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STRONG SOLUTIONS OF SDES WITH SINGULAR (FORM-BOUNDED)
DRIFT VIA ROCKNER-ZHAO APPROACH

D.KINZEBULATOV AND K.R.MADOU

ABSTRACT. We use the approach of Roéckner-Zhao to prove strong well-posedness for SDEs with
singular drift satisfying some minimal assumptions.

1. INTRODUCTION AND RESULT

1. Consider stochastic differential equation (SDE)
t
Xf:a:%—/ b(s,XJ)ds+ Wy, 0<t<T, (1)
0

where € RY, d > 3, b: R — R? is a Borel measurable vector field (drift), and {W,; }o<i<7 is
a Brownian motion on a complete filtered probability space (€2, {F; }o<i<7, F, P).

One of the central problems in the theory of diffusion processes is the problem of strong
well-posedness of SDE (Il) under minimal assumptions on a locally unbounded drift b, for every
starting point 2 € R? The following are the milestone results. Veretennikov [V] was first who
proved strong well-posedness of (I)) for discontinuous drifts b € L>(R x R%). Krylov-Réckner
[KxR] established strong well-posedness assuming that the drift in the sub-critical Ladyzhenskaya-
Prodi-Serrin class

d 2
b € LP(R, LY(RY), oL 2 og>d (2)

Beck-Flandoli-Gubinelli-Maurelli established strong existence and uniqueness for drifts
in the critical Ladyzhenskaya-Prodi-Serrin class

b € LP(R, LY(RY)), g + % <1, p>2, q>d, (LPS)
but only for a.e.starting point z € R% A major step forward was made recently by Rockner-
Zhao [RZ] who established strong existence and uniqueness for (Il) with drift b in the critical
Ladyzhenskaya-Prodi-Serrin class (LPS) (p > 2) for every x € RY. Another major advancement
is the series of papers where Krylov proved strong well-posedness of (), for
every z € RY, for |b| € L? and beyond, in a large Morrey class of time-inhomogeneous drifts (in
terms of the Morrey norm (), one has to have ||b||rs,, s > g V 2, sufficiently small).
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The method of Rockner-Zhao is different from the methods used in the other cited papers, and
is based on a relative compactness criterion for random fields on the Wiener-Sobolev space. Their
proof of uniqueness uses Cherny’s theorem [C] (strong existence + weak uniqueness = strong
uniqueness). The method of [RZ] is a far-reaching strengthening of the methods of Meyer-Brandis
and Proske [MP], Mohammed-Nilsen-Proske [MNP] (for b € L>°(R x R%)) and Rezakhanlou [R]
(for b in (2l)). We refer again to [RZ] for a comprehensive survey of these and other important
results on strong well-posedness of SDE ([TI).

We show in this paper that the method of Réckner-Zhao works, with few modifications, for a
larger class of form-bounded drifts. Together with the weak uniqueness result from [KM], their
method yields strong well-posedness of SDE (Il) with form-bounded drift (Theorem [).

Definition. A locally square integrable vector field b : R — R? is said to be form-bounded if
there exist a constant § > 0 such that for a.e.t € R the following quadratic form inequality holds:

Io(t, )el3 < dlIVell3 + gs()lel3 (3)
for all ¢ € W12, for some function 0 < g5 € LL _(R).

Throughout the paper, ||-||, denotes the norm in the Lebesgue space LP := LP(R?, dx); WP =
WLP(RY, dz) is the Sobolev space.

Condition () will be written as b € Fg. This is essentially the largest class of vector fields b,
defined in terms of |b|, that provides an L? theory of divergence-form operator —V -a-V +b- V.
See [K2] for detailed discussion.

