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ON DIVERGENCE-FREE (FORM-BOUNDED TYPE) DRIFTS

DAMIR KINZEBULATOV AND REIHANEH VAFADAR

Dedicated to Jerry Goldstein on the occasion of his 80th birthday.

Abstract. We develop regularity theory for elliptic Kolmogorov operator with divergence-free

drift in a large class (or, more generally, drift having singular divergence). A key step in our

proofs is “Caccioppoli’s iterations”, used in addition to the classical De Giorgi’s iterations and

Moser’s method.

1. Introduction

1. This paper is motivated by the following question: what minimal assumptions on a vector
field b on R

d (d ≥ 3) ensure that the “classical” regularity theory of equations

(−∆ + b · ∇)u = 0 (1)

and

(−∇ · a · ∇ + b · ∇)u = 0 (2)

is still valid? The matrix a is assumed to be measurable and uniformly elliptic, i.e.

σI ≤ a ≤ ξI a.e. on R
d, 0 < σ ≤ ξ < ∞, (Hσ,ξ)

and the vector field b is assumed to be divergence-free or, more generally, to have divergence in
L1

loc ≡ L1
loc(R

d). In the former case, the elliptic equation (1) can be viewed as a proxy to the
corresponding parabolic equation with a time-inhomogeneous divergence-free vector field. This
equation plays an important role in hydrodynamics, e.g. as the equation behind the passive tracer
SDE where the drift b is the velocity field obtained by solving 3D Navier-Stokes equations, see
e.g. [MK].

One can prove e.g. local boundedness of weak solutions to the corresponding parabolic equation
and a Harnack-type inequality requiring from a divergence-free b only ‖b‖p < ∞ for a p > d

2 , see
Zhang [Z], Nazarov-Uraltseva [NU]. (Here and below ‖f‖p := (

∫

Rd |f |pdx)1/p.) However, to have
a classical regularity theory, including Hölder continuity of solutions to (2), one needs p = d.
Informally, one arrives at p = d by requiring that rescaling the operator leaves invariant the norm
of b (neither decreases it, otherwise the singularities of b would be too weak and easy to deal
with, nor increases it, otherwise this can destroy the continuity of even bounded solutions to (1),
see Filonov [F]). The present paper deals with scaling-invariant conditions on b.
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Speaking of the choice of ‖b‖d as a measure of singularity of b, it is convenient as long as one
agrees that the task of verifying ‖b‖d < ∞ is, in principle, elementary. Nevertheless, this choice
is somewhat arbitrary since it largely ignores, beyond the scaling considerations, the operator
behind the equation. Much more broad conditions on b are possible:

Definition 1. A vector field b : Rd → R
d is said to be multiplicatively form-bounded if |b| ∈ L1

loc

and there exists a constant 0 < δ < ∞ such that

〈|b|ϕ, ϕ〉 ≤ δ‖∇ϕ‖2‖ϕ‖2 + cδ‖ϕ‖2
2 ∀ ϕ ∈ W 1,2

for some cδ < ∞ (written as b ∈ MFδ). The constant δ is called a weak form-bound of b.
Here and below

〈g〉 :=
∫

Rd
gdx, 〈f, g〉 := 〈fg〉

(all functions considered below are real-valued), and W 1,p = W 1,p(Rd) denotes the usual Sobolev
space.

There is a well developed machinery that allows to verify inclusion b ∈ MFδ. For instance, the
following classes of vector fields b, defined in elementary terms, are contained in MFδ:

1) |b| ∈ Ld, in which case δ can be chosen arbitrarily small;
2) |b| in the weak Ld class;
3) More generally, |b|2 is in the Chang-Wilson-Wolff class [CWW], i.e.

sup
Q

1
|Q|

∫

Q
|b|2 l(Q)2γ

(

|b|2 l(Q)2)

dx < ∞,

where γ : [0, ∞[→ [1, ∞[ is an increasing function such that
∫ ∞

1
dt

tγ(t) < ∞. The Chang-Wilson-
Wolff class contains the Campanato-Morrey class

|b| ∈ L2s
loc for some s > 1 and

( 1
|Q|

∫

Q
|b(x)|2sdx

)
1

2s ≤ csl(Q)−1 for all cubes Q.

4) |b| in the Campanato-Morrey class

|b| ∈ Ls
loc for some s > 1 and

( 1
|Q|

∫

Q
|b(x)|sdx

)

1
s ≤ csl(Q)−1 for all cubes Q. (3)

5) b in the Kato class of vector fields Kd+1
δ , i.e. |b| ∈ L1

loc and ‖(λ − ∆)− 1
2 |b|‖∞ ≤ δ for a λ > 0.

In 2)-5) the value of δ is proportional to the norm of |b| in respective classes.

Below we show that MFδ contains the standard class of form-bounded vector fields Fδ (see
Definition 2). In turn, Fδ contains classes 1)-3) (we note in passing that the Chang-Wilson-Wolff
class was born out of attempts by many authors to obtain a necessary and sufficient condition
for “b ∈ Fδ” in elementary terms, see references in [CWW]). The inclusions of 4) and 5) in MFδ

follow from (11) and the fact that vector fields in the Campanato-Morrey class (3) or the Kato
class are weakly form-bounded, see below.

The class MFδ neither is contained in, nor contains another well-known class of divergence-free
vector fields BMO−1 (i.e. b = ∇F for skew-symmetric matrix-valued function F with entries in
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the space BMO = BMO(Rd) of functions of bounded mean oscillation, see Definition 3). See,
however, Remark 1 about combining MFδ and BMO−1.

In the present paper we develop De Giorgi’s approach to the regularity theory of Kolmogorov
operator

− ∇ · a · ∇ + b · ∇, (4)

with b ∈ MFδ, δ < ∞ and div b satisfying some broad assumptions (see (5), (6) below). The
multiplicative form-boundedness was introduced by Semënov [S] as a condition providing a priori
two-sided Gaussian bound on the heat kernel of (4) and hence its a priori Hölder continuity,
assuming b is divergence-free. His proof of the upper Gaussian bound used Moser’s method. The
proof of the lower Gaussian bound in [S] required a deep modification of Nash’s method. The
reason is that when dealing with multiplicative form-boundedness, one cannot use one of the key
instruments in the analysis of PDEs: the quadratic inequality. Our motivation, beyond the desire
to arrive at a priori Hölder continuity of solutions to (2) using a somewhat simpler argument,
and curiosity (in fact, the proof of Caccioppoli’s inequality for multiplicatively form-bounded b

turned out to be rather interesting, see below), is driven by the following two goals not addressed
by the other methods:

– A posteriori solution theory for Dirichlet problem for (2) and a posteriori Harnack inequality.

In Theorem 3 we prove approximation uniqueness of solution to Dirichlet problem for (2) with
multiplicatively form-bounded b, going beyond the borderline case |b| ∈ L2

loc. (The approximation
uniqueness means uniqueness among weak solutions that can be constructed via an approximation
procedure.) The proof uses higher integrability of the gradient of solution.

– The minimal assumptions on the divergence of b.

Physical applications require one to treat singular div b. We allow in this paper (div b)± in the
class of form-bounded potentials, i.e. (div b)± ∈ L1

loc and

〈(div b)+ϕ, ϕ〉 ≤ ν+‖∇ϕ‖2
2 + cν+‖ϕ‖2

2, ν+ < 2σ, (5)

〈(div b)−ϕ, ϕ〉 ≤ ν−‖∇ϕ‖2
2 + cν−‖ϕ‖2

2, ν− < ∞. (6)

for some cν± < ∞, for all ϕ ∈ W 1,2. (Throughout the paper, given a function f , we denote by

f± its positive/negative part.) For instance, potentials in the weak L
d
2 class are form-bounded,

but there also exist form-bounded potentials 6∈ L1+ε
loc , for arbitrarily fixed ε > 0.

Earlier, Kinzebulatov-Semënov [KiS3] established a priori two-sided Gaussian heat kernel
bounds for (4) for b ∈ MFδ, δ < ∞ with div b in the Kato class of potentials Kd

ν , a proper
subclass of (5), (6). Example of a vector field b such that div b is form-bounded but is not in the
Kato class is given by e.g.

b(x) = κ+|x − x+|−2(x − x+) − κ−|x − x−|−2(x − x−) (κ± > 0), (7)

where x± ∈ R
d are fixed. Here div b = κ+(d − 2)|x − x+|−2 − κ−(d − 2)|x − x−|−2 satisfies (5),

(6) with ν± = 4κ±

d−2 , cν± = 0 by Hardy’s inequality. This vector field indeed destroys two-sided
Gaussian bound, see discussion in [KiS3]. At the level of the corresponding to (1), (7) SDE
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dXt = −b(Xt)dt +
√

2dBt the first term in (7) forces the diffusion process Xt to approach x+,
while the second term pushes Xt away from x−, i.e. taking into account (div b)± allows to model
attraction/repulsion phenomena.

