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STRONG SOLUTIONS OF SDES WITH SINGULAR (FORM-BOUNDED)
DRIFT VIA RÖCKNER-ZHAO APPROACH

D. KINZEBULATOV AND K.R. MADOU

Abstract. We use the approach of Röckner-Zhao to prove strong well-posedness for SDEs with

singular drift satisfying some minimal assumptions.

1. Introduction and result

1. Consider stochastic differential equation (SDE)

Xx
t = x+

ˆ t

0
b(s,Xx

s )ds+Wt, 0 ≤ t ≤ T, (1)

where x ∈ Rd, d ≥ 3, b : Rd+1 → Rd is a Borel measurable vector field (drift), and {Wt}0≤t≤T is

a Brownian motion on a complete filtered probability space (Ω, {Ft}0≤t≤T ,F ,P).

One of the central problems in the theory of diffusion processes is the problem of strong

well-posedness of SDE (1) under minimal assumptions on a locally unbounded drift b, for every

starting point x ∈ Rd. The following are the milestone results. Veretennikov [V] was first who

proved strong well-posedness of (1) for discontinuous drifts b ∈ L∞(R × Rd). Krylov-Röckner

[KrR] established strong well-posedness assuming that the drift in the sub-critical Ladyzhenskaya-

Prodi-Serrin class

b ∈ Lp(R, Lq(Rd)),
d

q
+

2

p
< 1, p > 2, q > d. (2)

Beck-Flandoli-Gubinelli-Maurelli [BFGM] established strong existence and uniqueness for drifts

in the critical Ladyzhenskaya-Prodi-Serrin class

b ∈ Lp(R, Lq(Rd)),
d

q
+

2

p
≤ 1, p ≥ 2, q ≥ d, (LPS)

but only for a.e. starting point x ∈ Rd. A major step forward was made recently by Röckner-

Zhao [RZ] who established strong existence and uniqueness for (1) with drift b in the critical

Ladyzhenskaya-Prodi-Serrin class (LPS) (p > 2) for every x ∈ Rd. Another major advancement

is the series of papers [Kr1, Kr2, Kr3, Kr4] where Krylov proved strong well-posedness of (1), for

every x ∈ Rd, for |b| ∈ Ld and beyond, in a large Morrey class of time-inhomogeneous drifts (in

terms of the Morrey norm (4), one has to have ‖b‖Ms , s > d
2 ∨ 2, sufficiently small).
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The method of Röckner-Zhao is different from the methods used in the other cited papers, and

is based on a relative compactness criterion for random fields on the Wiener-Sobolev space. Their

proof of uniqueness uses Cherny’s theorem [C] (strong existence + weak uniqueness ⇒ strong

uniqueness). The method of [RZ] is a far-reaching strengthening of the methods of Meyer-Brandis

and Proske [MP], Mohammed-Nilsen-Proske [MNP] (for b ∈ L∞(R × Rd)) and Rezakhanlou [R]

(for b in (2)). We refer again to [RZ] for a comprehensive survey of these and other important

results on strong well-posedness of SDE (1).

We show in this paper that the method of Röckner-Zhao works, with few modifications, for a

larger class of form-bounded drifts. Together with the weak uniqueness result from [KM], their

method yields strong well-posedness of SDE (1) with form-bounded drift (Theorem 1).

Definition. A locally square integrable vector field b : Rd+1 → Rd is said to be form-bounded if

there exist a constant δ > 0 such that for a.e. t ∈ R the following quadratic form inequality holds:

‖b(t, ·)ϕ‖2
2 ≤ δ‖∇ϕ‖2

2 + gδ(t)‖ϕ‖2
2 (3)

for all ϕ ∈ W 1,2, for some function 0 ≤ gδ ∈ L1
loc(R).

Throughout the paper, ‖·‖p denotes the norm in the Lebesgue space Lp := Lp(Rd, dx); W 1,p :=

W 1,p(Rd, dx) is the Sobolev space.

Condition (3) will be written as b ∈ Fδ. This is essentially the largest class of vector fields b,

defined in terms of |b|, that provides an L2 theory of divergence-form operator −∇ · a · ∇ + b · ∇.

See [K2] for detailed discussion.

Example 1. The critical Ladyzhenskaya-Prodi-Serrin class (LPS) is contained in the class of

form-bounded vector fields. For q = d and p = ∞ this is an immediate consequence of the

Sobolev embedding theorem:

‖b(t, ·)ϕ‖2
2 ≤ ‖b(t, ·)‖2

d‖ϕ‖2
2d

d−2

≤ CS‖b(t, ·)‖2
d‖∇ϕ‖2

2,

so δ = CS supt∈R ‖b(t, ·)‖2
d and gδ = 0 (for q > d and p < ∞ using, additionally, a simple

interpolation argument, in which case g is in general non-zero, see e.g. [KM] for the proof).

Moreover, if e.g. b ∈ Cc(R, L
d(Rd)), then form-bound δ can be chosen arbitrarily small at expense

of increasing gδ.

