STRONG SOLUTIONS OF SDES WITH SINGULAR (FORM-BOUNDED) DRIFT VIA RÖCKNER-ZHAO APPROACH

D. KINZEBULATOV AND K.R. MADOU

Abstract

We use the approach of Röckner-Zhao to prove strong well-posedness for SDEs with singular drift satisfying some minimal assumptions.

1. Introduction and result

1. Consider stochastic differential equation (SDE)

$$
\begin{equation*}
X_{t}^{x}=x+\int_{0}^{t} b\left(s, X_{s}^{x}\right) d s+W_{t}, \quad 0 \leq t \leq T \tag{1}
\end{equation*}
$$

where $x \in \mathbb{R}^{d}, d \geq 3, b: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d}$ is a Borel measurable vector field (drift), and $\left\{W_{t}\right\}_{0 \leq t \leq T}$ is a Brownian motion on a complete filtered probability space $\left(\Omega,\left\{\mathcal{F}_{t}\right\}_{0 \leq t \leq T}, \mathcal{F}, \mathbf{P}\right)$.

One of the central problems in the theory of diffusion processes is the problem of strong well-posedness of SDE (1) under minimal assumptions on a locally unbounded drift b, for every starting point $x \in \mathbb{R}^{d}$. The following are the milestone results. Veretennikov [V] was first who proved strong well-posedness of (11) for discontinuous drifts $b \in L^{\infty}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$. Krylov-Röckner [KrR] established strong well-posedness assuming that the drift in the sub-critical Ladyzhenskaya-Prodi-Serrin class

$$
\begin{equation*}
b \in L^{p}\left(\mathbb{R}, L^{q}\left(\mathbb{R}^{d}\right)\right), \quad \frac{d}{q}+\frac{2}{p}<1, \quad p>2, \quad q>d . \tag{2}
\end{equation*}
$$

Beck-Flandoli-Gubinelli-Maurelli BFGM established strong existence and uniqueness for drifts in the critical Ladyzhenskaya-Prodi-Serrin class

$$
\begin{equation*}
b \in L^{p}\left(\mathbb{R}, L^{q}\left(\mathbb{R}^{d}\right)\right), \quad \frac{d}{q}+\frac{2}{p} \leq 1, \quad p \geq 2, \quad q \geq d \tag{LPS}
\end{equation*}
$$

but only for a.e. starting point $x \in \mathbb{R}^{d}$. A major step forward was made recently by RöcknerZhao [RZ who established strong existence and uniqueness for (11) with drift b in the critical Ladyzhenskaya-Prodi-Serrin class (LPS) $(p>2)$ for every $x \in \mathbb{R}^{d}$. Another major advancement is the series of papers [Kr1, $\overline{\mathrm{Kr} 2, ~} \overline{\mathrm{Kr} 3}, \boxed{\mathrm{Kr} 4]}$ where Krylov proved strong well-posedness of (1), for every $x \in \mathbb{R}^{d}$, for $|b| \in L^{d}$ and beyond, in a large Morrey class of time-inhomogeneous drifts (in terms of the Morrey norm (4), one has to have $\|b\|_{M_{s}}, s>\frac{d}{2} \vee 2$, sufficiently small).

2010 Mathematics Subject Classification. 60H10, 47D07 (primary), 35J75 (secondary).
Key words and phrases. Stochastic differential equations, strong solutions, singular drifts, form-boundedness. The research of D.K. is supported by the NSERC (grant RGPIN-2017-05567).

The method of Röckner-Zhao is different from the methods used in the other cited papers, and is based on a relative compactness criterion for random fields on the Wiener-Sobolev space. Their proof of uniqueness uses Cherny's theorem [C] (strong existence + weak uniqueness \Rightarrow strong uniqueness). The method of [RZ] is a far-reaching strengthening of the methods of Meyer-Brandis and Proske [MP, Mohammed-Nilsen-Proske MNP] (for $b \in L^{\infty}\left(\mathbb{R} \times \mathbb{R}^{d}\right)$) and Rezakhanlou [R] (for b in (21)). We refer again to [RZ] for a comprehensive survey of these and other important results on strong well-posedness of SDE (11).