The form-boundedness of (div b)+ seems to be the maximal possible assumption on div b pro-
viding a “classical” regularity theory of (2). If b belongs to a smaller class Fδ, then no assumption
on the negative part of div b is needed, see Hara [H].

2. The starting point of De Giorgi’s method is Caccioppoli’s inequality (cf. Proposition 1). Let
us outline its derivation and describe ensuing difficulties when dealing with multiplicatively form-
bounded b. First, we introduce some notations used throughout the paper. Let Br(x) denote the
open ball in R

d of radius r centered at x. Put

Br := Br(0).

Denote by (f)B the average of function f over a ball (or some other set) B:

(f)B :=
1

|B| 〈f1B〉, |B| := Vol B.

Now, to prove Caccioppoli’s inequality, one multiplies equation (2) by uη, where u ∈ W 1,2 is
a weak solution to the equation and η ∈ C∞

c (BR), R ≤ 1 is a [0, 1]-valued function which is
identically 1 on a concentric ball of smaller radius r < R and satisfies |∇η|2/η ≤ c(R − r)−21BR

.
Integrating and using a ∈ (Hσ,ξ), one obtains right away

σ〈|∇u|2η〉 ≤ 〈a · ∇u, u, ∇η〉 + |〈b · ∇u, uη〉|

so, applying quadratic inequality, one has

σ〈|∇u|2η〉 ≤ ǫσ〈|∇u|2η〉 +
σ

4ǫ
〈u2 |∇η|2

η
〉 + |〈b · ∇u, uη〉| (ǫ > 0). (8)

Then, in particular,

σ(1 − ǫ)〈|∇u|21Br 〉 ≤ cσ

4ǫ(R − r)2
〈u21BR

〉 + |〈b · ∇u, uη〉|. (9)

Thus, in the LHS of (9) one obtains extra information about the regularity of u but on a smaller
set Br, provided that one can control 〈b · ∇u, uη〉:

(a) If b ∈ Fδ, δ < σ2 (no assumptions on div b), then one has, using quadratic inequality

|〈b · ∇u, uη〉| ≤ α〈|∇u|2η〉 +
1

4α
〈|b|2, u2η〉 (α > 0).

Now, applying b ∈ Fδ, minimizing in α and substituting the result in (8) (with ǫ chosen sufficiently
small), one obtains the Caccioppoli inequality.

(b) If b = ∇F ∈ BMO−1, then one obtains, using the divergence theorem,

|〈b · ∇u, uη〉| ≤ γ
〈

|∇u|2η
〉

+
1
γ

〈

|F − (F )BR
|2, u2 |∇η|2

η

〉

(γ > 0).

The latter yields a Caccioppoli-type inequality, where the term containing |F −(F )BR
|2 is handled

using e.g. the John-Nirenberg inequality. We refer to [H] for details, see also [SSSZ, Zh].
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(c) If b ∈ MFδ, δ < ∞ with, say, div b = 0, then one has

|〈b · ∇u, uη〉| =
1
2

|〈bu, u∇η〉| ≤ 1
2

〈|b|u, u|∇η|〉

≤ δ

2

(

‖(∇u)
√

|∇η|‖2 + ‖u∇
√

|∇η|‖2

)

‖u
√

|∇η|‖2 +
cδ

2
‖u

√

|∇η|‖2
2 (10)

(see the proof of Proposition 1). The estimates
√

|∇η| ≤ c(R − r)− 1
2 1BR

, |∇
√

|∇η|| ≤ c(R − r)− 3
2 1BR

present no problem. The difficulty is in the term ‖(∇u)
√

|∇η|‖2 in the RHS of (10): one has
∇u and ∇η at the same time. Thus, one cannot simply transition this term to the LHS of (8)
as in (a). Furthermore, estimating |∇η| ≤ c(R − r)−11BR

in ‖(∇u)
√

|∇η|‖2 one obtains the
norm of ∇u over a larger set than in the LHS of (9). Nevertheless, it turns out that one can
iterate the resulting from (9) and (10) inequality over balls of radii between r and R, which leads
to the sought Caccioppoli’s inequality, see the proof of Proposition 1. This iteration procedure
(“Caccioppoli’s iterations”) is also used in Moser’s method in the proof of Proposition 4, although
in a slightly more sophisticated form.

3. Let us now recall the definitions of the class of form-bounded vector fields and the class
BMO−1.

Definition 2. A vector field b : Rd → R
d is said to be form-bounded if |b| ∈ L2

loc and there exists
δ > 0 such that

〈|b|2ϕ, ϕ〉 ≤ δ‖∇ϕ‖2
2 + cδ‖ϕ‖2

2 ∀ϕ ∈ W 1,2

for some constant cδ (written as b ∈ Fδ). No conditions on div b are imposed.

Definition 3. A divergence-free distributional vector field b ∈ [S ′]d is in the class BMO−1 if

b = ∇F i.e. bk =
d

∑

i=1

∇iFik, 1 ≤ k ≤ d,

for matrix F with entries Fik = −Fki ∈ BMO. (Recall that Fik ∈ BMO means that Fik ∈ L1
loc

and

‖Fik‖BMO := sup
Q

1
|Q|

∫

Q
|F − (F )Q|dx < ∞,

where the supremum taken over all cubes Q ⊂ R
d with sides parallel to the axes.)

The class of form-bounded vector fields Fδ contains Ld class, the weak Ld class, the Campanato-
Morrey class and the Chang-Wilson-Wolff class, see [KiS1]. It provides a posteriori Harnack
inequality and Hölder continuity of solutions to (2), as long as δ < σ2, see Hara [H], and weak
well-posedness of the corresponding to (1) SDE, as long as form-bound δ < cd for a certain
explicit constant cd < 1, see Kinzebulatov-Semënov [KiS2] and Kinzebulatov-Madou [KiM]. It
also provides a posteriori upper and/or (depending on div b) lower Gaussian bound on the heat
kernel of Kolmogorov operator (4), see Kinzebulatov-Semënov [KiS3]. This list of results involving
form-bounded drift is far from being exhaustive. See, in particular, Zhang [Z] regarding elements
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of the regularity theory of (2) under supercritical (in the sense of scaling) form-boundedness type
assumption on b.

The quantitative role of form-bound δ in the theory of Kolmogorov operator was recognized by
Kovalenko-Semënov [KS] who proved W 1,p estimates on solutions to (1) with b ∈ Fδ, where the
interval of admissible p expands to [2, ∞[ as δ is taken closer and closer to zero. These estimates,
with p sufficiently large, allow to construct the corresponding to (1) Feller semigroup.

The class BMO−1 contains divergence-free vector fields with entries e.g. in the Campanato-
Morrey class (3), and it also contains some singular distribution vector fields [KT], which, obvi-
ously, can not be multiplicatively form-bounded. A weak solution theory of the Dirichlet problem
for (1) with b ∈ BMO−1 was developed by Zhikov [Zh]. This class furthermore provides a
posteriori Harnack inequality and Hölder continuity of solutions to the parabolic counterpart of
(2), see Friedlander-Vicol [FV], Seregin-Silvestre-Šverak-Zlatoš [SSSZ], and a posteriori two-sided
Gaussian bound on Kolmogorov operator (4), see Qian-Xi [QX]. Earlier, a subclass of BMO−1

consisting of vector fields b = ∇B for skew-symmetric B with entries in L∞ was considered by
Osada [O].

4. We note that for b = b1 + b2, where b1 ∈ Fδ, b2 ∈ BMO−1 one has the KLMN Theorem in
L2 via the estimate

|〈b · ∇u, v〉| ≤ (
√

δ + ‖F‖BMO)‖∇u‖2(‖∇v‖2 + c‖v‖2), c =
√

cδ√
δ

(for b2, using the compensated compactness estimate of [CLMS]). The KLMN Theorem provides
an a posteriori solution theory for (4) in L2. This settles for such b’s the problem of a posteriori
Harnack inequality. On the other hand, no analogues of the KLMN Theorem are known so far
for b ∈ MFδ except in some special cases (cf. the first comment in Section 8).