EXAMPLE 1. The critical Ladyzhenskaya-Prodi-Serrin class (LPS) is contained in the class of
form-bounded vector fields. For ¢ = d and p = oo this is an immediate consequence of the
Sobolev embedding theorem:

b2, )llz < [1b(llalelZe < Cslib(t Il Veels,

so § = Cgsupep ||b(t,-)]|? and gs = 0 (for ¢ > d and p < oo using, additionally, a simple
interpolation argument, in which case g is in general non-zero, see e.g. [KM] for the proof).
Moreover, if e.g. b € Co(R, L%(R%)), then form-bound § can be chosen arbitrarily small at expense
of increasing gs.

EXAMPLE 2. Another subclass of (3], which is considerably larger than L°°(R, L%), consists of

vector fields b such that b(t,-) belongs, uniformly in ¢ € R, to the scaling-invariant Morrey class
Moy .. That is,

1
2+4e€
Suﬂlg 16, )||rrpy. = sup  sup 7’( ]b(t,-)]2+€da:> < 00 (4)
te

teR r>0,z€R? | By | Br(z)

where B,.(x) is the ball of radius r centered at z, and ¢ is fixed arbitrarily small. Then, by a
result in [E] (see also [CF]),

beFs with § = Csup||b(t, )| re,. and gs =0
teR
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for appropriate constant C'. Note that Morrey M becomes larger as s becomes smaller.

EXAMPLE 3. Morrey class () contains vector fields b with |[b]| oo (, La.w) < 00.

Recall that the norm in the weak L% space is defined as

1A aw = sups|{z € R?: |h(z)| > s}/
5>0
(Clearly, L% C L% but not vice versa, e.g. h(z) = |z|~! is in L** but not in L?.)
Let us add that the attracting drift
d—2
b(z) = —T\/g\x]_%,

which is containedﬂ in Fs5 with g5 = 0 (and is contained in Examples 2 and 3, but not in Example
1) has critical singularity at the origin. That is, if 6 > 0 is too large, then SDE (1) with starting
point x = 0 does not even have a weak solution. But, if  is sufficiently small, then this SDE is
strongly well-posed, see Theorem [Il (In fact, the critical value of ¢ for weak solvability, at least
in high dimensions, is § = 4, see [KS].)

An equivalent form of the a.e. inequality (3]) is: for every —oco < t1 <ty < 00,
to t2 t2
[ ol <5 [ IveiEde+ [ osolvol
1 1 1
for all ¢ € L®(R, Wh2).

The class of form-bounded drifts is well known in the literature on parabolic equations, see
Seménov [S] and references therein.

2. Our goal here is to prove a principal result: the SDE ([{l) with drift b having form-bounded
singularities is strongly well-posed. So, we will require in this paper, for simplicity,

(A) b has compact support and gs = 0 (the last assumption can be removed, see Remark [2)).
Fix T > 0.
Theorem 1. Let d > 3. Assume that b € Fs and satisfies (A). Then, provided that form-bound
§ is sufficiently small, for every x € RY, SDE () has a strong solution X§¥. This strong solution

satisfies the following Krylov-type bounds:
1) For a given q €]d, 5_%[ and any vector field g € Fs,, 61 < oo,

T 2
B [ Ighl(r X5, )i < cllelhf# fagoy,un  for all b€ C(0.T) x R (5)
2) For a given p > %, there exists constant C' such that
T
E /O h(r, XE 7| < Cllhllpngoixray  for all h € Co([0,T] x RY), (6)

Land not contained in any Fy with §' < § regardless of the choice of g5
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Solution X is unique among strong solutions to ([Il) that satisfy (@) for some q €]d, 5_%[ with
g =1 and with g =b.

If, in addition to our hypothesis on b, one has |b| € L5+ for some € > 0, then X¥ is unique
among strong solutions to (L)) that satisfy (G).