We show in this paper that the method of Röckner-Zhao works, with few modifications, for a larger class of form-bounded drifts. Together with the weak uniqueness result from [KM, their method yields strong well-posedness of SDE (11) with form-bounded drift (Theorem (1)).
Definition. A locally square integrable vector field $b: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d}$ is said to be form-bounded if there exist a constant $\delta>0$ such that for a.e. $t \in \mathbb{R}$ the following quadratic form inequality holds:

$$
\begin{equation*}
\|b(t, \cdot) \varphi\|_{2}^{2} \leq \delta\|\nabla \varphi\|_{2}^{2}+g_{\delta}(t)\|\varphi\|_{2}^{2} \tag{3}
\end{equation*}
$$

for all $\varphi \in W^{1,2}$, for some function $0 \leq g_{\delta} \in L_{\mathrm{loc}}^{1}(\mathbb{R})$.
Throughout the paper, $\|\cdot\|_{p}$ denotes the norm in the Lebesgue space $L^{p}:=L^{p}\left(\mathbb{R}^{d}, d x\right) ; W^{1, p}:=$ $W^{1, p}\left(\mathbb{R}^{d}, d x\right)$ is the Sobolev space.

Condition (3) will be written as $b \in \mathbf{F}_{\delta}$. This is essentially the largest class of vector fields b, defined in terms of $|b|$, that provides an L^{2} theory of divergence-form operator $-\nabla \cdot a \cdot \nabla+b \cdot \nabla$. See [K2] for detailed discussion.

Example 1. The critical Ladyzhenskaya-Prodi-Serrin class (LPS) is contained in the class of form-bounded vector fields. For $q=d$ and $p=\infty$ this is an immediate consequence of the Sobolev embedding theorem:

$$
\|b(t, \cdot) \varphi\|_{2}^{2} \leq\|b(t, \cdot)\|_{d}^{2}\|\varphi\|_{\frac{2 d}{d-2}}^{2} \leq C_{S}\|b(t, \cdot)\|_{d}^{2}\|\nabla \varphi\|_{2}^{2}
$$

so $\delta=C_{S} \sup _{t \in \mathbb{R}}\|b(t, \cdot)\|_{d}^{2}$ and $g_{\delta}=0$ (for $q>d$ and $p<\infty$ using, additionally, a simple interpolation argument, in which case g is in general non-zero, see e.g. KM for the proof). Moreover, if e.g. $b \in C_{c}\left(\mathbb{R}, L^{d}\left(\mathbb{R}^{d}\right)\right)$, then form-bound δ can be chosen arbitrarily small at expense of increasing g_{δ}.

Example 2. Another subclass of (3), which is considerably larger than $L^{\infty}\left(\mathbb{R}, L^{d}\right)$, consists of vector fields b such that $b(t, \cdot)$ belongs, uniformly in $t \in \mathbb{R}$, to the scaling-invariant Morrey class $M_{2+\varepsilon}$. That is,

$$
\begin{equation*}
\sup _{t \in \mathbb{R}}\|b(t, \cdot)\|_{M_{2+\varepsilon}}=\sup _{t \in \mathbb{R}} \sup _{r>0, x \in \mathbb{R}^{d}} r\left(\frac{1}{\left|B_{r}\right|} \int_{B_{r}(x)}|b(t, \cdot)|^{2+\varepsilon} d x\right)^{\frac{1}{2+\varepsilon}}<\infty \tag{4}
\end{equation*}
$$

where $B_{r}(x)$ is the ball of radius r centered at x, and ε is fixed arbitrarily small. Then, by a result in [F] (see also [CFr]),

$$
b \in \mathbf{F}_{\delta} \quad \text { with } \delta=C \sup _{t \in \mathbb{R}}\|b(t, \cdot)\|_{M_{2+\varepsilon}} \text { and } g_{\delta}=0
$$