Regarding the inclusion Fδ2 ⊂ MFδ mentioned above, in fact, a much stronger statement is
true: MFδ contains the class of weakly form-bounded vector fields, that is, |b| ∈ L1

loc and

‖|b| 1
2 ϕ‖2

2 ≤ δ‖(λ − ∆)
1
4 ϕ‖2

2 ∀ ϕ ∈ W 1
2

,2 (F
1
2
δ )

for some λ > 0 (which, in turn, contains Fδ2 with cδ = λδ, as is evident from the Heinz-Kato
inequality). Here and below, Wα,p denoted the Bessel potential space. Indeed,

〈|b|ϕ, ϕ〉 ≤ δ〈(λ − ∆)
1
2 ϕ, ϕ〉 ≤ δ‖(λ − ∆)

1
2 ϕ‖2‖ϕ‖2 (11)

≤ δ‖∇ϕ‖2‖ϕ‖2 + λ‖ϕ‖2
2 ⇒ b ∈ MFδ. (12)

Thus, compared to the standard form-boundedness, the multiplicative form-boundedness allows
to gain twice in the a priori summability requirement on the vector field, i.e. |b| ∈ L1

loc instead of
|b| ∈ L2

loc.
Note that F1/2

δ contains the Kato class Kd+1
δ (e.g. by interpolation) and the Campanato-Morrey

class (3) [A], hence for every ε > 0 one can find weakly form-bounded vector fields b with
|b| 6∈ L1+ε

loc .
See further discussion in Section 8.
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2. Main results

Our first result concerns a priori estimates for equation (2), i.e. the coefficients will be assumed
to be smooth. Let Ω ⊂ R

d be a bounded Lipschitz domain, d ≥ 3.

Definition 4. We call a constant generic if it depends only on d, Ω, σ, ξ, δ, cδ, ν± and cν± .

Theorem 1. Let a ∈ (Hσ,ξ) and b ∈ MF := ∪δ>0MFδ. Assume that a, b are bounded

smooth. Also, assume that div b = div b+ − div b− for bounded smooth div b± ≥ 0 satisfying

form-boundedness conditions (5), (6). Let B2R(x) ⊂ Ω, and let u be a solution to (2) in BR(x).
Then

‖∇u‖Lp(B R
2

(x)) ≤ C0 (13)

for some generic p > 2 and C0 < ∞. Moreover, if solution u ≥ 0 in BR(x), then it satisfies the

Harnack inequality

sup
BR/2(x)

u ≤ C inf
BR/2(x)

u (14)

with generic constant C, and is Hölder continuous:

oscBr(x)u ≤ K

(

r

R

)γ

oscBR/2
u, 0 < r <

R

2
(15)

for some generic constants K and 0 < γ < 1.

Of course, a key point of Theorem 1 is that constants C0, C, K, γ do not depend on the
smoothness of a, b, div b or the L∞ norms of the last two.

Theorem 1 uses the standard De Giorgi’s iterations and Moser’s method, with the addition of
“Caccioppoli’s iterations” in Propositions 1 and 4.

Remark 1. Theorem 1 extends to vector fields

b = b1 + b2, b1 ∈ MF, b2 ∈ BMO−1 (16)

where div b1 satisfies the assumptions of Theorem 1, see Remark 2 in the end of the proof. See
also comment 4 in Section 8 regarding Nash’s method.

We now turn to the question of weak well-posedness of Dirichlet problem
{

(−∇ · a · ∇ + b · ∇)u = 0 in Ω
u − g ∈ W 1,2

0 (Ω),
(17)

where a ∈ (Hσ,ξ) and b ∈ MF are assumed to be only measurable, div b ∈ L1
loc satisfies (5), (6),

and

g ∈ L∞, ‖g‖W 2,2 < ∞. (18)

Definition 5. We say that u ∈ W 1,2
loc (Ω) is a weak solution to equation

(−∇ · a · ∇ + b · ∇)u = 0 in Ω (19)

if
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(i) bu ∈ [L1
loc(Ω)]d, (div b)u ∈ L1

loc(Ω) and
(ii) identity

〈a · ∇u, ∇ϕ〉 − 〈bu, ∇ϕ〉 − 〈(div b)u, ϕ〉 = 0, ∀ϕ ∈ C∞
c (Ω)

holds.

If u is locally bounded, then (i) is trivially satisfied.

We will construct a weak solution to (17) via an approximation procedure. Let us fix C∞

smooth bounded bn such that

bn ∈ MFδ with the same cδ (so, independent of n), bn → b in [L1
loc]

d, (20)

div bn = div bn,+ − div bn,−,

0 ≤ div bn,± ∈ C∞ ∩ L∞ satisfy (5), (6) with the same ν±, cν± (so, independent of n),
(21)

div bn,± → (div b)± in L1
loc. (22)

We emphasize that div bn,± above is any pair of non-negative functions such that identity div bn =
div bn,+ − div bn,− holds. We discuss a construction of such bn in Section 3.

We fix bounded smooth gn such that

gn → g weakly in W 2,2
loc , ‖gn‖∞ ≤ ‖g‖∞. (23)

Let us also fix C∞ smooth an ∈ (Hσ,ξ),

an → a in [L1
loc]

d×d. (24)

Theorem 2. Let a ∈ (Hσ,ξ), b ∈ MF with div b ∈ L1
loc satisfying (5), (6). Let (an, bn, gn) satisfy

(20)-(24). Then solutions un to the Dirichlet problems
{

(−∇ · an · ∇ + bn · ∇)un = 0 in Ω
un = gn on ∂Ω

(25)

converge weakly in W 1,2
loc (Ω) as n → ∞, possibly after passing to a subsequence, to a weak solution

to Dirichlet problem (17). This weak solution is bounded, satisfies the gradient estimate (13) and,

if g ≥ 0, satisfies the Harnack inequality (14) and is Hölder continuous, cf. (15).

The proof of convergence/existence part of Theorem 2 requires some care, since the moment
one puts problem (17) for a = an, b = bn, g = gn in the form

{

(−∇ · a · ∇ + b · ∇)v = −f

v ∈ W 1,2
0 (Ω),

(so u = v + g), then the right-hand side f ≡ fn := −∇ · a · ∇g + b · ∇g is, in general, not bounded
in W −1,2 uniformly in n (if it is uniformly bounded in W −1,2, then the proof is straightforward).

One now arrives at the question: does a weak solution to (17) constructed in Theorem 2 (an
“approximation solution”) depend on the choice of the approximation procedure (an, bn, gn)?
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In the next theorem, which is essentially a consequence of Theorem 1 and Gehring’s Lemma, a
“generic constant” can also depend on ‖g‖W 2,2(Ω).

Theorem 3. In the assumptions of Theorem 2, let also

g ∈ W 2,2+ǫ1

loc ∩ W
1, 1+ǫ

ǫ
loc for some 0 < ǫ1, ǫ < 1, gn → g in W 2,2+ǫ1

loc ∩ W
1, 1+ǫ

ǫ
loc ,

and, in the assumption (5) on (div b)+, let cν+ = 0.

There exists a generic p ∈ [1 + ǫ, 2[ such that if, in addition to (20),

|b| ∈ Lp
loc, bn → b in [Lp

loc]
d,

then the approximation solution to Dirichlet problem (17) constructed in Theorem 2 does not

depend on the choice of (an, bn, gn), and is in this sense unique.

Zhikov [Zh] investigated approximation uniqueness for Dirichlet problem
{

(−∆ + b · ∇)v = −f, f ∈ W −1,2

v ∈ W 1,2
0 (Ω)

with divergence-free b, singling out two classes of the approximation uniqueness results:
1) b = ∇B with B is of bounded mean oscillation on Ω or limq→∞ q−1‖B‖Lq(Ω) = 0 (the ques-

tion what properties of b ensure the existence of such B, satisfying some integrability assumptions,
is non-trivial),

2) b ∈ [L2(Ω)]d or limε↓0 ε‖b‖L2−ε(Ω) = 0.
Theorem 3 thus shows that one can step away from p = 2 in the condition |b| ∈ Lp(Ω) by a

fixed constant, provided that b is multiplicatively form-bounded. One can now justifiably pose
the question if one can remove the additional to b ∈ MF assumption “|b| ∈ Lp

loc for a certain
1 < p < 2” completely.

3. Smooth approximation of coefficients

Let measurable a ∈ (Hσ,ξ), b ∈ MF, assume that div b ∈ L1
loc satisfies (5), (6), and boundary

data g satisfies (18). We discuss the question of constructing an, bn, gn satisfying the assumptions
(20)-(24) before Theorem 2.