The proof of Theorem [T] follows closely [RZ], except the proof of Proposition [ (this is Lemma
4.2(a) in [RZ]). In [RZ], this result is proved using Sobolev regularity estimates for solutions of
parabolic equations with distributional right-hand side (these estimates, developing earlier work
of Krylov, are quite strong and are interesting on their own). We prove Proposition [ using
a simpler argument which uses weaker estimates on solutions of parabolic equations, and thus
allows to treat a larger class of form-bounded drifts. We also use some estimates from paper [KM]
that deals with weak well-posedness of SDE (Il) with drift b € F.

It should be added that for the drifts b € C([0,T],L%) or b € (LPS) (2 < p < 00) considered
in [RZ] the form-bound J can be chosen arbitrarily small. In other words, replacing drift b by cb,
for arbitrarily large constant ¢, does not affect strong well-posedness of SDE (dl). The latter is
important in [RZ] since they apply their strong well-posedness result to Navier-Stokes equations.

One can also prove strong well-posedness of SDE (1) with form-bounded drift b = b(z) using
the approach of [BEGM], but only for a.e. z € R%, see [KSS].

REMARK 1 (On weak solutions). Weak existence and uniqueness for (1) is known to hold for
larger classes of drifts than the class Fgs, see [KS2] dealing with weakly form-bounded drifts
(time-homogeneous case) and [K| dealing with time-inhomogeneous drifts in essentially the largest
possible Morrey class. See also [RZ2]. In a recent paper [Kr5], Krylov proved weak existence and
uniqueness for SDEs with VMO diffusion coefficients and time-inhomogeneous drift in a large
Morrey class containing (LPS) (in terms of Example [2, this is the Morrey class with exponent
2 + ¢ replaced by % + €; note that in dimension d = 3 Krylov’s Morrey class is larger than Fj).
We refer to [RZ2] for a survey of the literature on weak solutions of ().

2. PROOF OF THEOREM [I]

2.1. Notations. Set An(T(],Tl) = {(tl, PN ,tn) | TO < t1 <. < tn < Tl} and put An(T) =
AL0,T).

Let V; := 0., . = (21,...,24) € R%

Let Erx, denote conditional expectation with respect to o-algebra F;.

Put

(f.9)=(fg) = /Rd fgdx.
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2.2. Some estimates. Let f; € L2 (R%*!) (i > 1) be form-bounded:

loc
1£:(t,)ell3 < vIIVel3 (7)
for some v > 0. Also, in this section, f; are smooth. Additionally, let us assume that:
(A”) all f; have compact supports contained in R x B(0) for a fixed R > 0 (independent of ).

In this subsection, b € F; is additionally assumed to be smooth. However, the constants in the
estimates below will not depend on smoothness or boundedness of b and f;.

By the classical theory, there exists a unique strong solution X7 to

t
X7 :az+/ b(r, XZ)dr + W
0

Let 0<Tp <Ty <T.

Proposition 1. There exist positive constants Cy, K such that, for everyn > 1,

2
L.

dx < CoKn(Tl — To),
where 1 < a; < d (i > 1). Moreover, K can be made as small as needed by assuming that
form-bounds § and v in [B)), (@) are sufficiently small.

n

E/ I Ve filts, XE)dty . .. dty,
An(To,T1) j=1

Proof. Fix n, put u,4+1 = 1 and define consecutively
gk:(vakfk)uk—l—la kzlu"'7n7
where uy, solves the terminal-value problem on [Tp, 7]
1
Opuy, + §Auk +b-Vur+gr =0, ux(Ty)=0. (8)

Then, repeating the argument in [RZ, Proof of Lemma 4.2],

n

Ez, / I Ve filti, XE)dty . . . dty, = ui (T, X7,).
An(To,T1) j=1
Again as in [RZ], let U be the solution to the initial-value problem on [0, T}],
1
E?tU—aAU—B-VU—G:Q U(0) =0, 9)

where
B(t,-) = b(Ty —t,) o1, —1)(t) + b(t + To — T, ) Ly, —1, 1y (1),
G(t,-) = g1(Th —t,-) Lo —13)(2)-
One has U(t, ) = uy (11 — t,-), t € [0, 11 — Tp]. Further, V(t,x) := U(t +T1 — Tp) solves on [0, Tp]