for appropriate constant C. Note that Morrey M_{s} becomes larger as s becomes smaller.
Example 3. Morrey class (4) contains vector fields b with $\|b\|_{L^{\infty}\left(\mathbb{R}, L^{d, w}\right)}<\infty$.
Recall that the norm in the weak L^{d} space is defined as

$$
\|h\|_{L^{d, w}}:=\sup _{s>0} s\left|\left\{x \in \mathbb{R}^{d}:|h(x)|>s\right\}\right|^{1 / d} .
$$

(Clearly, $L^{d} \subset L^{d, w}$, but not vice versa, e.g. $h(x)=|x|^{-1}$ is in $L^{d, w}$ but not in L^{d}.)
Let us add that the attracting drift

$$
b(x)=-\frac{d-2}{2} \sqrt{\delta}|x|^{-2} x
$$

which is contained ${ }^{1}$ in \mathbf{F}_{δ} with $g_{\delta}=0$ (and is contained in Examples 2 and 3, but not in Example 1) has critical singularity at the origin. That is, if $\delta>0$ is too large, then SDE (1) with starting point $x=0$ does not even have a weak solution. But, if δ is sufficiently small, then this SDE is strongly well-posed, see Theorem [1] (In fact, the critical value of δ for weak solvability, at least in high dimensions, is $\delta=4$, see [KS].)

An equivalent form of the a.e. inequality (3) is: for every $-\infty<t_{1}<t_{2}<\infty$,

$$
\int_{t_{1}}^{t_{2}}\|b(t) \psi(t)\|_{2}^{2} d t \leq \delta \int_{t_{1}}^{t_{2}}\|\nabla \psi(t)\|_{2}^{2} d t+\int_{t_{1}}^{t_{2}} g_{\delta}(t)\|\psi(t)\|_{2}^{2} d t
$$

for all $\psi \in L^{\infty}\left(\mathbb{R}, W^{1,2}\right)$.
The class of form-bounded drifts is well known in the literature on parabolic equations, see Semënov [S] and references therein.
2. Our goal here is to prove a principal result: the SDE (1) with drift b having form-bounded singularities is strongly well-posed. So, we will require in this paper, for simplicity,
(A) b has compact support and $g_{\delta}=0$ (the last assumption can be removed, see Remark (2).

Fix $T>0$.
Theorem 1. Let $d \geq 3$. Assume that $b \in \mathbf{F}_{\delta}$ and satisfies (A). Then, provided that form-bound δ is sufficiently small, for every $x \in \mathbb{R}^{d}$, SDE (1) has a strong solution X_{t}^{x}. This strong solution satisfies the following Krylov-type bounds:

1) For a given $q \in] d, \delta^{-\frac{1}{2}}\left[\right.$ and any vector field $\mathrm{g} \in \mathbf{F}_{\delta_{1}}, \delta_{1}<\infty$,

$$
\begin{equation*}
\mathbf{E} \int_{0}^{T}|\mathrm{~g} h|\left(\tau, X_{0, \tau}^{x}\right) d \tau \leq c\left\|\mathrm{~g}|h|^{\frac{q}{2}}\right\|_{L^{2}\left([0, T] \times \mathbb{R}^{d}\right)}^{\frac{2}{q}} \quad \text { for all } h \in C_{c}\left([0, T] \times \mathbb{R}^{d}\right) . \tag{5}
\end{equation*}
$$

2) For a given $\mu>\frac{d+2}{2}$, there exists constant C such that

$$
\begin{equation*}
\mathbf{E}\left[\int_{0}^{T}\left|h\left(\tau, X_{0, \tau}^{x}\right)\right| d \tau\right] \leq C\|h\|_{L^{\mu}\left([0, T] \times \mathbb{R}^{d}\right)} \quad \text { for all } h \in C_{c}\left([0, T] \times \mathbb{R}^{d}\right) \tag{6}
\end{equation*}
$$

[^0]Solution X_{t}^{x} is unique among strong solutions to (1) that satisfy (5) for some $\left.q \in\right] d, \delta^{-\frac{1}{2}}[$ with $\mathrm{g}=1$ and with $\mathrm{g}=b$.