Example 2. Another subclass of (3), which is considerably larger than L∞(R, Ld), consists of

vector fields b such that b(t, ·) belongs, uniformly in t ∈ R, to the scaling-invariant Morrey class

M2+ε. That is,

sup
t∈R

‖b(t, ·)‖M2+ε = sup
t∈R

sup
r>0,x∈Rd

r

(

1

|Br|

ˆ

Br(x)
|b(t, ·)|2+εdx

)

1

2+ε

< ∞ (4)

where Br(x) is the ball of radius r centered at x, and ε is fixed arbitrarily small. Then, by a

result in [F] (see also [CFr]),

b ∈ Fδ with δ = C sup
t∈R

‖b(t, ·)‖M2+ε and gδ = 0
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for appropriate constant C. Note that Morrey Ms becomes larger as s becomes smaller.

Example 3. Morrey class (4) contains vector fields b with ‖b‖L∞(R,Ld,w) < ∞.

Recall that the norm in the weak Ld space is defined as

‖h‖Ld,w := sup
s>0

s|{x ∈ Rd : |h(x)| > s}|1/d.

(Clearly, Ld ⊂ Ld,w, but not vice versa, e.g.h(x) = |x|−1 is in Ld,w but not in Ld.)

Let us add that the attracting drift

b(x) = −d− 2

2

√
δ|x|−2x,

which is contained1 in Fδ with gδ = 0 (and is contained in Examples 2 and 3, but not in Example

1) has critical singularity at the origin. That is, if δ > 0 is too large, then SDE (1) with starting

point x = 0 does not even have a weak solution. But, if δ is sufficiently small, then this SDE is

strongly well-posed, see Theorem 1. (In fact, the critical value of δ for weak solvability, at least

in high dimensions, is δ = 4, see [KS].)

An equivalent form of the a.e. inequality (3) is: for every −∞ < t1 < t2 < ∞,
ˆ t2

t1

‖b(t)ψ(t)‖2
2dt ≤ δ

ˆ t2

t1

‖∇ψ(t)‖2
2dt +

ˆ t2

t1

gδ(t)‖ψ(t)‖2
2dt

for all ψ ∈ L∞(R,W 1,2).

The class of form-bounded drifts is well known in the literature on parabolic equations, see

Semënov [S] and references therein.

2. Our goal here is to prove a principal result: the SDE (1) with drift b having form-bounded

singularities is strongly well-posed. So, we will require in this paper, for simplicity,

(A) b has compact support and gδ = 0 (the last assumption can be removed, see Remark 2).

Fix T > 0.

Theorem 1. Let d ≥ 3. Assume that b ∈ Fδ and satisfies (A). Then, provided that form-bound

δ is sufficiently small, for every x ∈ Rd, SDE (1) has a strong solution Xx
t . This strong solution

satisfies the following Krylov-type bounds:

1) For a given q ∈]d, δ− 1

2 [ and any vector field g ∈ Fδ1
, δ1 < ∞,

E
ˆ T

0
|gh|(τ,Xx

0,τ )dτ ≤ c‖g|h|
q
2 ‖

2

q

L2([0,T ]×Rd)
for all h ∈ Cc([0, T ] × Rd). (5)

2) For a given µ > d+2
2 , there exists constant C such that

E
[
ˆ T

0
|h(τ,Xx

0,τ )|dτ
]

≤ C‖h‖Lµ([0,T ]×Rd) for all h ∈ Cc([0, T ] × Rd). (6)

1and not contained in any Fδ′ with δ′ < δ regardless of the choice of gδ′
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Solution Xx
t is unique among strong solutions to (1) that satisfy (5) for some q ∈]d, δ− 1

2 [ with

g = 1 and with g = b.

If, in addition to our hypothesis on b, one has |b| ∈ L
d+2

2
+ε for some ε > 0, then Xx

t is unique

among strong solutions to (1) that satisfy (6).

The proof of Theorem 1 follows closely [RZ], except the proof of Proposition 1 (this is Lemma

4.2(a) in [RZ]). In [RZ], this result is proved using Sobolev regularity estimates for solutions of

parabolic equations with distributional right-hand side (these estimates, developing earlier work

of Krylov, are quite strong and are interesting on their own). We prove Proposition 1 using

a simpler argument which uses weaker estimates on solutions of parabolic equations, and thus

allows to treat a larger class of form-bounded drifts. We also use some estimates from paper [KM]

that deals with weak well-posedness of SDE (1) with drift b ∈ Fδ.

It should be added that for the drifts b ∈ C([0, T ], Ld) or b ∈ (LPS) (2 < p < ∞) considered

in [RZ] the form-bound δ can be chosen arbitrarily small. In other words, replacing drift b by cb,

for arbitrarily large constant c, does not affect strong well-posedness of SDE (1). The latter is

important in [RZ] since they apply their strong well-posedness result to Navier-Stokes equations.

One can also prove strong well-posedness of SDE (1) with form-bounded drift b = b(x) using

the approach of [BFGM], but only for a.e. x ∈ Rd, see [KSS].