1
8tV—§AV—b'VV:0, V(O, ) :U(Tl—T(),') :ul(To,-).
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Therefore,

2
dx

I

- / Buy (Ty, X2,) 2di = / IV (T, 2)Pde = |U(T1, )2
R4 R4

E/ I Ve filts, XE)dty ... . dty,
A (TO7T1) 1

We estimate ||U(Ty,-)||3 in three steps:
1. We multiply equation (@) by U and integrate over [0,T1] x R?, arriving at

T Ty
%(Uz(Tl,-)>—0+%/0 (IVU|2>ds:/O (B-VU,U)ds (10)

Ty
+/ (91(Th — 5,-) 10,1 —13) (), U(s))ds.
0

The first term in the RHS of (I0) is estimated, using the quadratic inequality ac < 2—\1/3a2 + @(32

and the form-boundedness b € F, as follows:

/0T1<B VU, U)ds < —/ (B%,U%)d \/5/ (IVU|*)ds

< x/S/ (IVU|?)ds. (11)
0

The second term in the RHS of (I0):

T T
/0 (91(Ty — 5, L0110y (), U(s))ds = /0 (Vo (T4 — 5. 7), un(Ts — 8, V0.7, -7y (8)U (5)) s
T
= —/0 (fi(T1 = 5,), (Vayua(Ty = 5,-)) Lo, —1] ()U (8, 7)) ds

T
— /0 <f1(T1 — S, -), UQ(Tl — S, ')1[0,T1—T0](3)Va1U(37 )>d8

(we are applying quadratic inequality twice; fix some &, § > 0)

T T
<a/ ATy — 5, )U%(s, >>ds+—/ (Vayua(Ty — 5.) P07, 1) (5)) s

T

T
<o [ i W3(Ty — 5, Vo, }<>>ds+£ (IVar U(s, ) )ds.
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Therefore, taking into account the indicator function of [0, T} —Tp], and using the form-boundedness
assumption (7)) on f;, we obtain

n n 2 2 1 n 2
| @@ stV s < ¢ [T UHT =50 0hds + [T s

To
n 2 2 1 n 2
8 [ e s+ 5 [ (VLT (12
1 " Nk L " us(s,-)|*)ds
<(ovt35) [ 090G+ (5 1) [T s

Thus, we obtain from (I0]):

@)+ (5-vi-ev—5) [ HvU(s)Pyds < (wrz) [ T (Vs (s) ) ds.

Now, selecting ¢ and (8 large, and requiring the form-bounds § and v to be sufficiently small, we

arrive at

T1 Tl
AT+ [ IVUEP)s < Co [ (Vus(s)P)ds (13)
0 Ty
for constants 0 < Cy < (' independent of smoothness or boundedness of b and f;. Moreover, it
is clear that we can make g—f arbitrarily small by selecting d and v even smaller.

2. Now, we repeat this procedure for uy in place of U. That is, we multiply equation (&) (for
k = 2) by us and integrate over [Tp, T1] x R? to obtain

1 9 1 T 9 Ty T

S + 5 [ (TusPyds = [ (b Vusun)as + [ gasus)ds.

2 2 )z, Ty To
We estimate the first term in the RHS as in (1), using quadratic inequality and the assumption
b € F5. The second term in the RHS:

T T
/(92,u2>d8:/ (Vay fo)us, ug)ds

To TO

T T
< / (o (Ve tiz)us)ds — / (Fa 13V oy uz)ds

To To

T1 1 Tl
<c [ Uhadds+ o [ (Tasuals ) Pds
To 4e To
oo 1
+ 4 ,uz)ds + —
T <f2 3> 4/8 T
(we are using fo € F))

< e+ 1) [ (vusRas + (o + L) [ (Fus(s)as,
48) Jr, de ) 1,

T
(IVayual?)ds
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as in the previous step. Thus, we arrive at
Ty C T
/ (IVuz)ds < —2/ (| Vus|)ds.
To i To

If n > 3, we repeat this n — 3 more times:
Ty C n—2 ,rT
/ ([Vua|2)ds < (—2) / ([ ?)ds
To 1 To

U()) < @(%)H /Tl<!Vun]2>ds.