If, in addition to our hypothesis on b, one has $|b| \in L^{\frac{d+2}{2}+\varepsilon}$ for some $\varepsilon>0$, then X_{t}^{x} is unique among strong solutions to (1) that satisfy (6).

The proof of Theorem 1 follows closely [RZ, except the proof of Proposition $\mathbb{1}$ (this is Lemma 4.2(a) in [RZ]). In [RZ], this result is proved using Sobolev regularity estimates for solutions of parabolic equations with distributional right-hand side (these estimates, developing earlier work of Krylov, are quite strong and are interesting on their own). We prove Proposition \dagger using a simpler argument which uses weaker estimates on solutions of parabolic equations, and thus allows to treat a larger class of form-bounded drifts. We also use some estimates from paper [KM] that deals with weak well-posedness of SDE (11) with drift $b \in \mathbf{F}_{\delta}$.

It should be added that for the drifts $b \in C\left([0, T], L^{d}\right)$ or $b \in(\overline{\text { LPS }})(2<p<\infty)$ considered in [RZ] the form-bound δ can be chosen arbitrarily small. In other words, replacing drift b by $c b$, for arbitrarily large constant c, does not affect strong well-posedness of SDE (1). The latter is important in [RZ] since they apply their strong well-posedness result to Navier-Stokes equations.

One can also prove strong well-posedness of SDE (1) with form-bounded drift $b=b(x)$ using the approach of [BFGM], but only for a.e. $x \in \mathbb{R}^{d}$, see [KSS].

Remark 1 (On weak solutions). Weak existence and uniqueness for (1) is known to hold for larger classes of drifts than the class \mathbf{F}_{δ}, see [KS2] dealing with weakly form-bounded drifts (time-homogeneous case) and \mathbf{K} dealing with time-inhomogeneous drifts in essentially the largest possible Morrey class. See also RZ2]. In a recent paper Kr5], Krylov proved weak existence and uniqueness for SDEs with VMO diffusion coefficients and time-inhomogeneous drift in a large Morrey class containing (LPS) (in terms of Example 2, this is the Morrey class with exponent $2+\varepsilon$ replaced by $\frac{d}{2}+\varepsilon$; note that in dimension $d=3$ Krylov's Morrey class is larger than \mathbf{F}_{δ}). We refer to [RZ2] for a survey of the literature on weak solutions of (1).

2. Proof of Theorem $\mathbb{1}$

2.1. Notations. Set $\Delta_{n}\left(T_{0}, T_{1}\right):=\left\{\left(t_{1}, \ldots, t_{n}\right) \mid T_{0} \leq t_{1} \leq \cdots \leq t_{n} \leq T_{1}\right\}$ and put $\Delta_{n}(T):=$ $\Delta_{n}(0, T)$.

Let $\nabla_{i}:=\partial_{x_{i}}, x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$.
Let $\mathbf{E}_{\mathcal{F}_{t}}$ denote conditional expectation with respect to σ-algebra \mathcal{F}_{t}.
Put

$$
\langle f, g\rangle=\langle f g\rangle:=\int_{\mathbb{R}^{d}} f g d x
$$

2.2. Some estimates. Let $f_{i} \in L_{\text {loc }}^{2}\left(\mathbb{R}^{d+1}\right)(i \geq 1)$ be form-bounded:

$$
\begin{equation*}
\left\|f_{i}(t, \cdot) \varphi\right\|_{2}^{2} \leq \nu\|\nabla \varphi\|_{2}^{2} \tag{7}
\end{equation*}
$$

for some $\nu>0$. Also, in this section, f_{i} are smooth. Additionally, let us assume that:
$\left(A^{\prime}\right)$ all f_{i} have compact supports contained in $\mathbb{R} \times B_{R}(0)$ for a fixed $R>0$ (independent of i).
In this subsection, $b \in \mathbf{F}_{\delta}$ is additionally assumed to be smooth. However, the constants in the estimates below will not depend on smoothness or boundedness of b and f_{i}.