It is not difficult to construct a bounded smooth approximation of matrix a and g. The question
of how to approximate b by bounded smooth vector fields is more subtle since we need to control
both the multiplicative form-bound and the form-bound of the (positive/negative part of the)
divergence of the approximating vector fields bn. We can put e.g.

bn := γεn ∗ b for εn ↓ 0,

where γε(y) := ε−dγ(y/ε) is the Friedrichs mollifier, γ(y) := ce
− 1

|y|2−1 for |y| < 1 and is zero
otherwise, with c adjusted to 〈γ〉 = 1, cf. [KiS1, KiS3]. Indeed, the following is true for every
n ≥ 1:
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1) bn ∈ L∞ ∩ C∞. The second inclusion follows from b ∈ [L1
loc]

d and the standard properties
of Friedrichs mollifiers. To see the first inclusion, fix x ∈ R

d and estimate

|Eεb(x)| = |〈b(·)
√

γε(x − ·),
√

γε(x − ·)〉|

≤ δ〈
∣

∣∇
√

γε(x − ·)
∣

∣

2〉 1
2 + cδ

(we use
〈
∣

∣∇
√

γε(x − ·)
∣

∣

2〉

= C2ε−2)

≤ Cε−1 + cδ

for appropriate C > 0 (clearly, independent of x).

2) bn ∈ MFδ with the same cδ (thus, independent of n). Let ϕ ∈ C∞
c . First, let us note that

for ϕm := ϕ + e−|x|2

m we have

‖∇
√

γε ∗ |ϕm|2‖2 =
∥

∥

γε ∗ (|ϕm||∇|ϕm|)
√

γε ∗ |ϕm|2
∥

∥

2

≤ ‖
√

γε ∗ |∇|ϕm||2‖2 = ‖γε ∗ |∇|ϕm||2‖
1
2
1 ≤ ‖∇|ϕm|‖2 ≤ ‖∇ϕm‖2

(we need term e−|x|2

m to make sure that γε ∗ |ϕm|2 > 0 everywhere). Now, taking m → ∞, we
obtain

‖∇
√

γε ∗ |ϕ|2‖2 ≤ ‖∇ϕ‖2.

By b ∈ MFδ, we have for all ϕ ∈ C∞
c ,

〈|γε ∗ b|ϕ, ϕ〉 ≤ 〈|b|, γε ∗ |ϕ|2〉

≤ δ‖∇
√

γε ∗ |ϕ|2‖2‖
√

γε ∗ |ϕ|2‖2 + cδ‖
√

γε ∗ |ϕ|2‖2

≤ δ‖∇ϕ‖2‖ϕ‖2 + cδ‖ϕ‖2
2,

as needed.

3) We put div bn,± := Eεn(div b)± ≥ 0, i.e. we mollify (div b)+ := div b ∨ 0 and (div b)− :=
−(div b ∧ 0). Then, clearly,

div bn = div bn,+ − div bn,−.

The proof of the boundedness, smoothness and form-boundedness (5), (6) of div bn,+, div bn,−

follow the argument in 1), 2).
The convergence bn → b in [L1

loc]
d, (div bn)± → div b± in L1

loc follows from the properties of
Friedrichs mollifiers.

Finally, the extra local summability/Sobolev regularity assumptions on b, g in Theorem 3
transfer to bn, gn without any problems, by the properties of Friedrichs mollifiers.
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4. Caccioppoli’s inequality

Proposition 1. Let a, b satisfy the assumptions of Theorem 1. Let u be a solution to equation

(2) in a bounded Lipschitz domain Ω ⊂ R
d. Set v := (u − c)+, c ∈ R. Then, for all x ∈ Ω and all

0 < r < R, where R is bounded from above by some R0 ≤ 1 such that BR0(x) ⊂⊂ Ω, we have

〈|∇v|21Br(x)〉 ≤ K(R − r)−2〈v21BR(x)〉 (26)

for a generic constant K.

Proof. Step 1 (a pre-Caccioppoli’s inequality). Without loss of generality, x = 0. We fix [0, 1]-
valued smooth cut-off functions {η = ηr1,r2}0<r1<r2<R on R

d satisfying

η =

{

1 in Br1 ,

0 in R
d − B̄r2,

and

|∇η|2
η

≤ c

(r2 − r1)2
1Br2

, (27)

√

|∇η| ≤ c√
r2 − r1

1Br2
, (28)

|∇
√

|∇η|| ≤ c

(r2 − r1)
3
2

1Br2
(29)

for some constant c. For instance, one can take, for r1 ≤ |y| ≤ r2,

η(y) := 1 −
∫ 1+

|y|−r1
r2−r1

1
ϕ(s)ds, where ϕ(s) := Ce

− 1
1
4 −(s− 3

2 )2
, sprt ϕ = [1, 2],

with constant C adjusted to
∫ 2

1 ϕ(s)ds = 1.
We multiply equation (2) by vη and integrate to obtain

〈a · ∇v, (∇v)η〉 + 〈a · ∇v, v∇η〉 + 〈b · ∇v, vη〉 = 0,

so

σ〈|∇v|2η〉 + 〈a · ∇v, v∇η〉 + 〈b · ∇v, vη〉 ≤ 0,

Applying quadratic inequality in the second term, we obtain

(σ − ǫ)〈|∇v|2η〉 ≤ 1
4σ2ǫ

〈

v2 |∇η|2
η

〉

− 〈b · ∇v, vη〉 (ǫ > 0)

≤ 1
4σ2ǫ

〈

v2 |∇η|2
η

〉

+
1
2

〈bv, v∇η〉 +
1
2

〈div b, v2η〉

=: I1 + I2 + I3. (30)

By (27),

I1 ≤ c

4σ2ǫ(r2 − r1)2
‖v1Br2

‖2
2.
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Regarding I2, we have by b ∈ MFδ,

2I2 ≤ 〈|b|v, v|∇η|〉 ≤ δ‖∇(v
√

|∇η|)‖2‖v
√

|∇η|‖2 + cδ‖v
√

|∇η|‖2
2

≤ δ

(

‖(∇v)
√

|∇η|‖2 + ‖v∇
√

|∇η|‖2

)

‖v
√

|∇η|‖2 + cδ‖v
√

|∇η|‖2
2.

Hence, using (28), (29), we obtain

2I2 ≤ δc

(

1√
r2 − r1

‖(∇v)1Br2
‖2 +

1

(r2 − r1)
3
2

‖v1Br2
‖2

)

1√
r2 − r1

‖v1Br2
‖2

+
cδc

r2 − r1
‖v1Br2

‖2
2.

Thus, since r2 − r1 < 1,

I2 ≤ C1

r2 − r1
‖(∇v)1Br2

‖2‖v1Br2
‖2

+ C1

(

1 +
1

(r2 − r1)2

)

‖v1Br2
‖2

2

for appropriate constant C1. Finally, recalling that div b = div b+ − div b− for bounded smooth
div b± ≥ 0 that satisfy (5), (6), we have by (5)

I3 ≤ 1
2

〈div b+, v2η〉

≤ ν+

2

(

〈|∇v|2η〉 + 4−1〈v2 |∇η|2
η

〉
)

+
cν+

2
〈v2η〉

≤ ν+

2
〈|∇v|2η〉 +

c1

(r2 − r1)2
〈v21Br2

〉, c1 := 4−1cν+ +
cν+

2
.

Substituting the above estimates on I1, I2 and I3 in (30), selecting ǫ sufficiently small and
using our assumption ν+ < 2σ, we obtain

〈|∇v|2η〉 ≤ C1

r2 − r1
‖(∇v)1Br2

‖2‖v1Br2
‖2

+ C2

(

1 +
1

(r2 − r1)2

)

‖v1Br2
‖2

2.

