ts)

Note that, due to our assumptions on ¢, g> and h, the function y is uniformly bounded in variables
T E [ts, (t+15)/2] and 0 < s < t < 0.

=0, [ DY (1)] 2 D[V (1) u(r) + (1 = 1N (7) o).

Lemma 6.2. Let ¢ > log(1 + c3) with c3 from u(t,x;7,-) < c3(t — 7)~%2. Then, for all € > 0
sufficiently small,

Y(r)<ec

for all T € [t,, He].

Proof. Indeed, for € < (47T5)% sufficiently small,
G:(1) = (Tlog(el’ + U))
< (D) log [(1 + e3)(t — )~
< —Q(t — 1) +1log(1 + c3).

O
From now on, let ¢ and € be as in Lemma Then we obtain from (40])
(" (Y (1) = 0)) 7 = [WN(7) + M(r)]e (Y (1) = 0) 2, (41)
(division by zero is ruled out by Lemma [6.2), where
13 d
M) ==X (1) =)o p(7) + (1 = 2N (1) = 2 ——"— + J.
(7) = =) = Dpu(r) + (1 = 2N () = St

Lemma 6.3. M(7) >0 forall T € [ts, tgts] , provided that v_ < o, v is sufficiently small and c is
sufficiently large.

We prove Lemma [6.3] below.
Now, taking Lemma for granted, we complete the proof of Proposition Lemma and

1) give
O, (" (Y (1) = 0)) 7 = oNi(1)e (Y (1) — o), (42)

where, recall, N1(7) := (I'|Vlog V|?). By the Spectral Gap Inequality (see e.g. [N], Sect. 2]),

1
N > m<ﬂlogv — (T'log V>]2>

= m&wlog [el + U] — (T'log [eT + U]>|2>

= m@\bg (el + U] — G.|*).

In turn, I' > CU for a genericx constant C. (Indeed, 3jo — +|? < |z — |2 + [0 — 2[2. Clearly,
1 1 2 - - ol Etl Jo—|2 |o—2|2
. < 7= < ;= combined with |z — o] </t —ts implies that T S TSt T =i
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Thus, if 8 > 2¢4, then

26,4 1

ke,(t,2;7,-) < (—6)26264 kg(t,o5ts,-).

C4

Therefore, by U < cske,(t,2;7,-), see B1), and 5 = 2¢4, we have the required inequality I' > CU
1
with C~1 = ¢32%7.) Hence
C

M= 550

<U| log [T + U] — G-|*),

and so, by (U) =1,
C

M= 550

<U| log [T + U] — G.|)”.

Now,
(Ullog [eT + U] — G.|) > (Ulog [eT + U] ) — G(U)
> (UlogU) — G(U)
> —Ge(1) = Qt —7) —
=-Y(r)—-C.
Here we again have used identity (U) = 1 and the Nash entropy estimate —(Ulog U) < Q(t—T7)+C.
(The latter follows from e < CM, where Q := —(UlogU), and M(t,7) = (|z —-|U) < CVt—T,

which is a consequence of the upper bound U < c3k,(t, z; 7, ). The inequality e% < CM, in turn,
follows from (u) = 1 and ulogu > —au — e~ 1~ for all real a.)

Case (a): For all T € [tg, (t +t5)/2], =Y (7) — ¢ — 2C > 0. Here c is from (@2)).
Then —Y (1) —=C > (=Y (7) + ¢) > ¢+ C > 0 and hence
C

2
>——(-Y .
Nl(T)_gﬂ(t—ts)( (T)+C)
Thus, by @),
(t+ts)/2 (t+ts)/2
(c—Y(ts) ™ > 278 _entts / gy > _9C / i,
8(t - tS) ls S(t B tS)
and so ¢ — Y (ts) < % = 2d7 SeP, or
B 9d+4 1
Golty) > —Ot —ty) +¢— —Beh,

Yo
Case (b): For some 7 € [ts, (t +t5)/2], =Y (1) —c—2C < 0.
By (@2,
(DY () =) 2 (Y (k) — )

or ¢ — Y (t;) < eMm=#E) (¢ — Y (7). Therefore, ¢ — Y (ts) < eM)=1E)2(c 4 C) < e #E)2(c 4 C), or

1+ B estlal2s )bl e,

Ge(ts) > —Q(t —ts) +c—2(c+C)e
This ends the proof of Proposition O
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6.2. Proof of Lemma The main task is to estimate J = (I'b-V log V) — (I bFfU> (r Ie’lffg>
(T(divb)_) + (I'b- Vlog V) in the definition of M.

1. Term “(FE -VlogV)”. There exists a bounded smooth skew-symmetric matrix B € L> BMO
such that b = VB. We have

(Th-VlogV) = —(b-VI,log V)
= —2(b- VVT,VTlogV).
Hence, by Proposition [[.2]
(b Viog V)| < 2[|BllByo | VVT 2V (VT log V)2,

where

d 1
Tlo =4/ ———
IVVT|2 B

IV(VTlog V)3 = ((VVT)log V + VTV log V)?)
= ((p+a)*) =P +20-q+7*).