By the classical theory, there exists a unique strong solution X_{t}^{x} to

$$
X_{t}^{x}=x+\int_{0}^{t} b\left(\tau, X_{\tau}^{x}\right) d \tau+W_{t} .
$$

Let $0 \leq T_{0} \leq T_{1} \leq T$.
Proposition 1. There exist positive constants C_{0}, K such that, for every $n \geq 1$,

$$
\int_{\mathbb{R}^{d}}\left|\mathbf{E} \int_{\Delta_{n}\left(T_{0}, T_{1}\right)} \prod_{i=1}^{n} \nabla_{\alpha_{i}} f_{i}\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}\right|^{2} d x \leq C_{0} K^{n}\left(T_{1}-T_{0}\right)
$$

where $1 \leq \alpha_{i} \leq d(i \geq 1)$. Moreover, K can be made as small as needed by assuming that form-bounds δ and ν in (3), (17) are sufficiently small.

Proof. Fix n, put $u_{n+1}=1$ and define consecutively

$$
g_{k}=\left(\nabla_{\alpha_{k}} f_{k}\right) u_{k+1}, \quad k=1, \ldots, n,
$$

where u_{k} solves the terminal-value problem on $\left[T_{0}, T_{1}\right]$

$$
\begin{equation*}
\partial_{t} u_{k}+\frac{1}{2} \Delta u_{k}+b \cdot \nabla u_{k}+g_{k}=0, \quad u_{k}\left(T_{1}\right)=0 . \tag{8}
\end{equation*}
$$

Then, repeating the argument in [RZ, Proof of Lemma 4.2],

$$
\mathbf{E}_{\mathcal{F}_{T_{0}}} \int_{\Delta_{n}\left(T_{0}, T_{1}\right)} \prod_{i=1}^{n} \nabla_{\alpha_{i}} f_{i}\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}=u_{1}\left(T_{0}, X_{T_{0}}^{x}\right)
$$

Again as in [RZ, let U be the solution to the initial-value problem on $\left[0, T_{1}\right]$,

$$
\begin{equation*}
\partial_{t} U-\frac{1}{2} \Delta U-B \cdot \nabla U-G=0, \quad U(0)=0 \tag{9}
\end{equation*}
$$

where

$$
\begin{gathered}
B(t, \cdot)=b\left(T_{1}-t, \cdot\right) \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(t)+b\left(t+T_{0}-T_{1}, \cdot\right) \mathbf{1}_{] T_{1}-T_{0}, T_{1}\right]}(t), \\
G(t, \cdot):=g_{1}\left(T_{1}-t, \cdot\right) \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(t) .
\end{gathered}
$$

One has $U(t, \cdot)=u_{1}\left(T_{1}-t, \cdot\right), t \in\left[0, T_{1}-T_{0}\right]$. Further, $V(t, x):=U\left(t+T_{1}-T_{0}\right)$ solves on $\left[0, T_{0}\right]$

$$
\partial_{t} V-\frac{1}{2} \Delta V-b \cdot \nabla V=0, \quad V(0, \cdot)=U\left(T_{1}-T_{0}, \cdot\right)=u_{1}\left(T_{0}, \cdot\right) .
$$

Therefore,

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}\left|\mathbf{E} \int_{\Delta_{n}\left(T_{0}, T_{1}\right)} \prod_{i=1}^{n} \nabla_{\alpha_{i}} f_{i}\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}\right|^{2} d x \\
& =\int_{\mathbb{R}^{d}}\left|\mathbf{E} u_{1}\left(T_{0}, X_{T_{0}}^{x}\right)\right|^{2} d x=\int_{\mathbb{R}^{d}}\left|V\left(T_{0}, x\right)\right|^{2} d x=\left\|U\left(T_{1}, \cdot\right)\right\|_{2}^{2}
\end{aligned}
$$