Hence

〈|∇v|21Br1
〉 ≤ C1

r2 − r1
‖(∇v)1Br2

‖2‖v1BR
‖2

+ C2

(

1 +
1

(r2 − r1)2

)

‖v1BR
‖2

2. (31)

We can divide (31) by ‖v1BR
‖2

2:

‖(∇v)1Br1
‖2

2

‖v1BR
‖2

2

≤ C1

r2 − r1

‖(∇v)1Br2
‖2

‖v1BR
‖2

+ C2

(

1 +
1

(r2 − r1)2

)

. (32)

This is a pre-Cacciopolli inequality that we will now iterate.
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Step 2 (Caccioppoli’s iterations). Fix r as in the formulation of the theorem (so 0 < r < R)
and put in (32)

r1 := R − R − r

2n−1
, r2 := R − R − r

2n
, n = 1, 2, . . .

so r2 − r1 = R−r
2n . Then, denoting the LHS of (32) by

a2
n :=

‖(∇v)1B
R− R−r

2n−1

‖2
2

‖v1BR
‖2

2

,

the inequality (32) can be written as

a2
n ≤ C(R − r)−12nan+1 + C2(R − r)−222n + C2

for appropriate C independent of n. We multiply the latter by (R − r)2 and divide by C222n

(≥ 1). Then, setting

yn :=
(R − r)an

C22n
,

we obtain

y2
n ≤ 1 + (R − r)2 + yn+1, n = 1, 2, . . . (33)

Now we can iterate (33), estimating all yn via nested square roots 1+(R−r)2+
√

1 + (R − r)2 + √
. . ..

Or we can simply note that β := supn≥1 yn satisfies

β2 ≤ 1 + (R − r)2 + β.

(Note that β < ∞ since all an’s are bounded by a (non-generic) constant ‖(∇v)1BR
‖2/‖v1BR

‖2 <

∞.) Hence

β ≤ 1 +
√

1 + 4(1 + (R − r)2)
2

which implies β2 ≤ 3 + 2(R − r)2 and thus y2
n ≤ 3 + 2(R − r)2, n = 1, 2, . . . .So, taking n = 1, we

arrive at

‖(∇v)1Br ‖2
2/‖v1BR

‖2
2 ≤ K(R − r)−2,

for a generic constant K (we used R ≤ 1 to get rid of the constant term in the RHS). This is the
claimed inequality. �

5. Proof of Theorem 1

5.1. The sup bound. The main result of this section is Proposition 3. It will follow from the
next result.
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Proposition 2. Fix 1 < θ < d
d−2 . There exists a generic constant K such that for all 0 < R ≤

R0 ≤ 1, where BR0(x) ⊂⊂ Ω,

sup
B R

2
(x)

u+ ≤ K

(

1
|BR(x)| 〈u

2θ
+ 1BR(x)〉

)

1
2θ

. (34)

We prove Proposition 2, armed with Proposition 1, using De Giorgi’s method. Here we can
follow Hara [H]. For reader’s convenience, we included the details.

Proof. Without loss of generality, x = 0. Proposition 1 yields

‖v‖W 1,2(Br) ≤ K̃(R − r)−1‖v‖L2(BR), v := (u − c)+, c ∈ R

(we used R − r ≤ 1). By the Sobolev Embedding Theorem,

‖v‖
L

2d
d−2 (Br)

≤ C(R − r)−1‖v‖L2(BR).

So, by Hölder’s inequality,

‖v‖
L

2d
d−2 (Br)

≤ C(R − r)−1|BR| θ−1
2θ ‖v‖L2θ(BR). (35)

Set

Rm := R
(1
2

+
1

2m+1

)

, Bm ≡ BRm , m ≥ 0,

so BR = B0 ⊃ B1 ⊃ · · · ⊃ BR/2. Then, by (35),

‖v‖2

L
2d

d−2 (Bm+1)
≤ Ĉ22m|Bm| 2

d
+1− 1

θ ‖v‖2
L2θ(Bm).

On the other hand,

1
|BR| 〈v

2θ1Bm+1〉 ≤
(

1
|BR| 〈v

2d
d−2 1Bm+1〉

)θ d−2
d

( |Bm+1 ∩ {v > 0}|
|BR|

)1−θ d−2
d

.

Applying the previous inequality in the first multiple in the RHS, we obtain

1
|BR| 〈v

2θ1Bm+1〉 ≤ C̃
22θm

|BR| 〈v
2θ1Bm〉

( |Bm+1 ∩ {v > 0}|
|BR|

)1−θ d−2
d

.

Now, put vm := (u − cm)+ where

cm := c(1 − 2−m) → c.

Then

1
c2θ|BR| 〈v

2θ
m+11Bm+1〉 ≤ C̃

22θm

c2θ|BR| 〈v
2θ
m+11Bm〉

( |Bm+1 ∩ {u > cm+1}|
|BR|

)1−θ d−2
d

.

Hence, using

|Bm+1 ∩ {u > cm+1}|
|BR| ≤ (cm+1 − cm)−2θ

|BR| 〈v2θ
m 1Bm+1〉,



DIVERGENCE-FREE DRIFTS 15

we obtain

1
c2θ|BR| 〈v

2θ
m+11Bm+1〉 ≤ C22θm(2−θ d−2

d
)
(

1
c2θ|BR| 〈v

2θ
m 1Bm〉

)2−θ d−2
d

.

Denote xm := 1
c2θ|BR|

〈v2θ
m 1Bm〉 and fix c by

c2θ := C
1
α γ

1
α2

1
|BR| 〈v

2θ1BR
〉 where α := 1 − θ

d − 2
d

, γ := 22θ(2−θ d−2
d

).

Thus, we have

xm+1 ≤ Cγmx1+α
m

where, clearly, x0 = C− 1
α γ− 1

α2 . Hence, by a standard result [G, Sect.7.2], xm → 0 as m → ∞. It
follows that

sup
BR/2

u+ ≤ c,

which yields the claimed inequality. �

Proposition 3. For every 0 < p < ∞ there exists a generic constant K such that, for all

0 < R ≤ R0 ≤ 1, where BR0(x) ⊂⊂ Ω,

sup
B R

2
(x)

u ≤ K

(

1
|BR(x)| 〈u

p
+1BR

(x)〉
)

1
p

.

Proof. We follow [H]. If p ≥ 2θ for some θ < d
d−2 , then the result follows by Proposition 2 and

Hölder’s inequality. If 0 < p < 2θ, then the proof goes as follows. Proposition 2 yields: for all
0 < r < R ≤ R0 (without loss of generality, x = 0),

sup
Br

u+ ≤ K

(

1
(R − r)d

〈u2θ
+ 1BR

〉
)

1
2θ

.

Hence

sup
Br

u+ ≤ K

(

1
(R − r)d

〈up
+1BR

〉
)

1
2θ

(sup
BR

u+)1− q
2θ .

Now, applying Young’s inequality, we arrive at

sup
Br

u+ ≤ 1
2

sup
BR

u+ + K̃
1

(R − r)d
〈up

+1BR
〉, 0 < r < R ≤ 1.

The result now follows upon applying [G, Lemma 6.1]. �
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5.2. The inf bound. The main result of this section is Proposition 5.

Proposition 4. There exists generic constants C and q > 0 such that, if u ≥ c0 > 0 is a solution

to (2) in B2R(x) ⊂⊂ Ω, then
(

1
|BR(x)| 〈u

q1BR(x)〉
)(

1
|BR(x)| 〈u

−q1BR
(x)〉

)

≤ C2.

The proof of Proposition 4 consists of an iteration-type procedure similar to the one in the
proof of Cacciopolli’s inequality (Proposition 1), and Moser’s method, cf. [H].

Proof. Step 1. We work over a ball Br(y) ⊂ B2R(x), r ≤ 1. Without loss of generality, y = 0.
Let ζm be [0, 1]-valued smooth cut-off functions:

ζm(x) =

{

1 |x| ≤ rm,

0 |x| ≥ rm+1,
rm := r

(

1 − 1
2m

)

, m ≥ 1,

satisfying

|∇ζm| ≤ C
2m

r
, |∇|∇ζm|| ≤ C

4m

r2
.

We multiply equation (2) by u−1ζ2
m, obtaining, after integrating by parts, using σI ≤ a ≤ ξI and

applying quadratic inequality,

σ
〈

(∇w)2ζ2
m

〉

≤ εξ
〈

(∇w)2ζ2
m

〉

+
ξ

ε
〈(∇ζm)2〉 + 〈b · ∇w, ζ2

m〉.

where w := log u. Hence, provided that ε is fixed by C1 := σ − εξ > 0,

C1
〈

(∇w)2ζ2
m

〉

≤ C24mrd−2 + 〈b · ∇w, ζ2
m〉. (36)

We need to estimate the last term. Integrating by parts, we have

〈b · ∇w, ζ2
m〉 = −2〈b(w − c), ζm∇ζm〉 − 〈div b, wζ2

m〉

for any constant c (we will chose its value later). Thus,

〈b · ∇w, ζ2
m〉 ≤ 2

〈

|b||∇ζm|2
〉

1
2
〈

|b|(w − c)2ζ2
m

〉

1
2 + 〈div b−, (w − c)ζ2

m〉, (37)

where, recall div b = div b+ − div b− for bounded smooth div b± ≥ 0 that satisfy (5), (6).