Remark 1 (On weak solutions). Weak existence and uniqueness for (1) is known to hold for

larger classes of drifts than the class Fδ, see [KS2] dealing with weakly form-bounded drifts

(time-homogeneous case) and [K] dealing with time-inhomogeneous drifts in essentially the largest

possible Morrey class. See also [RZ2]. In a recent paper [Kr5], Krylov proved weak existence and

uniqueness for SDEs with VMO diffusion coefficients and time-inhomogeneous drift in a large

Morrey class containing (LPS) (in terms of Example 2, this is the Morrey class with exponent

2 + ε replaced by d
2 + ε; note that in dimension d = 3 Krylov’s Morrey class is larger than Fδ).

We refer to [RZ2] for a survey of the literature on weak solutions of (1).

2. Proof of Theorem 1

2.1. Notations. Set ∆n(T0, T1) := {(t1, . . . , tn) | T0 ≤ t1 ≤ · · · ≤ tn ≤ T1} and put ∆n(T ) :=

∆n(0, T ).

Let ∇i := ∂xi
, x = (x1, . . . , xd) ∈ Rd.

Let EFt denote conditional expectation with respect to σ-algebra Ft.

Put

〈f, g〉 = 〈fg〉 :=

ˆ

Rd

fgdx.
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2.2. Some estimates. Let fi ∈ L2
loc(R

d+1) (i ≥ 1) be form-bounded:

‖fi(t, ·)ϕ‖2
2 ≤ ν‖∇ϕ‖2

2 (7)

for some ν > 0. Also, in this section, fi are smooth. Additionally, let us assume that:

(A′) all fi have compact supports contained in R×BR(0) for a fixed R > 0 (independent of i).

In this subsection, b ∈ Fδ is additionally assumed to be smooth. However, the constants in the

estimates below will not depend on smoothness or boundedness of b and fi.

By the classical theory, there exists a unique strong solution Xx
t to

Xx
t = x+

ˆ t

0
b(τ,Xx

τ )dτ +Wt.

Let 0 ≤ T0 ≤ T1 ≤ T .

Proposition 1. There exist positive constants C0, K such that, for every n ≥ 1,

ˆ

Rd

∣

∣

∣

∣

∣

E
ˆ

∆n(T0,T1)

n
∏

i=1

∇αi
fi(ti,X

x
ti

)dt1 . . . dtn

∣

∣

∣

∣

∣

2

dx ≤ C0K
n(T1 − T0),

where 1 ≤ αi ≤ d (i ≥ 1). Moreover, K can be made as small as needed by assuming that

form-bounds δ and ν in (3), (7) are sufficiently small.

Proof. Fix n, put un+1 = 1 and define consecutively

gk = (∇αk
fk)uk+1, k = 1, . . . , n,

where uk solves the terminal-value problem on [T0, T1]

∂tuk +
1

2
∆uk + b · ∇uk + gk = 0, uk(T1) = 0. (8)

Then, repeating the argument in [RZ, Proof of Lemma 4.2],

EFT0

ˆ

∆n(T0,T1)

n
∏

i=1

∇αi
fi(ti,X

x
ti

)dt1 . . . dtn = u1(T0,X
x
T0

).

Again as in [RZ], let U be the solution to the initial-value problem on [0, T1],

∂tU − 1

2
∆U −B · ∇U −G = 0, U(0) = 0, (9)

where

B(t, ·) = b(T1 − t, ·)1[0,T1−T0](t) + b(t+ T0 − T1, ·)1]T1−T0,T1](t),

G(t, ·) := g1(T1 − t, ·)1[0,T1−T0](t).

One has U(t, ·) = u1(T1 − t, ·), t ∈ [0, T1 − T0]. Further, V (t, x) := U(t+T1 −T0) solves on [0, T0]

∂tV − 1

2
∆V − b · ∇V = 0, V (0, ·) = U(T1 − T0, ·) = u1(T0, ·).
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Therefore,

ˆ

Rd

∣

∣

∣

∣

∣

E
ˆ

∆n(T0,T1)

n
∏

i=1

∇αi
fi(ti,X

x
ti

)dt1 . . . dtn

∣

∣

∣

∣

∣

2

dx

=

ˆ

Rd

|Eu1(T0,X
x
T0

)|2dx =

ˆ

Rd

|V (T0, x)|2dx = ‖U(T1, ·)‖2
2.

We estimate ‖U(T1, ·)‖2
2 in three steps:

1. We multiply equation (9) by U and integrate over [0, T1] × Rd, arriving at

1

2
〈U2(T1, ·)〉 − 0 +

1

2

ˆ T1

0
〈|∇U |2〉ds =

ˆ T1

0
〈B · ∇U,U〉ds (10)

+

ˆ T1

0
〈g1(T1 − s, ·)1[0,T1−T0](s), U(s)〉ds.