We estimate $\left\|U\left(T_{1}, \cdot\right)\right\|_{2}^{2}$ in three steps:

1. We multiply equation (9) by U and integrate over $\left[0, T_{1}\right] \times \mathbb{R}^{d}$, arriving at

$$
\begin{align*}
\left.\frac{1}{2}\left\langle U^{2}\left(T_{1}, \cdot\right)\right\rangle-0+\left.\frac{1}{2} \int_{0}^{T_{1}}\langle | \nabla U\right|^{2}\right\rangle d s & =\int_{0}^{T_{1}}\langle B \cdot \nabla U, U\rangle d s \tag{10}\\
& +\int_{0}^{T_{1}}\left\langle g_{1}\left(T_{1}-s, \cdot\right) \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(s), U(s)\right\rangle d s
\end{align*}
$$

The first term in the RHS of (10) is estimated, using the quadratic inequality $a c \leq \frac{1}{2 \sqrt{\delta}} a^{2}+\frac{\sqrt{\delta}}{2} c^{2}$ and the form-boundedness $b \in \mathbf{F}_{\delta}$, as follows:

$$
\begin{align*}
\int_{0}^{T_{1}}\langle B \cdot \nabla U, U\rangle d s & \left.\leq \frac{1}{2 \sqrt{\delta}} \int_{0}^{T_{1}}\left\langle B^{2}, U^{2}\right\rangle d s+\left.\frac{\sqrt{\delta}}{2} \int_{0}^{T_{1}}\langle | \nabla U\right|^{2}\right\rangle d s \\
& \left.\leq\left.\sqrt{\delta} \int_{0}^{T_{1}}\langle | \nabla U\right|^{2}\right\rangle d s \tag{11}
\end{align*}
$$

The second term in the RHS of (10):

$$
\begin{gathered}
\int_{0}^{T_{1}}\left\langle g_{1}\left(T_{1}-s, \cdot\right) \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(s), U(s)\right\rangle d s=\int_{0}^{T_{1}}\left\langle\nabla_{\alpha_{1}} f_{1}\left(T_{1}-s, \cdot\right), u_{2}\left(T_{1}-s, \cdot\right) \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(s) U(s)\right\rangle d s \\
=-\int_{0}^{T_{1}}\left\langle f_{1}\left(T_{1}-s, \cdot\right),\left(\nabla_{\alpha_{1}} u_{2}\left(T_{1}-s, \cdot\right)\right) \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(s) U(s, \cdot)\right\rangle d s \\
\\
-\int_{0}^{T_{1}}\left\langle f_{1}\left(T_{1}-s, \cdot\right), u_{2}\left(T_{1}-s, \cdot\right) \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(s) \nabla_{\alpha_{1}} U(s, \cdot)\right\rangle d s
\end{gathered}
$$

(we are applying quadratic inequality twice; fix some $\varepsilon, \beta>0$)

$$
\begin{aligned}
& \left.\leq \varepsilon \int_{0}^{T_{1}}\left\langle f_{1}^{2}\left(T_{1}-s, \cdot\right) U^{2}(s, \cdot)\right\rangle d s+\left.\frac{1}{4 \varepsilon} \int_{0}^{T_{1}}\langle | \nabla_{\alpha_{1}} u_{2}\left(T_{1}-s, \cdot\right)\right|^{2} \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(s)\right\rangle d s \\
& \left.+\beta \int_{0}^{T_{1}}\left\langle f_{1}^{2}\left(T_{1}-s, \cdot\right), u_{2}^{2}\left(T_{1}-s, \cdot\right) \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(s)\right\rangle d s+\left.\frac{1}{4 \beta} \int_{0}^{T_{1}}\langle | \nabla_{\alpha_{1}} U(s, \cdot)\right|^{2}\right\rangle d s
\end{aligned}
$$