1) We estimate the first multiple in the RHS of (37): by b ∈ MF (taking into account r ≤ 1):
〈

|b||∇ζm|2
〉

1
2 ≤ C32

3
2

mr
d−3

2 . (38)

2) The second multiple is estimated as

〈

|b|(w − c)2ζ2
m

〉

1
2 ≤

√
δ

(

‖ζm∇w‖2 + ‖(w − c)∇ζm‖2

)

1
2

‖(w − c)ζm‖
1
2
2 +

√
cδ‖(w − c)ζm‖2

Therefore, setting Bm := Brm , we have

〈

|b|(w − c)2ζ2
m

〉

1
2 ≤

√
δ

(

‖∇w‖L2(Bm+1) + 2mr−1‖w − c‖L2(Bm+1)

)

1
2

‖w − c‖
1
2

L2(Bm+1)

+
√

cδ‖w − c‖L2(Bm+1).
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Select c to be the average (w)Bm+1 := |Bm+1|−1〈w1Bm+1〉 of w over Bm+1. Then, using the
Poincaré inequality ‖w − c‖L2(Bm+1) ≤ C0r‖∇w‖L2(Bm+1), we obtain

〈

|b|(w − c)2ζ2
m

〉

1
2 ≤ C42

1
2

mr
1
2 ‖∇w‖L2(Bm+1). (39)

3) Finally, we estimate the last term in the RHS of (37):

〈div b−, (w − c)ζ2
m〉 ≤ 〈div b−, (w − c)2ζ2

m〉 1
2 〈div b−, ζ2

m〉 1
2 , (40)

where, by the form-boundedness assumption (6),

〈div b−,(w − c)2ζ2
m〉

≤ ν−(1 + ε1)‖(∇w)ζm‖2
2 + ν−(1 + ε−1

1 )‖(w − c)∇ζm‖2
2 + cν−‖(w − c)ζm‖2

2 (41)

≤ ν−(1 + ε1)‖(∇w)ζm‖2
2 + ν−(1 + ε−1

1 )4mr−2‖w − c‖2
L2(Bm+1) + cν−‖w − c‖2

L2(Bm+1)

and

〈div b−, ζ2
m〉 ≤ ν−‖∇ζm‖2

2 + cν−‖ζm‖2
2

≤ C54mrd−2. (42)

Hence, applying (41), (42) in (40), using the quadratic inequality and the Poincaré inequality as
above, we obtain

〈(div b)−, (w − c)ζ2
m〉 ≤ C6ε2‖(∇w)ζm‖2 +

C7

4ε2
4mrd−2 + C74mr

d
2

−1‖∇w‖L2(Bm+1). (43)

We now apply (41), (42) and (43) (with ε2 chosen sufficiently small) in (40), arriving at
〈

(∇w)2ζ2
m

〉

≤ C24mrd−2 + C4mr
d
2

−1‖∇w‖L2(Bm+1)

for appropriate constant C. Therefore,

‖∇w‖2
L2(Bm) ≤ C24mrd−2 + C4mr

d
2

−1‖∇w‖L2(Bm+1) (44)

for all m = 1, 2, . . .

Step 2. We are going to iterate inequality (44). Put

xm :=
‖∇w‖L2(Bm)

C2mr
d
2

−1

so (44) becomes

x2
m ≤ 1 + 2m+1xm+1.

We may assume without loss of generality that all xm ≥ 1 (if xm0 ≤ 1 for some m0, then we are
already done). Thus,

x2
m ≤ 2m+2xm+1.

On the other hand, all xm (m = 1, 2, . . . ) are bounded by a non-generic but independent of m

constant
‖∇w‖L2(Br)

2Cr
d
2

−1
. Hence we can iterate the previous inequality:

x2
m ≤ 2m+2xm+1 ≤ 2m+22

m+3
2 x

1
2
m+2 ≤ 2m+22

m+3
2 . . . 2

m+n
2n x

1
2n

m+1+n ≤ 2
∑∞

n=1
m+1+n

2n =: c(m).
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In particular, x2
1 ≤ c(1), which yields

‖∇w‖L2(Br/2) ≤ Kr
d
2

−1 (45)

for a generic constant K.

Step 3. Inequality (45) is the point of departure for Moser’s method. Namely, applying
Poincaré’s and Hölder’s inequalities, we obtain

1
rd

〈|w − (w)r/2|1Br/2
〉 ≤ K̃, (46)

where (w)r/2 is the average of w over Br/2.
The centre y of the ball in (46) was chosen arbitrarily, and the constant K̃ does not depend

on this choice. Thus, by (46), w ∈ BMO(B2R(x)) (in what follows, for brevity, x = 0). Now, by
the John-Nirenberg inequality:

〈eq|w−(w)R|1BR
〉 ≤ CRd

for some generic q > 0. So, we have

〈uq1BR
〉〈u−q1BR

〉 = 〈eqw1BR
〉〈e−qw1BR

〉
= 〈eq(w−(w)R)1BR

〉〈e−q(w−(w)R)1BR
〉 ≤ C2R2d,

as needed. �

Proposition 5 (Moser). There exists generic constants C0 and q > 0 such that, if u ≥ c0 > 0 is

a solution to (2) in B2R(x) ⊂ Ω, then

(

1
|BR(x)| 〈u

q1BR(x)〉
)

1
q

≤ C0 inf
BR/2(x)

u.

Proof. Let x = 0. Multiplying equation (2) by u−p (p > 1), we obtain that u−p+1 is a sub-solution
of (2):

−∇ · a · ∇u−p+1 + b · ∇u−p+1 ≤ 0.

We can repeat the proofs of Proposition 1 and of Proposition 2 for positive sub-solutions of (2)
essentially word by word. Fix p by p − 1 = q

2θ for any 1 < θ < d
d−2 . Then, by Proposition 2,

sup
BR/2

u−1 ≤ K
2θ
q

(

1
|BR| 〈u

−q1BR
〉
)

1
q

.

Hence

inf
BR/2

u ≥ K− 2θ
q

(

1
|BR| 〈u

−q1BR
〉
)− 1

q

(we are applying Proposition 4)

≥ C− 2
q K− 2θ

q

(

1
|BR| 〈u

q1BR
〉
)

1
q

,

as needed. �



DIVERGENCE-FREE DRIFTS 19

We are in position to complete the proof of Theorem 1. Propositions 3 and 5 yield Harnack’s
inequality for u ≥ c0 > 0 in B2R(x). A simple limiting argument allows to extend it to u ≥ 0
in B2R(x). The Hölder continuity of u now follows using a standard argument. The gradient
estimate is a standard consequence of Cacciopolli’s inequality (Proposition 1), see e.g. [H]. �

Remark 2. The iteration procedure of Propositions 1 and 4 extends to vector fields

b = b1 + b2, b1 ∈ MF, b2 ∈ BMO−1

where div b1 satisfies the assumptions of Theorem 1, b2 = ∇F for skew-symmetric F with entries
in BMO. Namely, repeating the proof of Proposition 1 for such b (cf. the proof of (53) below),
one obtains an extra term 〈b2 · ∇v, vη〉, which one estimates as in [H, Lemma 8]:

|〈b2 · ∇v, vη〉| ≤ ε〈|∇u|η〉 +
1
4ε

〈(F − (F )BR
)2v2 |∇η|2

η
〉, ε > 0,

and so the pre-Caccioppoli’s inequality now takes form

‖(∇v)1Br1
‖2

2

‖v1BR
‖2

2

≤ C1

r2 − r1

‖(∇v)1Br2
‖2

‖v1BR
‖2

+ C2

(

1 +
1

(r2 − r1)2

)(

1 +
‖(F − (F )BR

)v1BR
‖2

2

‖v1BR
‖2

2

)

.

One can now iterate this inequality in the same was as it was done in the proof of Proposition 1,
arriving, instead of (26), at a Caccioppoli-type inequality as in [H] (cf. (b) in the introduction):

〈|∇v|21Br 〉 ≤ K(R − r)−2〈[1 + (F − (F )BR
)2]v21BR

〉, BR = BR(x).

Having the last inequality at hand, one then runs De Giorgi’s method as in [H]. The proof of
Proposition 4 is modified similarly; then we refer again to [H]. This allows to extend Theorem 1
to vector fields b = b1 + b2 as above.

6. Proof of Theorem 2

Given Ω ⊂ R
d, put ‖f‖p,Ω := (

∫

Ω |f |dx)
1
p .