The first term in the RHS of (10) is estimated, using the quadratic inequality ac ≤ 1
2
√

δ
a2 +

√
δ

2 c
2

and the form-boundedness b ∈ Fδ, as follows:

ˆ T1

0
〈B · ∇U,U〉ds ≤ 1

2
√
δ

ˆ T1

0
〈B2, U2〉ds+

√
δ

2

ˆ T1

0
〈|∇U |2〉ds

≤
√
δ

ˆ T1

0
〈|∇U |2〉ds. (11)

The second term in the RHS of (10):

ˆ T1

0
〈g1(T1 − s, ·)1[0,T1−T0](s), U(s)〉ds =

ˆ T1

0
〈∇α1

f1(T1 − s, ·), u2(T1 − s, ·)1[0,T1−T0](s)U(s)〉ds

= −
ˆ T1

0
〈f1(T1 − s, ·), (∇α1

u2(T1 − s, ·))1[0,T1−T0](s)U(s, ·)〉ds

−
ˆ T1

0
〈f1(T1 − s, ·), u2(T1 − s, ·)1[0,T1−T0](s)∇α1

U(s, ·)〉ds

(we are applying quadratic inequality twice; fix some ε, β > 0)

≤ ε

ˆ T1

0
〈f2

1 (T1 − s, ·)U2(s, ·)〉ds +
1

4ε

ˆ T1

0
〈|∇α1

u2(T1 − s, ·)|21[0,T1−T0](s)〉ds

+ β

ˆ T1

0
〈f2

1 (T1 − s, ·), u2
2(T1 − s, ·)1[0,T1−T0](s)〉ds +

1

4β

ˆ T1

0
〈|∇α1

U(s, ·)|2〉ds.
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Therefore, taking into account the indicator function of [0, T1−T0], and using the form-boundedness

assumption (7) on fi, we obtain

ˆ T1

0
〈g1(T1 − s, ·)1[0,T1−T0](s),U(s, ·)〉ds ≤ ε

ˆ T1

0
〈f2

1 (T1 − s, ·)U2(s)〉ds +
1

4ε

ˆ T1

T0

〈|∇α1
u2(s, ·)|2〉ds

+ β

ˆ T1

T0

〈f2
1 (s, ·), u2

2(s, ·)〉ds +
1

4β

ˆ T1

0
〈|∇α1

U(s, ·)|2〉ds (12)

≤
(

εν +
1

4β

) ˆ T1

0
〈|∇U(s, ·)|2〉ds +

(

βν +
1

4ε

)ˆ T1

T0

〈|∇u2(s, ·)|2〉ds.

Thus, we obtain from (10):

1

2
〈U2(T1)〉 +

(

1

2
−

√
δ − εν − 1

4β

)ˆ T1

0
〈|∇U(s)|2〉ds ≤

(

βν +
1

4ε

) ˆ T1

T0

〈|∇u2(s)|2〉ds.

Now, selecting ε and β large, and requiring the form-bounds δ and ν to be sufficiently small, we

arrive at

〈U2(T1)〉 + C1

ˆ T1

0
〈|∇U(s)|2〉ds ≤ C2

ˆ T1

T0

〈|∇u2(s)|2〉ds (13)

for constants 0 < C2 < C1 independent of smoothness or boundedness of b and fi. Moreover, it

is clear that we can make C2

C1
arbitrarily small by selecting δ and ν even smaller.

2. Now, we repeat this procedure for u2 in place of U . That is, we multiply equation (8) (for

k = 2) by u2 and integrate over [T0, T1] × Rd to obtain

1

2
〈u2

2(T0)〉 +
1

2

ˆ T1

T0

〈|∇u2|2〉ds =

ˆ T1

T0

〈b · ∇u2, u2〉ds+

ˆ T1

T0

〈g2, u2〉ds.

We estimate the first term in the RHS as in (11), using quadratic inequality and the assumption

b ∈ Fδ. The second term in the RHS:

ˆ T1

T0

〈g2, u2〉ds =

ˆ T1

T0

〈(∇α2
f2)u3, u2〉ds

≤ −
ˆ T1

T0

〈f2, (∇α2
u3)u2〉ds−

ˆ T1

T0

〈f2, u3∇α2
u2〉ds

≤ ε

ˆ T1

T0

〈f2
2 , u

2
2〉ds +

1

4ε

ˆ T1

T0

〈|∇α2
u3(s, ·)|2〉ds

+ β

ˆ T1

T0

〈f2
2 , u

2
3〉ds+

1

4β

ˆ T1

T0

〈|∇α2
u2|2〉ds

(we are using f2 ∈ Fν)

≤
(

εν +
1

4β

)
ˆ T1

T0

〈|∇u3(s)|2〉ds+

(

βν +
1

4ε

)
ˆ T1

T0

〈|∇u2(s)|2〉ds,
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as in the previous step. Thus, we arrive at
ˆ T1

T0

〈|∇u2|2〉ds ≤ C2

C1

ˆ T1

T0

〈|∇u3|2〉ds.

If n > 3, we repeat this n− 3 more times:
ˆ T1

T0

〈|∇u2|2〉ds ≤
(

C2

C1

)n−2 ˆ T1

T0

〈|∇un|2〉ds

and so, in view of (13),

〈U2(T1)〉 ≤ C2

(

C2

C1

)n−2 ˆ T1

T0

〈|∇un|2〉ds.