Note that (2p-q) = 3(VT- v1og V) = —1(AT,log? V). Using the equality AT = 1° i
we have (2p - q) = —2(p?) + 4B(t - )(Flog V). Thus,
d
rl < —||VT'1
IV (VT log V)l < llalh + 4W_ts)nf £Vl
1
_ N2
where N (7) := ([|Viog V|?) (< 07N (7)). Therefore,
= v s 1 d d
I'b-ViegV)| < =N1 + ||B —— 4+ ||B ———|[VTlog V.
(05 Tlog V)| < JM + [BlRsio g5 + IBllowo g IVFlog Vi,

Let us estimate the third term in the RHS of this inequality. We have

_1t (T(log V — (T'log VY)2) +

s

_1 " (T'log V)?

(we are applying the Spectral Gap Inequality in the first term)

1
<2BN1(7) + — " (T'log V)2,
S0
—logV))
M+ —— (we use —logV > 1, see (38])).
Vit Vit —ts
Setting ¢ = F(— log V'), we arrive at
Z? 1

(T - Vlog V)| < AN (7) + || B||?

d
HBMO@M + ||BHBMOm<‘p>'
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2. Term “(T’ E'F+U> By Proposition [[.2]

3

b-eVD eIz
r<r >r—2r<b VT, - >\<2HBHBMOHVW V==

e+ U e'+U
and
3 3sTVVT
Vol =15 U\/_VlogVH2
3 d 1
< 3|VVT ||z 4 |[VTViog Vs < —L + NZ (7).
2./28(t —t)

Thus, upon applying quadratic inequality, we have

b-eVD
r
|< el +U

1, d d
>| < AM(T) + ;HB”BMOM +11BllBmo 23(t — ts)

Remark 6.1. Instead of b above we could have considered b+b with b = VP, P € [L® (R xR%)]4xd
with div b form-bounded and in the Kato class. Indeed, we could modify Step 1 as follows:

[(Th - V1og V)| < ((divh)—, ~T'log V) + 2||Plsc [ V*VT |2/ VT log V|2
+2|[Ploc[VVT |2 V(VT log V)] |2.
We estimate the first term in the same way as Ag;, (7) below, in the last two terms use |[V2v/T|2 <

C(t—ts)™, [VVT2 < C(t — ts)_% so that we can argue as in Step 1 above. Step 2 is modified
similarly.

3. Term “(eT EIA’I;ZII}Y’. We have

b- VI
I‘i
‘<E €F+U>

where, using that b € MF; with multiplicative bound ¢ = ¢; and function g = g;, we estimate:

(|bIT95) < 61|V \/Tagllallv/Tasll2 + 9(7)
§  Vd

RN R

b- VI
<
'<€F5F+U> =

4. Term “(I'(divb)_)”. Since (divb)_ is form-bounded with form-bound » = v_ and function
h = h,, we have

) Vi
< ([ol|VT]) < mﬂb\Bﬁ%

Thus,

5 Vd N V2g(7)
28(t—ts) /Bt —ts)

vd 1
28t

(T(div b) ) < (7).

,p
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5. Term “<Fl§ - Vlog V>”. This is the most difficult term. Using b € MF; and the form-

boundedness of div i)_, we will prove that there exists a constant ¢ such that

|<I‘l§ Vg V)| < (2y +vo™ HN

& 9(7) & d g(r) vd V() —c
<t—ts SBi -t Tt 1 5(t—ts)+45(t_ts)+h(7-)>( Y=o

_l’_

* * d
C1+C3+1V6_B d 2
. 43
oy o? (1) (43)

Proof of ([43]). We estimate

{Tb-Vieg V)| < [{b- VT, —log V)| + (I'(divb)_, —log V)

< ;qmr —logV>1/2<|B|MF —10gV>1/2—|— (D(divb)_, —log V)
>~ B(t_ts) 9 4ﬁ(t—ts) ) -

1 1/2 (1/2
= — A AT + Agiy

B0 —t,) 0 2 d

1

< ———(Ao + A2) + Agiv,
9 B(t—ts)( 0 2) d

where

Ao(7) = (JBIT (= log V) =: (|ble),

N o— - 2 N
Aalr) i= i e =T (- tog ) ) = (o)

Adiv(7) := ((divd)_, (= log V)) =: ((divb)_¢).
Let us estimate Ag(7).

Ao(T) =(|b|T(—1log V)) = ([ble)
<3|Vl (e)? + gle)

— %5<(ch)2/cp>l/2<g0>l/2 + 9{p),

VI VliegV V)2 VI V(-logV)\?
Vo = L Viee Vi (Vo)® (—logV) o
r logV’ © r —logV

(Vo)* _ 2<(VF)2(_logv)+ (V_lﬁ)gg“//)zr>

—_ 2
‘07‘2I‘(— logV) +I'(Vlog V)2> ( because —logV > 1).
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By the equality &%%T = B(t —ts) AT + %lp,

1/(Ve)? 1 d
§<7> < (N(VIog V)?) + 555 (8~ t)AT + 5T) (<log V)
<o IN +(VI,Vieg V) + 25(;[_ ™ (o)
B 1/(VID)? d
<20 1N+Z< = >+25(t_ts)<90>
<o N+ —p

8Bt —ts) 2Bt — 1)

Therefore, by inequalities (B 4+ C + D)% < (B + C)Y? + DY/? and EV/?(B + C)'/?2M'/? < (B +
C)e + (4¢)"LEM for positive numbers with & = 07/2,