To

and so, in view of (I3]),

3. Finally, we estimate f:,r{;l ([Vun(s)[?)ds. Arguing as above, we have (recall that u,,1 = 1)

Ty T
/ (Vun(s)P)ds < Cs / (Vo (5, ), tn(s, ))ds

To To
T

= —03/ <fn(87 ')7v04nun(s")>d8

To
(we are applying quadratic inequality)

T T
<o [ s+ [V )P)ds

To To
(we are using assumption (A’) that all f; have support in Bg(0),

T T
and apply (7)) to / (f2p*)ds > / (f3)ds for a smooth ¢ > 1B,(0))
T

1
0 To
I )
<G =)+ 5 [ (Tuals) P
To
Thus, 3 f£1(|Vun(s)|2>ds < C5(Th — Tp). Combining this with the previous estimate, we obtain

(UX(Ty)) < CQ(%)n_22C5(T1 — Tp), which gives the required estimate with K := % O

REMARK 2. Let us comment on what happens if in Theorem [Il we assume that g5 is non-zero.
We have to assume that
0<gse LLF(R), fora fixed e > 0.

loc

(It should be added that this ¢ > 0 does not allow to include completely the critical Ladyzhenskaya-
Prodi-Serrin class (LPS]) even with p > 2 there, as is assumed in [RZ]. It does include, however,
the case that interests us the most: p = 0o, ¢ = d. It also includes with case p > 2, ¢ = o0).

Only the proof of Proposition [l has to be changed, where we assume in (7) 0 < g, € Li.-°(R).
Then the estimate of Proposition [Il changes to

J.

2

E/ T Ve filti, X2 )dty ... dtn| dz < CHE™(Ty — Tp) T, (14)
An(To,T1) j=1
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which does not affect the validity of the result of the proof. The proof of (I4]) goes as follows. Put
F(t) =\ fg [g5(s) + gu(s)]ds, where X is to be fixed sufficiently large (depending on the values
of 6 and v). We multiply equation (@) for U by e, obtaining

1
(e FU)+ Fle U — 5Ae—FU —-B-VefU -G =0, U(®0)=0,

where e F'G = (0o, f1(T1 — ) Loy -1 (t)e FOuy(Ty —t,-). After multiplying the previous

equation by U, integrating and fixing A > 2%/3 + € + 3, one sees that the term

T1 Tl
/ (Fle FU%)ds = )\/ ((gs + gv)e” FU?)ds
0 0

will absorb the “new” terms ﬁ foTl (gse T'U?)ds and (¢ + B) fOTl (g,e FU?)ds that will now
appear in (II]) and (IZ). This will give us, instead of (I3]), the estimate:

T: T -
(e M U2(1y)) + Cl/ (e F|IVU|?)ds < Cy (e F|Vuy(s)|?)ds,
0 To

where F(t) := F(T} — s).

In turn, the multiple e F@

factors through all equations (8) with the same effect of absorbing
the “new” terms containing gs and g,, that is, we get

Ty - 02 T -
/ <e_F]Vu2\2>ds < —/ (e_F\VU3]2>ds,
To Ch To

and so on:

T . Cs n—2 pT .
/ (le™F'Vug)?)ds < (—) / (e ' |Vuy,|?)ds.

To Gy To

Finally, e~F does not affect the estimate on Uy, only the constant C5. Thus, we arrive at (I4])
with the same constant K that does not depend on gs or g,.