3. Finally, we estimate
´ T1

T0
〈|∇un(s)|2〉ds. Arguing as above, we have (recall that un+1 = 1)

ˆ T1

T0

〈|∇un(s)|2〉ds ≤ C3

ˆ T1

T0

〈∇αnfn(s, ·), un(s, ·)〉ds

= −C3

ˆ T1

T0

〈fn(s, ·),∇αnun(s, ·)〉ds

(we are applying quadratic inequality)

≤ C4

ˆ T1

T0

〈f2
n〉ds+

1

2

ˆ T1

T0

〈|∇un(s)|2〉ds

(we are using assumption (A′) that all fi have support in BR(0),

and apply (7) to

ˆ T1

T0

〈f2
nϕ

2〉ds ≥
ˆ T1

T0

〈f2
n〉ds for a smooth ϕ ≥ 1BR(0))

≤ C5(T1 − T0) +
1

2

ˆ T1

T0

〈|∇un(s)|2〉ds.

Thus, 1
2

´ T1

T0
〈|∇un(s)|2〉ds ≤ C5(T1 − T0). Combining this with the previous estimate, we obtain

〈U2(T1)〉 ≤ C2
(C2

C1

)n−2
2C5(T1 − T0), which gives the required estimate with K := C2

C1
. �

Remark 2. Let us comment on what happens if in Theorem 1 we assume that gδ is non-zero.

We have to assume that

0 ≤ gδ ∈ L1+ε
loc (R), for a fixed ε > 0.

(It should be added that this ε > 0 does not allow to include completely the critical Ladyzhenskaya-

Prodi-Serrin class (LPS) even with p > 2 there, as is assumed in [RZ]. It does include, however,

the case that interests us the most: p = ∞, q = d. It also includes with case p > 2, q = ∞).

Only the proof of Proposition 1 has to be changed, where we assume in (7) 0 ≤ gν ∈ L1+ε
loc (R).

Then the estimate of Proposition 1 changes to

ˆ

Rd

∣

∣

∣

∣

∣

E
ˆ

∆n(T0,T1)

n
∏

i=1

∇αi
fi(ti,X

x
ti

)dt1 . . . dtn

∣

∣

∣

∣

∣

2

dx ≤ C ′
0K

n(T1 − T0)
ε

1+ε , (14)
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which does not affect the validity of the result of the proof. The proof of (14) goes as follows. Put

F (t) := λ
´ t

0

[

gδ(s) + gν(s)
]

ds, where λ is to be fixed sufficiently large (depending on the values

of δ and ν). We multiply equation (9) for U by e−F , obtaining

∂t(e
−FU) + F ′e−FU − 1

2
∆e−FU −B · ∇e−FU − e−FG = 0, U(0) = 0,

where e−FG = (∂α1
f1(T1 − t, ·))1[0,T1−T0](t)e

−F (t)u2(T1 − t, ·). After multiplying the previous

equation by U , integrating and fixing λ > 1
2
√

δ
+ ε+ β, one sees that the term

ˆ T1

0
〈F ′e−FU2〉ds = λ

ˆ T1

0
〈(gδ + gν)e−FU2〉ds

will absorb the “new” terms 1
2
√

δ

´ T1

0 〈gδe
−FU2〉ds and (ε + β)

´ T1

0 〈gνe
−FU2〉ds that will now

appear in (11) and (12). This will give us, instead of (13), the estimate:

〈e−F (T1)U2(T1)〉 + C1

ˆ T1

0
〈e−F |∇U |2〉ds ≤ C2

ˆ T1

T0

〈e−F̃ |∇u2(s)|2〉ds,

where F̃ (t) := F (T1 − s).

In turn, the multiple e−F̃ (t) factors through all equations (8) with the same effect of absorbing

the “new” terms containing gδ and gν , that is, we get

ˆ T1

T0

〈e−F̃ |∇u2|2〉ds ≤ C2

C1

ˆ T1

T0

〈e−F̃ |∇u3|2〉ds,

and so on:
ˆ T1

T0

〈|e−F̃ ∇u2|2〉ds ≤
(

C2

C1

)n−2 ˆ T1

T0

〈e−F̃ |∇un|2〉ds.

Finally, e−F̃ does not affect the estimate on un, only the constant C5. Thus, we arrive at (14)

with the same constant K that does not depend on gδ or gν .

For a given vector field Y = (Yi)
d
i=1 : Rk → Rm, denote

∇Y = ∇xY (x) :=







∇1Y1 ∇2Y1 . . . ∇kY1

. . .