Ao(7) 0 4 d d Ve g(7)
2m<t—t5>§4m<t—t5><2" N+ g Y ) @ AR

& 9(7) q
< AN(T) + ( 0_ 4 ) + :
YN(7) % 2t () —
where ¢ = ¢f(d,0,£,0,7) >0,i=0,1.
Analogous calculations show that there are constants ¢ = ¢} (d,0,¢,d,v) > 0, i = 2,3, such that

A2(T) C§ dg(T) C§ i 2(r °
s <)+ (7 L Y+ B 0

Indeed, As(r) < §6(5) 3 ()3 + () ). v 1= D~ log V).
o~ 2

4/8(t - ts)

lo— -

4/8(t - ts)

-—o0
Vi = 25( _tS)F(—logV)—i-

VI(—logV) + I'V(—logV),

o— P
462(t — ts)?

o —|* 2 2 o —[* 2 2

(V)2 lo—|* (VI)? lo—> _(VlegV)?
0 S3<ﬁ(t—ts)r(_logv)Jrzlﬁ(zt—zts) T (_logv)+4ﬁ(t—t5) “logV >

o—|?

Using inequality —log V' > Be=i) and equality (VFF 2 _ AT + W‘l_ts)f‘ we have

(Vo)? | d o 2
< v > < 3</3(t Y Byt <4B(t - tS>M’(‘logV)> +((V log V)2>>’

< lo—-? AF’(_logv)>:<L-VF,—logV>—< o— I VF,V(—logV)>

48(t — t,) 2B(t — ts) 46(t —ts)
o— - 2 o— - 3 1 1
(@ apt )+ (ot T 8V
L)+ i

S A
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Thus

S
«|d
e
\/
IA

C%(d)
45@ - t8)>’

Also () = B(t — t){ L (—log V)) = 4() + B(t — t,) (AT, —log V) and so

| d+2 -
3<ﬂ<t—t8><@>+ 20 ) VTN

1
dpy s ( :
2

W < 3t + (580 -1) w0k,

(V)2 e (@2 C'(d)
< s >§3<3" 1N+45(t—ts)<(’0>+45(t—ts)>’

and (e) follows.

Remark 6.2. Estimate (@) requires ¢ € L?(R,). Everywhere else in the proof it suffices to assume

(@3).

Finally, since (divb)_ is form-bounded,

v 2
A <5 () e

1 vd vd
<vo "N + (745(15 - + h(T)> {p) + 7165(75 )
Therefore,
1
———(Ap+ A Adiv
2 5(t—ts)( o+ Az) + Ag

_ c} g(1) ch d g(7) vd
< (2y +vo Y YN + <t—0t5 + 2B 1) + t—2t5 + N/ + Bt +h(7)> ()

Gt+atiy d
t—tg dvo

9> (7).

The latter gives (@3) upon noticing that (p) = —Y(7) + 4 log tt—_—tz —logcy < =Y(1)—¢for ¢ =
%llog2 + log ¢g. This ends the proof of 5.

We are in position to complete the proof of Lemma By estimates 1-5,
Cy (d+2)g(T) d

Ct—t, 4/Blt—t,) Ayo
=+ h(ﬂ)(—ym —a).

J > —[27+ 2y +v)o N (1) 9°(r) — h(r)

_< Cy N V29(7)

t_ts ﬁ(t—ts

Therefore,
M(T) > (1= (4+20 )y — o WN(7) = (Y(7) = ¢)8rp()
O D00y (2 Vag(r)

Ci—ty 4/Blt—ty) 4o t—ts /Bl —t,

-+ hm) (Y (r) &),



28 D.KINZEBULATOV AND YU. A. SEMENOV

where, recalling that v < o, we select v > 0 sufficiently small to keep the coefficient of N (1)
non-negative. Next, recall that

Orp(1) = t_lts + \;if](j) +g*(7) + ().

It is now easily seen that we can select ¢ sufficiently large so that M(7) > 0. The proof of Lemma
[6.3]is completed.

6.3. G-function for —V-a -V +V - (b+b). Let u,(t, x;s,y) denote the heat kernel of
A=-V-a-V+V-(b+D).
By @B7), by duality, u.(t, z;s,y) satisfies the upper Gaussian bound
us(t, ;5 8,y) < ke, (t — ;2 —y). (44)

The constants in the next proposition depend on the same parameters as the constants in the
theorem except of the Kato bounds p4 and (divb)4.

Proposition 6.2. Let 8 and C be constants from Proposition[6.1. Set o = mTer, z,y € R4, t, = Hs,

Then
é(ts) = (kg(ts — 5,0 — ) log uy(ts, 5 5,2) > —Q(ts —5)—C, zé€ B(o,\ts—s).

Proof. The proof repeats the proof of Proposition [6.1] except that we have to deal with the positive
part div by of the divergence of b. O

6.4. Auxiliary operator —V-a-V+(b+b)-V—(divb)_. Recall the notation A = —V-a-V+(b+b)-V,
Ay =-V-a-V+V-(b+b). Set

H™ = A — (divb)_.
Let HY* f denote the solution of

_%Ht,sf:H—Ht,Sf ,
0< feL'nL>.