For a given vector field Y = (V;)L, : R¥ — R™, denote

Vs VoY1 ... Vi
VY =V, Y (x) = e . (15)
V1Y, VoY, ... V.Y,

Proposition 2. For every r > 1, there exist constants Ky, Ko (independent of smoothness or
boundedness of b) such that

() IVXF — Il 2rqa () < Kit? for all0 <t < T;
(i7) | DsXF — I|| or g, pr(cy) < K1 (t — 8)3 for a.e.s €[0,T) and 0 < s <t < T;

(#0) || Ds Xy — Do X{|| L2r (e, Lr()) < Kals — S/|4_1T for a.e.s,8 € [0,T] and 0 < s,8' <t <T.
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Proof. The proof repeats [RZ, Proof of Prop. 4.1] essentially word in word. We give an outline of
the proof of (7). Since b is bounded and smooth, one has

t
VX{ —I:/ Vb(s, X2 )VXZds.
0

The goal is to iterate this identity, obtaining an expression for the left-hand side that one can

control:

VX - [_Z A(t)HVbt,,Xt)dtl Lty
n i=1

SO
00

I Vo(t, XP)dt: ... dty,

VXY = Il porme,r()) <
An(t) =1

(16)

L2r(R4,L7(£2))
Let us estimate

HVb ti, X2 )dt1 ... dtn| ot L)) = U [E(
An(t) =1 R An(t)

r42 T
HVb ti, X7 )dty .. dtn> } da:]

=1

First, note that by subdividing A, (t) x -+ x Ay, (t) (r times) into sub-simplexes, and recalling
definition (I3l), one can represent

/ HVb ti, X2 )dty ... dty)" (17)
An(t)

=1

as a sum of at most rn terms of the form

/ H v71 b/Bl t17 ) . V'anbﬁrn (t"‘n’ )dtl d TTL7 (18)
Arn(t)

SO

I / H Vb(t;, thi)dtl .. dtn||L2r(Rd7Lr(Q))
=1
n 2
/Rd ZE/ I Voibs (1, XE) .. Vs, ba,, (ten, X2 dty dtm} dm}
By

Arn(t) j=1
<y [
Byy

where both sums are finite (the first sum comes from the coordinate representation of the product

1
2r

33

T

)

E / Hv%bgl (t1, X7) oo Vb, (b, XE)dty . di ]
n(t L2(R4)

of n matrices Vb(t;, X{7), the second sum contains r"” terms). Finally, applying Proposition [T,
one obtains

1
”/ H Vb tht )dtl dthL2r(Rd’L'r(Q)) < (CﬁT)nC{ Knt%.

Now, recalling that K can be made as small as needed by assuming that § is sufficiently small,
one has || fAn(t) [[ie1 VO(ti, XT)dt ... dty| por e, 1)) < C’é‘t% for a positive constant Cg < 1
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Returning to (I6), one obtains

1

cntr,

R

VXY = Il p2r e, Lr(a)) <

n=1

as needed.
The Malliavin derivative Dy X[ satisfies (see e.g. [B])

t
D XF —1= / Vb(r, X*)D X dr,
S

so one can iterate this identity and estimate D; X[ — I in the same way as above, which yields
(7i). The latter yields (i), see [RZ, Proof of Prop.4.1] for details. O

2.3. Proof of Theorem [Il The proof repeats the argument in [RZ]. However, since we will
have to use some estimates and some convergence results established in [KM], we included the
details for the ease of the reader.

We consider a general b € F as in the assumptions of the theorem. Let us fix an approximation
{by} € C®(RI* RY) N L®°(RIT RY) of b:

bm — b in L2 (R RY) as m — oo (19)

and for all t € R
1bm ()0 ll3 < 811V ell3 (20)

EXAMPLE. It is easy to show that the following b,,, with €,, | 0 sufficiently rapidly and ¢,, 1 1
sufficiently slow, satisfy (I9), (20)).

b = cmEITY(1,,D),

Em

where 1,, is the indicator of {(¢,z) € [0,T] x R? | |b(t,z)| < m}, EM*? is the Friedrichs mollifier
on R x R%, see details e.g. in [KM]. Note that, by selecting &, | 0 rapidly, one can treat b, as
essentially a cutoff of b.