Therefore, taking into account the indicator function of $\left[0, T_{1}-T_{0}\right]$, and using the form-boundedness assumption (7) on f_{i}, we obtain

$$
\begin{align*}
&\left.\int_{0}^{T_{1}}\left\langle g_{1}\left(T_{1}-s, \cdot\right) \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(s), U(s, \cdot)\right\rangle d s \leq \varepsilon \int_{0}^{T_{1}}\left\langle f_{1}^{2}\left(T_{1}-s, \cdot\right) U^{2}(s)\right\rangle d s+\left.\frac{1}{4 \varepsilon} \int_{T_{0}}^{T_{1}}\langle | \nabla_{\alpha_{1}} u_{2}(s, \cdot)\right|^{2}\right\rangle d s \\
&\left.+\beta \int_{T_{0}}^{T_{1}}\left\langle f_{1}^{2}(s, \cdot), u_{2}^{2}(s, \cdot)\right\rangle d s+\left.\frac{1}{4 \beta} \int_{0}^{T_{1}}\langle | \nabla_{\alpha_{1}} U(s, \cdot)\right|^{2}\right\rangle d s \tag{12}\\
&\left.\left.\leq\left.\left(\varepsilon \nu+\frac{1}{4 \beta}\right) \int_{0}^{T_{1}}\langle | \nabla U(s, \cdot)\right|^{2}\right\rangle d s+\left.\left(\beta \nu+\frac{1}{4 \varepsilon}\right) \int_{T_{0}}^{T_{1}}\langle | \nabla u_{2}(s, \cdot)\right|^{2}\right\rangle d s
\end{align*}
$$

Thus, we obtain from (10):

$$
\left.\left.\frac{1}{2}\left\langle U^{2}\left(T_{1}\right)\right\rangle+\left.\left(\frac{1}{2}-\sqrt{\delta}-\varepsilon \nu-\frac{1}{4 \beta}\right) \int_{0}^{T_{1}}\langle | \nabla U(s)\right|^{2}\right\rangle d s \leq\left.\left(\beta \nu+\frac{1}{4 \varepsilon}\right) \int_{T_{0}}^{T_{1}}\langle | \nabla u_{2}(s)\right|^{2}\right\rangle d s .
$$

Now, selecting ε and β large, and requiring the form-bounds δ and ν to be sufficiently small, we arrive at

$$
\begin{equation*}
\left.\left.\left\langle U^{2}\left(T_{1}\right)\right\rangle+\left.C_{1} \int_{0}^{T_{1}}\langle | \nabla U(s)\right|^{2}\right\rangle d s \leq\left. C_{2} \int_{T_{0}}^{T_{1}}\langle | \nabla u_{2}(s)\right|^{2}\right\rangle d s \tag{13}
\end{equation*}
$$

for constants $0<C_{2}<C_{1}$ independent of smoothness or boundedness of b and f_{i}. Moreover, it is clear that we can make $\frac{C_{2}}{C_{1}}$ arbitrarily small by selecting δ and ν even smaller.
2. Now, we repeat this procedure for u_{2} in place of U. That is, we multiply equation (8) (for $k=2$) by u_{2} and integrate over $\left[T_{0}, T_{1}\right] \times \mathbb{R}^{d}$ to obtain

$$
\left.\frac{1}{2}\left\langle u_{2}^{2}\left(T_{0}\right)\right\rangle+\left.\frac{1}{2} \int_{T_{0}}^{T_{1}}\langle | \nabla u_{2}\right|^{2}\right\rangle d s=\int_{T_{0}}^{T_{1}}\left\langle b \cdot \nabla u_{2}, u_{2}\right\rangle d s+\int_{T_{0}}^{T_{1}}\left\langle g_{2}, u_{2}\right\rangle d s
$$