Let h(t) := Hb® f. It is seen (for example, using the Duhamel formula) that

u(t, z;ts,y) < h(t,x;ts,y),

u*(tsv z;s, y) S h(tsv z;s, y)v
where u, u, are the heat kernels of A, A,, respectively. It is seen that

h(t,x;8,y) > (AmB(t — ts) Y2 (kg(t — ts,0 — h(t, x;ts, )hlts, -5 5,9)),

kg(t —ts,0— ) = kg(ts —s,0— ),
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and, for all 2|z — y| < \/m , due to Proposition [6.1] and Proposition [6.2],
log h(t, z; s,y) > log(4mB)¥? + Q(t — ts)
+ (kg(t —ts,0 — ) logu(t, x;ts,-)) + (kg(t —ts,0 — ) log us(ts, -3 s, vy))
> log(4m )" = Q(t — t,) — 2C
= —Q(t —s) — 2C + log(87B)%2,

i.e. we have proved a lower Gaussian bound for h(t, x; s, y) but only for 2|x —y| < \/B(t — t5). Now,
the standard argument (“small gains yield large gain”), see e.g. [D, Theorem 3.3.4], gives

Theorem 6.4. There exist constants c1, ¢ > 0 such that, for all z,y € R?, 0 < s < t < o0,
clkc2(t_ S7x_y) S h(t7x787y) (LGBhf)

6.5. Proof of Theorem (a priori lower bound). Step 1. First, we establish an upper bound
on the heat kernel h(t,z;s,y) of H= = A+ (b+0b)-V — (divd)_:

h(t,$;8,y) < 53k04(t—8;3§‘—y) (**)

for all z,y € R and 0 < s < t < co. Indeed, we can write the Duhamel series for h(t,x;s,y), with
H~ is viewed as A + (l; +b) - V perturbed by potential —(div 5)_ Then the upper Gaussian bound
on u(t,x;s,y), established in Theorem 22| and the hypothesis that the Kato norm u_ of (divl;)_
is sufficiently small, yield () via a standard argument.

Step 2. Let us consider A4 (b+b) -V as the perturbation of H~ by (divb)_. Then

u(t,x;s,y) = h(t,x; s,y) —/ <u(t,x;7', ) (div 5)_(-)h(7, ';S,y)>d7'.

We apply Theorem to the first term. In the second term, we can apply the upper Gaussian
bound on u(t,x; 7,-) established in Theorem 2.2 apply (&%), and use the hypothesis that the Kato
norm p_ of divb_ is sufficiently small to obtain

Cl B CQ/J/_
(t—s)  (t—s)

whenever |z —y| < y/t—s, for all 0 < s < ¢t < oo (see [Z3, Sect. 5] for detailed argument). This
yields u(t, z; s,y) > Co(t — S)_% provided that p_ is sufficiently small. Now, a standard argument
([D, Theorem 3.3.4]) gives the required lower Gaussian bound on u(t,z;s,y) for all z,y € RY,
0<s<t<oo.

u(t, x;s,y) >

7. PROOF OF THEOREM [2.3]

. We fix the following bounded smooth approximation of a, Z), b. In what follows, we extend a, b,
b tot < 0 by zero. Let E. be the De Giorgi mollifier on R x R,

Eof(t,x) = /R (8001 (b, 235,) f(5,))ds, | € Lho(R x RY)

(Agyq is the Laplacian on R x R?). Let
Ef(z) = (@, ) (), [ € Lige-
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For a Banach-valued measurable function h = h(t), we define its Steklov averaging
1 [tte
[h]e(t) := —/ h(r)dr.
€Jt
Put

ag, = F a.

Clearly, a, is C* smooth, symmetric and uniformly elliptic with the same constants as a.
Set

b := [Egi)] oe)?

(diV B):I:,e = [Eg(dlv 6)1]0(5)7

where ¢(¢) > 0 is to be chosen. Then, clearly, (divb). = (divd)y . — (divb)_..

(Note that we can not use the same regularization of b as in Proposition 3] since the indicator
function 1. there would not allow us to control div 135)

Finally, given a vector field (l~) € L*BMO~!,divh = 0), we define its bounded smooth approxima-
tion as in [QX1], Sect. 3]. There exist a skew-symmetric matrix B € [L>® BMO]*4N[LP (R4 xR%)]4
for all 1 < p < oo such that b = VB. Set

B, := 24+ (BAU.VV.) (max and min are taken component-wise),

where Ue := (—clog|z| +e ) Ae V0, V. := (clog x| —e71) AOV (—e~!) are BMO functions with
compact support. The constant ¢ is chosen so that ||clog |x|||Bmo < ||B]|L~BMmo- Define

b. := VB,
(since B, are skew-symmetric, div b, = 0).

Proposition 7.1. Let b € MF;. Then the following are true:

(i) For everyt >0, x € R?,
“ d
225 2)| <\ Lo+ g(0)

(i) E% e L2 (R, Cy(R%)).

loc

Proof. (i) We have

B2t 2)] = |(b(t, )\ e (). e (w, )]
< 8(|V[eB (@, )[*)2 +g(t)
(we use <|V\/€€A($, )‘2> = 8%)

< \/gé +g(t).

(ii) Since E¢ = Eg/2Eg/2, we have for a.e.t € Ry E%(t,-) € Cy. Since g € L%(R,), we have

E% e L2 (R, Cy(RY)). O

loc
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Recall that

65 - [Egl;] c(e)’

where the rate of Steklov averaging c(e) | 0 is to be chosen.