It is convenient to put Dirichlet problem (17) in an equivalent form (at the level of weak
solutions)

{

(−∇ · a · ∇ + b · ∇)v = −f

v ∈ W 1,2
0 (Ω),

(47)

where f := −∇ · a · ∇g + b · ∇. Then the sought u is given by u = v + g.
Considering (47) for a = an, b = bn, g = gn, f = fn and, accordingly, v = vn, we multiply the

equation by vn and integrate to obtain

σ‖∇vn‖2
2,Ω ≤ 1

2
〈div bn, v2

n〉 − 〈fn, vn〉,

so, in particular,

cσǫ‖vn‖2
2,Ω + σ(1 − ǫ)‖∇vn‖2

2,Ω ≤ 1
2

〈div bn,+, v2
n〉 − 〈fn, vn〉
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for a small ǫ > 0. In the RHS of the last inequality, using the fact that div bn,+ satisfies (5), we
estimate

1
2

〈div bn,+, v2
n〉 ≤ ν+

2
‖∇vn‖2

2 +
cν+

2
‖vn‖2

2

and, applying quadratic inequality twice, we have

∣

∣〈fn, vn〉
∣

∣ ≤ σ‖∇gn‖2,Ω‖∇vn‖2,Ω + α〈|bn|, v2
n〉 +

1
4α

〈|bn|, |∇gn|2〉 (α > 0)

(we are using bn ∈ MFδ for some δ < ∞, cδ independent of n)

≤ σβ‖∇vn‖2
2,Ω +

σ

4β
‖∇gn‖2

2,Ω (β > 0)

+ α(δ‖∇vn‖2,Ω‖vn‖2,Ω + cδ‖vn‖2
2,Ω)

+
1

4α
(δ‖∇|∇gn|‖2,Ω‖∇gn‖2,Ω + cδ‖gn‖2

2,Ω).

Now, selecting in the previous three inequalities α, β sufficiently small and using ν+ < 2σ, we
obtain

‖vn‖2
W 1,2(Ω) ≤ C‖g‖W 2,2(Ω) + C1‖vn‖2,Ω

≤ C‖g‖W 2,2(Ω) + C1|Ω| 1
2 ‖vn‖∞,Ω

for some C, C1 < ∞. Hence, taking into account that, by the maximum principle, ‖vn‖L∞(Ω) ≤
2‖gn‖∞(≤ 2‖g‖∞ < ∞), we have

‖vn‖2
W 1,2(Ω) ≤ C‖g‖W 2,2(Ω) + 2C1|Ω| 1

2 ‖g‖∞. (48)

This allows to conclude that there exists a subsequence {vn} and a function v ∈ W 1,2
0 (Ω) such

that

vn → v weakly in W 1,2
0 (Ω), strongly in L2

loc(Ω). (49)

Let us show that thus constructed v is a weak solution to (47):
1) For a given ϕ ∈ C∞

c (Ω), we can write

〈an · ∇vn, ∇ϕ〉 + 〈bn · ∇vn, ϕ〉 = 〈an · ∇vn, ∇ϕ〉 − 〈bnvn, ∇ϕ〉 − 〈(div bn)vn, ϕ〉
= 〈a · ∇v, ∇ϕ〉 − 〈bv, ∇ϕ〉 − 〈div bv, ϕ〉
+ 〈(an − a) · ∇vn, ∇ϕ〉 + 〈a · (∇vn − ∇v), ∇ϕ〉
− 〈(bn − b)vn, ∇ϕ〉 − 〈b(vn − v), ∇ϕ〉
− 〈(div bn − div b)vn, ∇ϕ〉 − 〈(div b)(vn − v), ϕ〉.

The −6th term in the RHS, i.e. 〈(an − a) · ∇vn, ∇ϕ〉, tends to 0: we use ‖∇vn‖Lp(sprt ϕ) < ∞
for some p > 2 (Theorem 1) and convergence an → a in Lp′

(sprt ϕ) (use (24) and an ∈ (Hσ,ξ)).
The −5th term 〈a · (∇vn − ∇v), ∇ϕ〉, tends to 0 since vn → v weakly in W 1,2

0 (Ω).
The −4th term 〈(bn − b)vn, ∇ϕ〉 tends to 0 due to (20) and since vn are uniformly bounded on

Ω (‖vn‖L∞(Ω) ≤ 2‖gn‖∞ by the maximum principle, where, by our choice of gn, ‖gn‖∞ ≤ ‖g‖∞ <

∞).
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The −3rd term 〈b(vn−v), ∇ϕ〉 goes to 0 by |b| ∈ L1
loc and the Dominated Convergence Theorem,

using the uniform boundedness of vn on Ω and a.e. convergence vn → v, which follows from (49)
(possibly after passing to a subsequence using a diagonal argument).

The −2nd term 〈(div bn−div b)vn, ∇ϕ〉 goes to 0 by convergence (22) and since vn are uniformly
bounded on Ω.

The −1st term 〈(div b)(vn − v), ϕ〉 goes to 0 by div b ∈ L1
loc and, again, the Dominated Con-

vergence Theorem, using uniform boundedness of vn and a.e. convergence vn → v.

2) Next, in view of our assumptions on g and gn,

〈fn, ϕ〉 = 〈an · ∇gn, ∇ϕ〉 + 〈bngn, ∇ϕ〉
→ 〈f, ϕ〉

using the same argument as in 1), taking into account that, by (23) and the Rellich-Kondrashov
Theorem, we may assume that gn → g a.e. on Ω (of course, possibly after passing to a subsequence
of {gn})

Combining 1) and 2), we obtain that v is a weak solution to (47). Moreover, since vn are
(uniformly in n) bounded on Ω, so is v.

Now, we have un = vn + gn, so, in view of our conditions on gn and g,

un → u := v + g weakly in W 1,2
0 (Ω),

and so un → u strongly in L2
loc(Ω), possibly after passing to a subsequence. Further, since un are

bounded on Ω by the maximum principle, so is u. The last statement of the theorem now follows
from Theorem 1. �

7. Proof of Theorem 3

1. To establish uniqueness of the approximation solution, it suffices to show that solutions {vn}
to

{

(−∇ · an · ∇ + bn · ∇)vn = −fn

vn = 0 on ∂Ω,
(50)

where fn := −∇ · an · ∇gn + bn · ∇gn, constitute a Cauchy sequence in L2(Ω). (Then, clearly,
solutions un = vn + gn to (25) constitute a Cauchy sequence in L2(Ω).) In fact, subtracting the
equations for vn, vm and setting h := vn − vm, we obtain

−∇ · an · ∇h + bn · ∇h − ∇ · (an − am) · ∇vm + (bn − bm) · ∇vm = −fn + fm,

Then, multiplying the previous identity by h and integrating, we obtain

σ‖∇h‖2
2 − 1

2
〈div bn, h2〉 ≤ |〈(an − am) · ∇vm, ∇h〉| + |〈(bn − bm) · ∇vm, h〉|

+ |〈fn − fm, h〉|.
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Hence, using 1
2〈(div bn,+), h2〉 ≤ 1

2ν+‖∇h‖2
2 (by the assumption of the theorem), we have

(σ − ν+)‖∇h‖2 ≤ |〈(an − am) · ∇vm, ∇h〉| + |〈(bn − bm) · ∇vm, h〉|
+ |〈fn − fm, h〉|. (51)

Recall that, by our assumption, σ − ν+

2 > 0. Thus, our goal is to show that all terms in the
RHS of (51) tend to 0 as n, m → ∞; this would imply that {vm} is indeed a Cauchy sequence in
L2(Ω).

1) Let us get rid of the last term in the RHS of (51):

〈fn − fm, h〉 = 〈(an − am)〉 = 〈(an − am) · ∇gn, ∇h〉
+ 〈am · ∇(gn − gm), ∇h〉
+ 〈(bn − bm) · ∇gn, h〉
+ 〈bm · ∇(gn − gm), h〉.

All four terms in the RHS tends to 0 as n, m → ∞. This follows, upon applying Hölder’s
inequality, from the uniform boundedness of |∇h| in L2(Ω) (cf. (48) in the proof of Theorem 2)

and convergence ∇gn − ∇gm → 0 in [L
1+ǫ

ǫ
loc ]d, bn − bm → 0 in [Lp

loc]
d (p ≥ 1 + ǫ) as n, m → ∞.