(Of course, since by our assumption b in this paper has compact support, in (I9]) one has
convergence in L2(R%! R9).)

Let f € F, be bounded and smooth with function g, = 0. (Below we will need f = b,,, in
which case v = ¢, or f = by, — b, in which case v = 2§.) Let us emphasize that the constants in
the estimates below do not depend on n or boundedness or smoothness of f. They will depend
on the dimension d, T and form-bounds ¢ and v.

Since b,, are bounded and smooth, by the classical theory there exists a unique continuous
random field X™ : Ay(T) x R? x Q — R such that

t
X;’tm:x—F/bm(s,Xifl)dr+Wt—Ws, 0<s<t<T, zeR%L (21)
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By It6’s formula, for all m,k=1,2,..., s <t1 <ty <T,
to

to
(1, XY = — / 5, X5 dt 4 [ Vi (t, X5 W,

t1 t1

where u,,(t), s < t <ty is the classical solution to

1
Oy, + §Aum + by, - Vuy, = —|f],  um(te) =0.

The following estimates on X} and u,, are valid:
1)
to
sup sup E[/ If(t, XsM)ldt | Fi, ] < Clta —t1).

m gcRd t1

Indeed,

t2
EU \f(t,Xg%m)ydt\ftl} _ E[um(tl,xg;;”) | Fi

t1
< Jum (1) lloo

(we are applying [KM]| Cor. 6.4])

< C"sup [Ifv/pzll L2ty 10),12)5
2€Z4

where, recall, p(z) = (1+x|z[?)~% with § > ¢ and x > 0 fixed sufficiently small, p(z) = p(z — 2).
In turn, since f € F,,,

v [ |Vp.|?
”f\/sz%ﬂ([tl,tz],L?) < —/ (‘ |
4 t1 Pz

14
< (b2 - t)IIVo/v/ol3

(we are using [Vp| < 6v/rp, [|\/p]l2 < %)
< C"(ty —t).

Vdt

which gives us 1).

2) As a consequence of estimate 1), one has, e.g. for every integer r > 1,

to
/ (1, X7t

t1

T

sup sup E

m reRd

< Gty —t1)",

see proof in [ZZl Cor.3.5] (first, one represents E ’ fttf \f(t,X;’tm)]dt’T as the expectation of a
repeated integral over A(ty,ts), cf. transition from (7)) to (I8]), and then uses 1) r times).

3) It follows from 2) (upon selecting f = b,,) that

t2
/ bon(t, X5

t1
< C(tQ - tl)r.

T

E‘Xx’m — Xx7m’T <CE + C’Wtz — Wh’T

s,t2 s,t1
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4) In particular,

sup sup sup E| X" < oo.
m 0<s<I<T peRd ’

5) One has (the Sobolev norm is in the z variable)

sup sup sup E/ V. X" "dx < oo.
m 0<s<t<TyeRd  JBi(y) ’

Indeed,

1
2
E/ ]Vijgm\rdxg(/ (E]Vijgm\r)zdx> B (y)|2
Bi(y) Bi(y)

= al| VX Z2r (81 (), L))
so it remains to apply Proposition 2](7).