Proposition 7.2. Let be MFs. Then
(i) b. € [L®°(R4 x R N C= (R, x RH)]4.
(ii) b € MF§ with l9ellz2@®y) < N9llzzw,)-

Proof. (i) follows immediately from Proposition [T.I[#) and the properties of Steklov averaging.
(ii) First, let us note that |V/E2[¢[%|j2 < ||[Ve|l2. Indeed,

Ed(lel|V]gl) 1
NP Iy < I EVIel Rl = BVl < IVIelllz < [IVella.
€

By b € MF;, we have for a.e.t € Ry and all ¢ € S,
(ELb(t)|e, o) < {|b(1)], EZJo])

< 819\ Edlgl2 2l Bl ol2Il2 + g(8) 1y E2lol2]l2
< 5Vellllls + g®llel3-

IV Edlel?]2 = |

Hence for a.e.t € R,
([ESH], (Dl ) < [1Ee.)] 0 (6
< 8Vellzliellz + [glee (D1 2113-
Hence b, € M; 4. with ge == [g].(), and, clearly, [|gc[l2 < [|g]|2- O
Recall
(divb)c := [EZ(divh)]ee)-
Proposition 7.3. Let (divb)+ be form-bounded, i.e. (divb)s € Ll (R4 x R%), the inequality

(divd)sp,¢) < vel|Vol3 +he®)lol3, ¢ eWh?

holds for a.e.t € Ry and some functions 0 < hy € LL (R}).
Let py be the Kato norms of (divb)y. Then the following is true:

(i) (divb)s. € L®Ry x RN NC®(R, x RY).
(i7) (divb)+ . is form-bounded with the same form-bounds vy and Iht el my) < 1h+llzr®,)-
(i4i) (divb)+ . have Kato norms p, for all & > 0.

Proof. The proof of (i), (i) follows closely the proof of Proposition
(éi1) Since the translations of (divb)4(s,-) in s belong to the Kato class with the same Kato
norm, we have

sup /0 (k(t —s,z,-)(divd)4o(s,-))ds

t>0,z€R?
: /C(E) /t<’f( )EZ(divb) 4 ( \dsdr < — e
= sup — t—s,x,- iv s+r,- STS—/ pydr = pg.
t>0,7€R c(e) Jo 0 ‘ - c(e) Jo - -
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The second integral in the definition of the Kato norm is treated in the same way. O

Let us prove the convergence results in ([26). The convergence a., — a in [L2 (R; x R%)]9*4 is
evident. Next,

be = [Elboe) = b i [Li,(Ry, Li,)]* asel0 (45)
provided that ¢(g) | 0 sufficiently rapidly. Indeed, for any 7' > 0, r > 0,

1011150, [ED]ee) = Lo 71150, E2b]e(e)-

Since C(B(0,7)) is a separable Banach space, by known properties of the Steklov averaging of
Banach-valued functions, we have, for every fixed € > 0,

1011150 Eble, = Lo rlponES in  [L'([0,7],C(B(0,7)))]" ases L 0.
Therefore, for every € > 0 can find €5 such that

10,7 [lB(O,r)Egl;]EQ - l[O,T}1B(07r)EgB||L1([O,T],Ll(B(O,r))) <e.
We put ¢(e) := £2. In turn,
1[0,T]1B(0,r)Egi) — 1[0,T]1B(0,r)3 in [L'([0,T],L*(B(0,7)))]" aselO.

Hence

be = [E) o) = b in  [LY([0,7],L(B(0,7)))]" aselo0.

Our choice of ¢(e) depends on T" and r. It is clear however that, using a diagonal argument, we can
select c(g) even smaller to have ([5]).
The same argument yields
(divd)s . = [Eqdivby].e) — divby  in [Li(Ry x RT)? ase]0
(we take c(¢) | 0 as € | 0 even more rapidly, if needed).

Proposition 7.4 ([QX1], Sect.3]). Let b€ L®BMO™', divb = 0. Then
(i) be € [L®(R4 x RY) N C® (R, x RH)]4.
(i1) || Bellze~BMO < C||B||Lee BMO for a constant C' that only depends on the dimension d, and

B.— B inILP (Ry xR foralll<p < co.

loc

By the definition of || - || L~ gmo-1, it follows from assertion (iz) that

1521 2o Bro—1 < ClIbll e prto-1-

We are in position to end the proof of Theorem 23]l Arguing as in [FS], we obtain from the a priori
two-sided Gaussian heat kernel bounds established in Theorems 2.2] for all 1, € > 0, given a
solution v., . € C®([r — R%,r] x B(2,R)) to (0y — V -ag, -V +b. - V)ve, - = 0in Jr — R?, r[x B(z, R),
where R < 1, z € R?, one have for every 0 < a < 1

1
it —t')7 + |z — 2] \°
o 0:2) = e ) <l el ooy
for all (t,z), (t,2') € [r — (1 — a®)R%,7] x B(z,(1 — a)R) for some constants C' and 8 €]0, 1]
(i.e.independent of €1, €). This result applies, in particular, to the heat kernel u., (¢, z;s,y) of
—V - ae, -V 4+ b, -V with s and y fixed. Therefore, applying Arzela-Ascoli Theorem on sets
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{(t,x) |t > s+ %, |x| < n} coupled with a diagonal argument, we can extract sequences €1, € | 0
such that

Uey (-, 38, y) = u(-,+;s,y) uniformly on every U,, n=1,2,...

to some function u(-,-;s,y). By construction, u(t,z;s,y) satisfies two-sided Gaussian bounds and
is Holder continuous in (¢,z). Moreover, using again two-sided Gaussian bounds and a weak com-
pactness argument, we may assume that, for every m =1,2,...,

1 1
Ue, o — u weakly in L*({— <t —s<m} x {|z —y| > —}),
m m

so u(t,x; s,y) as a function of variables (¢, x; s,y) is measurable.
Furthermore, two-sided Gaussian bounds on u and a standard mollifier argument yield

(u(t,z;s,)f()) = f(x) astls

in LP (1 < p < o0) or C, depending on where f is. We define the sought evolution family 7% =
T%%(a,b) by

T f(z) := (u(t, @558, ) f(-)).