∇1Ym ∇2Ym . . . ∇kYm






. (15)

Proposition 2. For every r ≥ 1, there exist constants K1, K2 (independent of smoothness or

boundedness of b) such that

(i) ‖∇Xx
t − I‖L2r(Rd,Lr(Ω)) ≤ K1t

1

2r for all 0 ≤ t ≤ T ;

(ii) ‖DsX
x
t − I‖L2r(Rd,Lr(Ω)) ≤ K1(t− s)

1

4r for a.e. s ∈ [0, T ] and 0 ≤ s ≤ t ≤ T ;

(iii) ‖DsX
x
t −Ds′Xx

t ‖L2r(Rd,Lr(Ω)) ≤ K2|s− s′| 1

4r for a.e. s, s′ ∈ [0, T ] and 0 ≤ s, s′ ≤ t ≤ T .
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Proof. The proof repeats [RZ, Proof of Prop. 4.1] essentially word in word. We give an outline of

the proof of (i). Since b is bounded and smooth, one has

∇Xx
t − I =

ˆ t

0
∇b(s,Xx

s )∇Xx
s ds.

The goal is to iterate this identity, obtaining an expression for the left-hand side that one can

control:

∇Xx
t − I =

∞
∑

n=1

ˆ

∆n(t)

n
∏

i=1

∇b(ti,Xx
ti

)dt1 . . . dtn,

so

‖∇Xx
t − I‖L2r(Rd,Lr(Ω)) ≤

∞
∑

n=1

∥

∥

∥

∥

∥

ˆ

∆n(t)

n
∏

i=1

∇b(ti,Xx
ti

)dt1 . . . dtn

∥

∥

∥

∥

∥

L2r(Rd,Lr(Ω))

. (16)

Let us estimate

‖
ˆ

∆n(t)

n
∏

i=1

∇b(ti,Xx
ti

)dt1 . . . dtn‖L2r(Rd,Lr(Ω)) =

[
ˆ

Rd

[

E
(
ˆ

∆n(t)

n
∏

i=1

∇b(ti,Xx
ti

)dt1 . . . dtn

)r]2

dx

]

1

2r

.

First, note that by subdividing ∆n(t) × · · · × ∆n(t) (r times) into sub-simplexes, and recalling

definition (15), one can represent

(

ˆ

∆n(t)

n
∏

i=1

∇b(ti,Xx
ti

)dt1 . . . dtn)r (17)

as a sum of at most rn terms of the form
ˆ

∆rn(t)

n
∏

i=1

∇γ1
bβ1

(t1,X
x
t1

) . . .∇γrnbβrn(trn,X
x
trn

)dt1 . . . dtrn, (18)

so

‖
ˆ

∆n(t)

n
∏

i=1

∇b(ti,Xx
ti

)dt1 . . . dtn‖L2r(Rd,Lr(Ω))

≤
∑

[
ˆ

Rd

[

∑

β,γ

E
ˆ

∆rn(t)

n
∏

i=1

∇γ1
bβ1

(t1,X
x
t1

) . . .∇γrnbβrn(trn,X
x
trn

)dt1 . . . dtrn

]2

dx

]

1

2r

≤
∑

[

∑

β,γ

∥

∥

∥

∥

E
ˆ

∆rn(t)

n
∏

i=1

∇γ1
bβ1

(t1,X
x
t1

) . . .∇γrnbβrn(trn,X
x
trn

)dt1 . . . dtrn

∥

∥

∥

∥

L2(Rd)

]

1

r

,

where both sums are finite (the first sum comes from the coordinate representation of the product

of n matrices ∇b(ti,Xx
ti

), the second sum contains rrn terms). Finally, applying Proposition 1,

one obtains

‖
ˆ

∆n(t)

n
∏

i=1

∇b(ti,Xx
ti

)dt1 . . . dtn‖L2r(Rd,Lr(Ω)) ≤ (C6r)
nC

1

r
7 K

nt
1

r .

Now, recalling that K can be made as small as needed by assuming that δ is sufficiently small,

one has ‖
´

∆n(t)

∏n
i=1 ∇b(ti,Xx

ti
)dt1 . . . dtn‖L2r(Rd,Lr(Ω)) ≤ Cn

8 t
1

r for a positive constant C8 < 1
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Returning to (16), one obtains

‖∇Xx
t − I‖L2r(Rd,Lr(Ω)) ≤

∞
∑

n=1

Cn
8 t

1

r ,

as needed.

The Malliavin derivative DsX
x
t satisfies (see e.g. [B])

DsX
x
t − I =

ˆ t

s
∇b(τ,Xx

τ )DsX
x
τ dτ,

so one can iterate this identity and estimate DsX
x
t − I in the same way as above, which yields

(ii). The latter yields (iii), see [RZ, Proof of Prop. 4.1] for details. �

2.3. Proof of Theorem 1. The proof repeats the argument in [RZ]. However, since we will

have to use some estimates and some convergence results established in [KM], we included the

details for the ease of the reader.

We consider a general b ∈ Fδ as in the assumptions of the theorem. Let us fix an approximation

{bm} ⊂ C∞(Rd+1,Rd) ∩ L∞(Rd+1,Rd) of b:

bm → b in L2
loc(R

d+1,Rd) as m → ∞ (19)

and for all t ∈ R

‖bm(t)ϕ‖2
2 ≤ δ‖∇ϕ‖2

2 (20)

Example. It is easy to show that the following bm, with εm ↓ 0 sufficiently rapidly and cm ↑ 1

sufficiently slow, satisfy (19), (20).

bm := cmE
1+d
εm

(1mb),

where 1m is the indicator of {(t, x) ∈ [0, T ] × Rd | |b(t, x)| ≤ m}, E1+d
ε is the Friedrichs mollifier

on R × Rd, see details e.g. in [KM]. Note that, by selecting εn ↓ 0 rapidly, one can treat bm as

essentially a cutoff of b.