2) We now treat the first two terms in the RHS of (51).

|〈(bn − bm) · ∇vm, h〉| ≤ ‖bn − bm‖p,Ω‖∇vm‖p′,Ω‖h‖∞,Ω

≤ ‖bn − bm‖p,Ω‖∇vm‖p′,Ω 2‖g‖∞.

If we can prove a uniform in n bound

‖∇vm‖p′,Ω ≤ C for some p′ > 2, (52)

it would imply that 〈(bn − bm) · ∇vm, h〉 → 0 as n, m → ∞, since bn − bm → 0 in [Lp
loc]

d by the

assumption of the theorem, with p (= p′

p′−1) < 2.
The estimate (52) is also what is needed to prove 〈(an −am) ·∇vm, ∇h〉 → 0, since an −am → 0

in Lq(Ω) for any q < ∞.
Thus, the proof of Theorem 3 will be completed once we prove (52).

2. Proof of (52). Write for brevity v = vm, a = am, b = bm (the constants below are
independent of m). We extend v to R

d by zero. It suffices to establish

(R/4)−d〈|∇v|21B R
4

(x)〉 ≤ C

[(

R−d〈|∇v| 2
θ 1BR

(x)〉
)θ

+ R−d〈k2〉
]

(53)

for generic constants θ > 1, C, for all R ≤ R0, x ∈ Ω, for some function k ∈ L2+ǫ
loc , ǫ > 0. Then

Gehring’s Lemma will yield (52).
Let us prove (53). If B R

2
(x) ⊂ Ω, then we put w := v − (v)BR(x), otherwise w := v. Without

loss of generality, x = 0. As in the proof of Proposition 1, we fix [0, 1]-valued smooth cut-off
functions {η = ηr1,r2}0<r1<r2<R on R

d such that

η =

{

1 in Br1 ,

0 in R
d − B̄r2,
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satisfying (27)-(29). We multiply equation −∇ · a · ∇w + b · ∇w = −f by wη, integrate over R
d,

and argue as in the proof of (31) to obtain

σ〈|∇w|2η〉 ≤ C1

r2 − r1
‖(∇w)1Br2

‖2‖w1Br2
‖2

+ C2

(

1 +
1

(r2 − r1)2

)

‖w1B R
2

‖2
2

+ |〈f, wη〉|. (54)

In comparison with (31), we now have an extra term |〈f, wη〉|. We deal with it as follows:

|〈f, wη〉| = |〈a · ∇g, (∇w)η + w∇η〉 + 〈b · ∇g, wη〉|

≤ α〈|∇w|2η〉 + α〈w2|∇η|〉 +
ξ2

4α
〈|∇g|2η〉 + γ〈|b|w2η〉 +

1
4γ

〈|b||∇g|2η〉 (α, γ > 0).

Now, applying b ∈ MF and substituting the result in (54), we obtain

(σ − α − γ)〈|∇w|2η〉 ≤ C1

r2 − r1
‖(∇w)1Br2

‖2‖w1Br2
‖2

+ C2

(

1 +
1

(r2 − r1)2

)

‖w1BR
‖2

2 + C3(α, γ)〈w2|∇η|〉 + C4(α, γ)‖g‖W 2,2(BR).

Hence, fixing α and γ sufficiently small so that σ − α − γ > 0, we obtain

〈|∇w|21r1〉 ≤ C ′
1

r2 − r1
‖(∇w)1Br2

‖2‖w1Br2
‖2

+ C ′
2

(

1 +
1

(r2 − r1)2

)

‖w1BR
‖2

2 + C ′
4(α, γ)‖g‖W 2,2(BR).

We now iterate this inequality in the same way as in the proof of Proposition 1, selecting

r1 := R − R

2n−1
, r2 := R − R

2n
, n = 1, 2, . . . ,

arriving, upon taking n → ∞, to

‖(∇w)1B R
4

‖2
2 ≤ C

[

1
R2

‖w1BR
‖2

2 + ‖g‖W 2,2(BR)

]

.

By the Sobolev-Poincaré inequality (or by the Sobolev inequality, if B R
2

(x) 6⊂ Ω), we have

‖(∇w)1B R
4

‖2
2 ≤ C

[

1
R2

‖(∇w)1BR
‖2

2d
d+2

+ ‖g‖W 2,2(BR)

]

,

so

R−d〈|∇w|21B R
4

〉 ≤ C

[

(

R−d〈|∇w| 2
θ 1BR

〉
)θ

+ R−d‖g‖W 2,2(BR)

]

, θ =
d + 2

d
.

Now Gehring’s Lemma yields (52) and thus ends the proof. �
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8. Further discussion

1. In Kinzebulatov-Semënov [KiS4], the authors show that applying the Lions variation ap-
proach for ∂t − ∆ + b · ∇ in the Bessel space W1/2,2 rather than L2 allows to enlarge the class
of admissible vector fields from the classical form-bounded vector fields Fδ to the weakly form-
bounded vector fields F1/2

δ ⊂ MFδ. (In fact, the class Fδ is dictated by the Lions approach ran
in L2.) Hence one obtains existence and uniqueness of weak solution to Cauchy problem for
∂t − ∆ + b · ∇, b ∈ F1/2

δ in W1/2,2. This result does not impose any assumptions on div b, but
requires δ < 1. Since having a divergence-free b one expects to have no constraints of the value
of δ except that it is finite, this result does not settle the question of a posteriori theory for (4),
even for a = I and weakly-form bounded b.

2. Requiring b ∈ F1/2

δ with δ sufficiently small (without any assumptions on div b) yields

W1+ 1
p

−,p-regularity theory of ∂t − ∆ + b · ∇, with the interval of admissible p expanding to ]1, ∞[
as δ ↓ 0, see [Ki, KiS1].

3. In absence of any assumptions on div b, De Giorgi’s method yields the Harnack inequality
for (2) when b ∈ Fδ, δ < σ2. In view of the previous comment, one can ask if De Giorgi’s method
also works for a = I and b ∈ F1/2

δ with weak form-bound δ < 1. One obstacle when working
directly with F1/2

δ is the need to handle non-local operators. Interestingly, a larger class MFδ

allows one to stay in the local setting at expense of imposing additional assumptions on div b.
(One practical outcome of this is that when one approximates b by bounded smooth vector fields
bn, e.g. in the proofs of Theorems 2 and 3, it is easier to control simultaneously the multiplicative
form-bound of bn and the form-bounds of div bn,±, than to control the weak form-bound of bn

and the form-bound of div bn,±.)

4. Both classes MFδ and BMO−1 are contained in a larger class: b ∈ [S ′]d such that

|〈bϕ, ϕ〉| ≤ δ‖∇ϕ‖2‖ϕ‖2 + cδ‖ϕ‖2
2 ∀ ϕ ∈ C∞

c . (55)

This class was considered in [KiS4] where it was proved that (55), together with the hypothesis
“div b in the Kato class of potentials with sufficiently small Kato norm”, provides a priori Gaussian
upper bound on the heat kernel of (4); an a priori Gaussian lower bound in [KiS4] is proved under
somewhat stronger assumption (16).

5. There is an analogy between the approximation uniqueness for Dirichlet problem for (2),
discussed in Theorem 3, and the uniqueness of “good solution” to Dirichlet problem for non-
divergence form elliptic equations studied by Krylov, Safonov and Nadirashvili among others, see
discussion in [Sa]. The analogy is not just formal: being able to treat a large class of drifts allows
one to put non-divergence form equations in divergence form (this was exploited e.g. in [KiS2] in
the study of SDEs with diffusion coefficients critical discontinuities and form-bounded drifts.)

6. The iteration procedure used in the proof of Caccioppoli’s inequality in Proposition 1 also
works for the corresponding parabolic equation ∂t − ∇ · a · ∇ + b · ∇ = 0 where the class MFδ is
now defined as the class of time-inhomogeneous vector fields b ∈ [L1

loc(R+ × R
d)]d such that for

a.e. t ∈ R+,

〈|b(t)|ϕ, ϕ〉 ≤ δ‖∇ϕ‖2‖ϕ‖2 + cδ‖ϕ‖2
2, ∀ ϕ ∈ W 1,2.
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(furthermore, constant cδ can be replaced by a function of time). We are interested, in particular,
in applications to weak well-posedness of SDEs, which require regularity estimates on solution to
Cauchy problem in R

d

(∂t − ∆ + b · ∇)u = |f|g, u(0) = 0,

where f ∈ MFµ, g ∈ C2
c , cf. [KiM, KiS5] for details. The proof of such estimates for multiplica-

tively form-bounded b, f presents its own set of difficulties, which we plan to address elsewhere.
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