The assertions (a), (c) of the theorem now follow. Assertion (b) follows via a standard compactness
argument. The integral kernel u(t,z;s,y) is, by definition, a heat kernel of the formal operator
~Va-V+(b+b)-V.

Finally, to prove the second statement in (d), let us regularize b=bM +b5® as above. That is,
put bV = [EEB(I)]C(E) and note that it satisfies

1B ()| (A = A) 2 laa < /61

by an argument similar to the one in the proof of Proposition , while 1322) = [E.b®? o(e) Satisfies
(e)

1 ~
IO = 2)72 B2 (1) [loo < V02
(by the integration by parts). Hence b, = I;gl) + 13532) e L*® F(lg/ ?, so we can apply the convergence

result in Theorem 2] which yields the required.

8. FURTHER DISCUSSION AND EXAMPLES

Remark 8.1. The theory of operator —A+b-V is quite different from the theory of —V-a-V+5b-V
with general uniformly elliptic measurable matrix a. This is clear already from the existence of the
Kato class of vector fields Kg“, which is specific to —A+b-V. Recall that, in the time-homogeneous
case (for brevity),

Kato class K&™1: [ € LL. and (A= A)"2b]||oo < V06
for some A = A5 > 0. Also, recall:

class of form-bounded vector fields Fs:  |b| € L2 and  |||b|(\ — A)_% |22 < V0.

loc

The Kato class Kg“ provides two-sided Gaussian bounds on the heat kernel of (8) [Z2] and ensures
uniqueness in law for the corresponding SDE, at least as long as the relative bound d can be chosen
arbitrarily small [BC]. The Kato class contains vector fields b with |b| ¢ LY (R, x R%) for any

loc
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p > 1. Clearly, they cannot be form-bounded. On the other hand, the Kato class does not contain
even b = b(x) with |b| € LY(R?), so the two classes are incomparable.
The Kato class condition implies, by duality, that

Ib- V(A = A) 11 < e(d)Vo = /6,

i.e. that b-V is strongly subordinate to A— A in L'. Then, if §; < 1, the Miyadera Theorem ensures
that the algebraic sum —A +b-V of domain (1 — A)~!L! generates a quasi bounded Cj semigroup
in L!. (This is one instance where the Miyadera Theorem is indispensable.) On the other hand,
if b € Fs with 6 < 1, then the KLMN Theorem ensures that the quadratic form of —A +b -V
of domain W12 determines the (minus) generator of a quasi contraction Cy semigroup in L?. The
former semigroup cannot be a quasi contraction in L2, while the latter semigroup cannot be strongly
continuous in L'. The bases of these solution theories of (8) are, essentially, mutually exclusive.

One arrives at the problem of unification of the two solution theories of equation (8], for instance,
to treat b = b(M) + b2 where b is form-bounded and 5@ is from the Kato class. The two classes
can be unified: by the Heinz inequality and the interpolation, we have

b Fs, b2 e ng§1 = oM @ cFY2,
where 0 = ;1 + 02 (we used the fact that b € F(lg/2 is equivalent to H\b\%()\ — A)_iH2—>2 <WV6).

However, as Theorem [2.1)77) shows, one should not be looking for the unification in the scale of LP
solution spaces.

Example 8.1. Speaking of elementary examples of b in assertion (ii1), we single out the following
class of time-homogeneous vector fields:

M, = {b:R? = R? | b=V(~A)"'W for some W € KZ},

where (time-homogeneous) W € K¢ if and only if ||(—A) ™} W ||| < v.

To see that any b from M, satisfies the hypothesis of Theorem [2.3] note that, for a given be M),
one automatically has divb € K%. Tt is also clear that M/, ¢ K4t1,

In fact, any b from M., is form-bounded. Indeed,

FPIoP) = (~8) W W) — 2((-A) W B TIe) v € Co(R
< (WP + 2102 [V
< AW + 5 B10P) + 22|V 1913,
Thus (0%[4|?) < 2v(|W||9|?) + 40| V9||3. It remains to note that K¢ C F,,.

Example 8.2. One can modify the previous example by considering b=pM —1—13(2), where () € M,
and

8(2) = ((]51(1’)‘1’2’_1—1—6, ¢2(x)‘xl‘_1+67 07 cee 70)7 € 6]07 1]7

where ¢1, ¢y € C°(RY). Clearly, b Kg“, has divergence in K%, but is not in L2 and hence is

v loc
not form-bounded. This vector field satisfies the assumptions of assertion (d) in Theorem 2.3

Remark 8.2. In Theorem we could consider
b=b+b+b,
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where b and b are as above, and b = VP, P € [L®(Ry x R%)]?*4 with divb form-bounded and in
the Kato class. The corresponding analysis of Nash’s G-functions follows the argument below and
requires few modifications, see Remark Theorem does not require a modification since, as
is easily seen, b € Mg with § = || P||c.