(Of course, since by our assumption b in this paper has compact support, in (19) one has

convergence in L2(Rd+1,Rd).)

Let f ∈ Fν be bounded and smooth with function gν = 0. (Below we will need f = bm, in

which case ν = δ, or f = bm − bk, in which case ν = 2δ.) Let us emphasize that the constants in

the estimates below do not depend on n or boundedness or smoothness of f. They will depend

on the dimension d, T and form-bounds δ and ν.

Since bn are bounded and smooth, by the classical theory there exists a unique continuous

random field Xm : ∆2(T ) × Rd × Ω → Rd such that

Xx,m
s,t = x+

ˆ t

s
bm(s,Xx,m

s,r )dr +Wt −Ws, 0 ≤ s ≤ t ≤ T, x ∈ Rd. (21)
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By Itô’s formula, for all m,k = 1, 2, . . . , s ≤ t1 ≤ t2 ≤ T ,

−um(t1,X
x,m
s,t1

) = −
ˆ t2

t1

|f(t,Xx,m
s,t )|dt+

ˆ t2

t1

∇um(t,Xx,m
s,t )dWt,

where um(t), s < t ≤ t2 is the classical solution to

∂tum +
1

2
∆um + bm · ∇um = −|f|, um(t2) = 0.

The following estimates on Xx,m
s,t and um are valid:

1)

sup
m

sup
x∈Rd

E
[

ˆ t2

t1

|f(t,Xx,m
s,t )|dt

∣

∣Ft1

]

≤ C(t2 − t1).

Indeed,

E
[
ˆ t2

t1

|f(t,Xx,m
s,t )|dt

∣

∣Ft1

]

= E
[

um(t1,X
x,m
s,t1

) | Ft1

]

≤ ‖um(t1)‖∞

(we are applying [KM, Cor. 6.4])

≤ C ′ sup
z∈Zd

‖f
√
ρz‖L2([t1,t2],L2),

where, recall, ρ(x) = (1+κ|x|2)−θ with θ > d
2 and κ > 0 fixed sufficiently small, ρz(x) = ρ(x−z).

In turn, since f ∈ Fν ,

‖f
√
ρz‖2

L2([t1,t2],L2) ≤ ν

4

ˆ t2

t1

〈 |∇ρz|2
ρz

〉dt

≤ ν

4
(t2 − t1)‖∇ρ/√ρ‖2

2

(we are using |∇ρ| ≤ θ
√
κρ, ‖√

ρ‖2 < ∞)

≤ C ′′(t2 − t1).

which gives us 1).

2) As a consequence of estimate 1), one has, e.g. for every integer r ≥ 1,

sup
m

sup
x∈Rd

E

∣

∣

∣

∣

∣

ˆ t2

t1

|f(t,Xx,m
s,t )|dt

∣

∣

∣

∣

∣

r

≤ Cr(t2 − t1)r,

see proof in [ZZ, Cor. 3.5] (first, one represents E
∣

∣

∣

´ t2

t1
|f(t,Xx,m

s,t )|dt
∣

∣

∣

r
as the expectation of a

repeated integral over ∆(t1, t2), cf. transition from (17) to (18), and then uses 1) r times).

3) It follows from 2) (upon selecting f = bm) that

E|Xx,m
s,t2

−Xx,m
s,t1

|r ≤ CE

∣

∣

∣

∣

∣

ˆ t2

t1

|bm(t,Xx,m
s,t )|

∣

∣

∣

∣

∣

r

+ C|Wt2
−Wt1

|r

≤ C(t2 − t1)r.
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4) In particular,

sup
m

sup
0≤s≤t≤T

sup
x∈Rd

E|Xx,m
s,t |r < ∞.

5) One has (the Sobolev norm is in the x variable)

sup
m

sup
0≤s≤t≤T

sup
y∈Rd

E
ˆ

B1(y)
|∇xX

x,m
s,t |rdx < ∞.

Indeed,

E
ˆ

B1(y)
|∇xX

x,m
s,t |rdx ≤

(

ˆ

B1(y)

(

E|∇xX
x,m
s,t |r

)2
dx

) 1

2

|B1(y)| 1

2

= cd‖∇Xm
s,t‖r

L2r(B1(y),Lr(Ω)),

so it remains to apply Proposition 2(i).

Let now r > d. Combining 4) and 5), and using the Sobolev embedding theorem, one obtains

(the Hölder norm is in the x variable)

sup
m

sup
0≤s≤t≤T

sup
y∈Rd

E‖Xx,m
s,t ‖

C1−
d
r (B1(y))

< ∞,

and so one arrives at:

6) For all 0 ≤ s ≤ t ≤ T , x, y ∈ Rd with |x− y| ≤ 1,

E|Xx,m
s,t2

−Xy,m
s,t1

|r ≤ C|x− y|r−d, r > d.