Let now r > d. Combining 4) and 5), and using the Sobolev embedding theorem, one obtains
(the Holder norm is in the z variable)

sup sup supEHXi;mH

_d < o0
m 0<s<t<T yeRd C'mF(Bi(y)) ’

and so one arrives at:
6) Forall 0 < s <t <T, z,y € R? with |z —y| <1,
E|Xx’m _ Xy7m|7“ < C|$ _ y|r—d’ r>d.

s,ta s,t1
7) Repeating the proof from [RZ] (which is a combination of 3) and 6), by means of the Markov

property and the independence of X" and szif?), one arrives at

E|XT - XN <Clsa—51)" 0<si<sp<t.

s1,t

Estimates 3), 6), 7) combined yield, for » > d,
E‘Xx’m —Xxum ‘T < C(‘tg — tl‘r + ]a: — y[’"_d + ‘82 — Slfr_d) (22)

s1,t1 52,62
for all (s;,t;) € Ao(T), i =1,2.

Now comes the final stage in the approach of Rockner-Zhao. Proposition [27)-(4ii) verifies
conditions of [RZ, Lemma 3.1}, i.e. of the relative compactness criterion for random fields on the
Wiener-Sobolev space (see the discussion of history of this type of results in [RZ]). This, and a
standard diagonal argument, allow to conclude that there is a subsequence of {Xi;m} (without
loss of generality, still denoted by {X?%m ) and a countable subset D of R? such that

X5 = XS, in L*(Q) asm — oo

for all (s,t) € Q% x Ay(T), x € D. Moreover, in view of 4), one has X7/ — X7, in L"(Q), r > 1.
Now (22) yields for r > d, upon applying Fatou’s lemma, that

E|XZ, — XV "< C(ta—ta]" + |z —y["" 4+ |s2 — 51| (23)

s1,t1
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for all (s;,t;) € Q% x Ao(T), i = 1,2, z,y € D. Kolmogorov-Chentsov theorem (after selecting
r > d even larger) allows to extend X, to a continuous random field, and yields, together with
the equicontinuity estimate (22I),

x,m
Xy, — X7, P-as.asm — o0
k) k)

for all (s,t) € Ag(T), v € RZ
By [KM, Cor. 6.4],

{/ IF(7, X |d7} <G gy 1fv/pzll L2 ((s,8,L2) 24
ze

(cf. proof of 1) above), and so

Bl [ i xzoier] < sup 7l 0 (25)

where, recall, f € F, is bounded and smooth, but the constant C,. does not depend on smoothness
of bundedness of f. Using Fatou’s lemma, one can extend (24)) to all f € F,, i.e. not necessarily
smooth. (We will be selecting e.g. f = b — by, in which case v = 24.)

Now, to show that X7 is a strong solution to (2I]), it remains to show that f; b (7, X3 dT —
[ o(r, X7 )dr in L*(Q). Indeed,

E <E

t . .
/ (b (T, sz,’Tm)dT—/ b(r, X5 . )dr / (b, — i) (1, X2 dr

t t
E/ bk(T,X;U”;n)dT—/ bk(T,Xg’T)dT

t
+E/ (bk—b)(T,XiT)dT =11 + I+ Is.

By @4), I1 < sup,ezal|(bm — bi)y/P=ll12(js,,02) — 0 as m, k — oo, where the L? norm tends to
zero since by our assumption b has compact support. Let us fix k sufficiently large. By (25),
Is — 0 as m — oo. Finally, Iy — 0 as m — oo (for k fixed above) by the Dominated convergence
theorem. This yields that XY, is a strong solution to (Il). This strong solution, clearly, satisfies
().

Finally, regarding uniqueness of X, in the class of strong solutions satisfying Krylov estimate
([@). The proof in [RZ] is based on Cherny’s theorem [C] (strong existence + weak uniqueness
= strong uniqueness) and the result from [RZ2] on the uniqueness of weak solution to SDE ()
in the class of solutions satisfying a Krylov-type bound. In our setting, it suffices to use instead
the weak uniqueness result from [KM], valid for form-bounded drifts. This yields the uniqueness
result in Theorem [I] within the class (Bl); regarding the uniqueness within the class (@), one needs
to apply the weak uniqueness result from [K].

O
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