Remark 8.3. The problem of unification of the class of form-bounded vector fields and the Kato
class was addressed earlier in the simpler case of time-homogeneous vector fields b = b(x) in [S| K].

First, it was noticed in [S] that neither the form-boundedness nor the Kato class condition for
b = b(x) are responsible for the (LP, L?) bound

ds1l 1
u@®)llg < ert™ 257D fll,,  feLPNLY, <p<q< oo (46)

2
2— o106
for the semigroup of —A+b-V. In fact, it suffices to require that b € Fy/? i.e. H\b\%()\—A)_% llam2 <
V8. Tt turned out that this new class of weakly form-bounded vector fields contains the sums of
vector fields Fs2 and Kgl;' L [S] also proposed a way to construct the semigroup generated by
—A+b-V,be F(ls/ ’, 6 < 1in L? by “guessing” the resolvent of an appropriate operator realization

Ay of —A+b-V:

(C+A) = (¢ —A)T(1+8) 7 (¢—a)T, (47)
where Re( > d%'llx\, the operator S(¢) := (¢ — A)_ib V(¢ — A)_% is bounded in L? by b € F;”.
The RHS of (@T) coincides, after expanding (1 4 S)~! in the geometric series, with the Neumann
series for —A+b- V.

Next, it was shown in [K] that equation (§)) with b € F(ls/ ® has a detailed L? regularity theory for
p € Is, where the open interval I, centered around 2, expands to |1,00[ as § | 0. However one has
to guess the resolvent differently:

(CH+Ay) = (C= A = (€= A) 2 2Qy(q) (1 + T) T Ry(r)(C — A) 2, (48)

where 1 <r <p < q < oo, TH(() := by 'V(C—A)_l\b\ﬁ € B(LP) and Qp(q), Ry(r) € B(LP) are such
that one obtains again, after expanding (1 4 7, p)_l in the geometric series, the Neumann series for
—A+b-V. (Note that the direct analogue of ([@7)) in LP requires a much more restrictive condition:
|b| is in the weak L? space.) From (48], one obtains right away LP regularity of the 1 4+ %—order
spatial derivatives of solutions to the corresponding parabolic equation, hence the corresponding
Feller semigroup. See also further developments in [KS2]. The Feller semigroup determines, for
every starting point, a weak solution to the corresponding SDE [KS3|. The crucial point here is
that one works in LP while keeping intact the L2 — L? assumption on the vector field b (i.e. weak
form-boundedness) and hence the class of its admissible singularities, except for requiring a smaller
d.

The proof that the operator-valued function in the RHS of (7)) determines the resolvent of the
generator of a Cjy semigroup is delicate. For (48] the situation is more difficult. In both proofs,
one needs the Trotter Approximation Theorem and Hille’s theory of pseudo-resolvents. Both proofs
depend crucially on the holomorphy of the constructed semigroup since the latter are only quasi-
bounded.

This paper concerns with the time-inhomogeneous case b = b(t, z), which presents the next level
of difficulty. Having at hand the evolution family for (&) in W%’z, provided by Theorem 2.1{ii),
we now approach the problem of constructing the evolution family in L? as a separate problem.
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The construction in [S, K] of the semigroup directly in L? and in LP can be viewed now as solving
several problems at the same time. We expect that the spatial W1/ ap regularity of the evolution
family constructed in Theorem 2.1], for ¢ > p and p large, can be obtained with additional effort, as
well as the ensuing Feller property and a weak well-posedness of the corresponding SDE.

APPENDIX A.

Below we obtain the energy inequality (I4]) on a fixed interval 0 < s < t < T assuming that b
satisfies (IT) with g € L2 (R, ). We will be working at the a priori level, i.e. with b, f additionally

loc
assumed to be bounded and smooth, and u(s) = f.

We use notations introduced in the beginning of the proof of Theorem 211
1
Multiplying () by (A — A)zwu and integrating, we obtain

lu(®)]2 +2 / ()|, dr +2 / “b(r) - Vu, (A — A)rudr < [ £

The term to control:
1

|(B(t) - Vu, (A — A)zu)| < [|[b(6)]2 [Vl |, [b() 2| (A — A)Z ]|,
By (1),
1B 2| (X — A)Zul[|2 < SI(N = A)T|(A — A)Zul 13+ g (&) lulfy -
(we are using the Beurling-Deny inequality)
< dllul}, + g(®)llullZyra.

Similarly, a variant of the Beurling-Deny inequality: |[(A — A)i\Vu]Hg < |(A = A)%VUHQ and
integration by parts yield

1 2
1)1 [Vullly < dllullf, + gl ..