7) Repeating the proof from [RZ] (which is a combination of 3) and 6), by means of the Markov

property and the independence of Xx,m
s1,s2

and Xy,m
s2,t ), one arrives at

E|Xx,m
s1,t −Xx,m

s2,t |r ≤ C(s2 − s1)r−d, 0 ≤ s1 ≤ s2 ≤ t.

Estimates 3), 6), 7) combined yield, for r > d,

E|Xx,m
s1,t1

−Xy,m
s2,t2

|r ≤ C(|t2 − t1|r + |x− y|r−d + |s2 − s1|r−d) (22)

for all (si, ti) ∈ ∆2(T ), i = 1, 2.

Now comes the final stage in the approach of Röckner-Zhao. Proposition 2(i)-(iii) verifies

conditions of [RZ, Lemma 3.1], i.e. of the relative compactness criterion for random fields on the

Wiener-Sobolev space (see the discussion of history of this type of results in [RZ]). This, and a

standard diagonal argument, allow to conclude that there is a subsequence of {Xx,m
s,t } (without

loss of generality, still denoted by {Xx,m
s,t }) and a countable subset D of Rd such that

Xx,m
s,t → Xx

s,t in L2(Ω) as m → ∞

for all (s, t) ∈ Q2 × ∆2(T ), x ∈ D. Moreover, in view of 4), one has Xx,m
s,t → Xx

s,t in Lr(Ω), r ≥ 1.

Now (22) yields for r > d, upon applying Fatou’s lemma, that

E|Xx
s1,t1

−Xy
s2,t2

|r ≤ C(|t2 − t1|r + |x− y|r−d + |s2 − s1|r−d) (23)
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for all (si, ti) ∈ Q2 × ∆2(T ), i = 1, 2, x, y ∈ D. Kolmogorov-Chentsov theorem (after selecting

r > d even larger) allows to extend Xx
s,t to a continuous random field, and yields, together with

the equicontinuity estimate (22),

Xx,m
s,t → Xx

s,t P-a.s. as m → ∞

for all (s, t) ∈ ∆2(T ), x ∈ Rd.

By [KM, Cor. 6.4],

E
[ ˆ t

s
|f(τ,Xx,m

s,τ )|dτ
]

≤ C1 sup
z∈Zd

‖f
√
ρz‖L2([s,t],L2) (24)

(cf. proof of 1) above), and so

E
[
ˆ t

s
|f(τ,Xx

s,τ )|dτ
]

≤ C1 sup
z∈Zd

‖f
√
ρz‖L2([s,t],L2) (25)

where, recall, f ∈ Fν is bounded and smooth, but the constant Cr does not depend on smoothness

of bundedness of f. Using Fatou’s lemma, one can extend (24) to all f ∈ Fν , i.e. not necessarily

smooth. (We will be selecting e.g. f = b− bm, in which case ν = 2δ.)

Now, to show that Xx
s,t is a strong solution to (21), it remains to show that

´ t
s bm(τ,Xx,m

s,τ )dτ →
´ t

s b(τ,X
x
s,τ )dτ in L1(Ω). Indeed,

E
∣

∣

∣

∣

ˆ t

s
(bm(τ,Xx,m

s,τ )dτ −
ˆ t

s
b(τ,Xx

s,τ )dτ

∣

∣

∣

∣

≤ E
∣

∣

∣

∣

ˆ t

s
(bm − bk)(τ,Xx,m

s,τ )dτ

∣

∣

∣

∣

+ E
∣

∣

∣

∣

ˆ t

s
bk(τ,Xx,m

s,τ )dτ −
ˆ t

s
bk(τ,Xx

s,τ )dτ

∣

∣

∣

∣

+ E
∣

∣

∣

∣

ˆ t

s
(bk − b)(τ,Xx

s,τ )dτ

∣

∣

∣

∣

=: I1 + I2 + I3.

By (24), I1 ≤ supz∈Zd ‖(bm − bk)
√
ρz‖L2([s,t],L2) → 0 as m,k → ∞, where the L2 norm tends to

zero since by our assumption b has compact support. Let us fix k sufficiently large. By (25),

I3 → 0 as m → ∞. Finally, I2 → 0 as m → ∞ (for k fixed above) by the Dominated convergence

theorem. This yields that Xx
s,t is a strong solution to (1). This strong solution, clearly, satisfies

(6).

Finally, regarding uniqueness of Xx
s,t in the class of strong solutions satisfying Krylov estimate

(6). The proof in [RZ] is based on Cherny’s theorem [C] (strong existence + weak uniqueness

⇒ strong uniqueness) and the result from [RZ2] on the uniqueness of weak solution to SDE (1)

in the class of solutions satisfying a Krylov-type bound. In our setting, it suffices to use instead

the weak uniqueness result from [KM], valid for form-bounded drifts. This yields the uniqueness

result in Theorem 1 within the class (5); regarding the uniqueness within the class (6), one needs

to apply the weak uniqueness result from [K].

�
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