Finally, we estimate g(t)||u\|12/vl,2 < g()|lul| g ||wllm, so

t t 1 t
[ s ulBnsdr <= [ ), dr+ - [P0 el

Hence

t 1 t
) +200 -5 -) [ utr)lBr,dr = = [ ol < 115

where ¢ is sufficiently small so that 1 —§ — e > 0. It follows that
t 1 t

sup )y 2005 —2) [ )l < 2 [ g2l + 151
re|0, S s

so, assuming first that s, ¢ are sufficiently close so that % fst g*(r)dr < 1, and then using the
reproduction property, we obtain

t
Ch P IIU(T)H?{JrCz/ ()7, dr < |If1I
rel0, s

for appropriate C1, Cy > 0, as required.
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APPENDIX B. PROOF OF PROPOSITION
1. Fix some [s1,t1] C|s, T[. Let us show that dyu € L?([s1,t1], H_). Put
Fi(p) == (A= A)iu, (A= A)ig) + (b(t) - Vu, (A = A)7g) e L2
By Proposition [4.1]

com

E@)] < (14 )ud)l, galle®], o

(]8, T[v H—l—)'

Hence by the Riesz Representation Theorem there exists a unique w(t) € Hy such that

Fy(9)) = (A — A)Tw(t), (A — A)Tp(t)),

where [|w(t)|m, < (1+8)||u®)|w,,sow e L*([s1,t1], Hy).
In terms of w(t), the hypothesis that u is a weak solution becomes

T T
_/ (U(t)ﬁt@Hdt—i-/ (w(t), p(t))m, dt = 0.

In particular, taking ¢ = ¢n, where ¢ € Hy, n € C°(]s1,t1[), we have

—/1<U(t),¢>H77/dt+/1(w(t),¢>H+77dt:0.

s1 s1
Since

t1
!/ Oy ndt] <l 1wl 22 sy g0 10 2151 4

we have

|/ H77 dt| 1+6)”¢HH+HUHLQ([S1,1€1LH+)”77HL2[S1,1$1}'

It follows that 4 (u(t),s)y € L%[s1,t1], ¥ € H and, furthermore,

d
|5, )11 gy g < O Dt Nl e,

Hence there exists d;u € L?([s1,t1], H_) such that

T T
- / @uult). ) se_gz.ndt = [ (o) 0) o,

where (-,-)g_ g, denotes the H,, H_ pairing, so

T T
_/ <atu(t)7w77>H7H+dt:/ (u(t), (¥m)") gdt
T 3
= [ 0= )t (- ) ) + 00 Vi (3 -

Yn
Since {vn | € Hy,n € C(]s1,t1[)} is dense in L?([sy,t1], Hy), we have

A)zepn)) dt.

T T 3 3 1
—/ (Onult), ) ar_ gz di — /((()\—A)4 (A= A+ (b(E) - Vu, (A — A ) de

for all ¢ € L?([s1,t1], Hy).

37
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In particular, taking ¢ = u and using b € L>° F'/? as in the proof of Proposition [Z.I] we have

t1

/tl (Out), ) g gz, dt + (1 — 5)/ 1= A uf2dt < 0. (49)

S1 S1
2. We put u. := & * u, where & is a Friedrichs mollifier of compact support. Since H_, H, are
separable spaces, we have u.(t) — u(t) in H for a.e.t €]s, T, ue — u in L?([s1,t1], Hy], ul — o/
in L2([817 tl]v H—]
Further, we have

D uelt) — s )l = T~ A)bt) — (A~ A) s D)l

— 2((A = A)3duc(t) — (A — A1 dus(t), (A — A)iug(t) — (A — A)ius(t))

=

Jue(t1) —us(t) | — [lue(s1) — us(s1)[l

t1
- 2/ (= A) 30 — (A — A) s, (A — A — (A — A) T ug)dr,
S1
Hence, fixing s1 €]s, T[ such that u.(s1) — u(s1) in H,, we obtain
1 t1
limsup sup ||ues(t) —us(t)|lg < / |0y ue — Opus||3; dr +/ llue — U5H%1+d7’ —0
0

£,010 tE[sl,tﬂ S1
as ,0 | 0. It follows that {u.} converges in L*([s1,t1], H) to u, and so u € C([s1,t1], H). This
gives (ii).
3. Finally, we note that 2 |lu(t)||% = 2(u' (), u(t))u, as follows from

e (b1 — e (s1) I3 = 2/ () s

S1

upon taking the limit ¢ | 0. Combining this with ([@9) we obtain (4ii).

APPENDIX C.
1. Let us first show that if b € L>®(R,, L9), then for a.e.t € R,
1
Io@)el3 < Sl(=A)29l3, ¢ eWwh?, (50)

for & := supeg, [1b(t)]|7 < oo. Indeed,

[BE¥IIZ < DG
(we are applying the Sobolev Embedding Theorem)
< Cslb@ IV l3,
as claimed. Now, applying Heinz’ inequality in (50), we obtain b € LOOF%
If b belongs to the critical Ladyzhenskaya-Prodi-Serrin class (LPS/), i.e.

,SObGMF\/gby(M).

d 2
bELp([0,00[,Lq), _+_§17 p227 QZd
q P
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then we estimate

[S]iS]

Q=
Q=

e, 2) = LD oy <9(<'b“’—x)'q)d+§(<\b<t,->w> ),

(1b(t, o) N0

where the first term is in L>°([0, oo[, L) and the second term is in L?([0, c0[, L*°). In view of the
previous example, it is clear that b € MFs.

2. One has

sup [|b(t)||ar,,. < 00 (see () = be LPFy”
teR

with ¢ proportional to the Morrey norm supcg ||b(t)||as,,., see [Al Theorem 7.3]. So, in particular,
if supyeg [|6(t)|| a4 < 00, then b € MF.
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