We estimate the first term in the RHS as in (11), using quadratic inequality and the assumption $b \in \mathbf{F}_{\delta}$. The second term in the RHS:

$$
\begin{aligned}
\int_{T_{0}}^{T_{1}}\left\langle g_{2}, u_{2}\right\rangle d s & =\int_{T_{0}}^{T_{1}}\left\langle\left(\nabla_{\alpha_{2}} f_{2}\right) u_{3}, u_{2}\right\rangle d s \\
& \leq-\int_{T_{0}}^{T_{1}}\left\langle f_{2},\left(\nabla_{\alpha_{2}} u_{3}\right) u_{2}\right\rangle d s-\int_{T_{0}}^{T_{1}}\left\langle f_{2}, u_{3} \nabla_{\alpha_{2}} u_{2}\right\rangle d s \\
& \left.\leq \varepsilon \int_{T_{0}}^{T_{1}}\left\langle f_{2}^{2}, u_{2}^{2}\right\rangle d s+\left.\frac{1}{4 \varepsilon} \int_{T_{0}}^{T_{1}}\langle | \nabla_{\alpha_{2}} u_{3}(s, \cdot)\right|^{2}\right\rangle d s \\
& \left.+\beta \int_{T_{0}}^{T_{1}}\left\langle f_{2}^{2}, u_{3}^{2}\right\rangle d s+\left.\frac{1}{4 \beta} \int_{T_{0}}^{T_{1}}\langle | \nabla_{\alpha_{2}} u_{2}\right|^{2}\right\rangle d s \\
& \left(\text { we are using } f_{2} \in \mathbf{F}_{\nu}\right) \\
& \left.\left.\leq\left.\left(\varepsilon \nu+\frac{1}{4 \beta}\right) \int_{T_{0}}^{T_{1}}\langle | \nabla u_{3}(s)\right|^{2}\right\rangle d s+\left.\left(\beta \nu+\frac{1}{4 \varepsilon}\right) \int_{T_{0}}^{T_{1}}\langle | \nabla u_{2}(s)\right|^{2}\right\rangle d s,
\end{aligned}
$$

as in the previous step. Thus, we arrive at

$$
\left.\left.\left.\int_{T_{0}}^{T_{1}}\langle | \nabla u_{2}\right|^{2}\right\rangle d s \leq\left.\frac{C_{2}}{C_{1}} \int_{T_{0}}^{T_{1}}\langle | \nabla u_{3}\right|^{2}\right\rangle d s
$$

If $n>3$, we repeat this $n-3$ more times:

$$
\left.\left.\left.\int_{T_{0}}^{T_{1}}\langle | \nabla u_{2}\right|^{2}\right\rangle d s \leq\left.\left(\frac{C_{2}}{C_{1}}\right)^{n-2} \int_{T_{0}}^{T_{1}}\langle | \nabla u_{n}\right|^{2}\right\rangle d s
$$

and so, in view of (13),

$$
\left.\left\langle U^{2}\left(T_{1}\right)\right\rangle \leq\left. C_{2}\left(\frac{C_{2}}{C_{1}}\right)^{n-2} \int_{T_{0}}^{T_{1}}\langle | \nabla u_{n}\right|^{2}\right\rangle d s
$$

3. Finally, we estimate $\left.\left.\int_{T_{0}}^{T_{1}}\langle | \nabla u_{n}(s)\right|^{2}\right\rangle d s$. Arguing as above, we have (recall that $u_{n+1}=1$)

$$
\begin{aligned}
\left.\left.\int_{T_{0}}^{T_{1}}\langle | \nabla u_{n}(s)\right|^{2}\right\rangle d s & \leq C_{3} \int_{T_{0}}^{T_{1}}\left\langle\nabla_{\alpha_{n}} f_{n}(s, \cdot), u_{n}(s, \cdot)\right\rangle d s \\
& =-C_{3} \int_{T_{0}}^{T_{1}}\left\langle f_{n}(s, \cdot), \nabla_{\alpha_{n}} u_{n}(s, \cdot)\right\rangle d s
\end{aligned}
$$

(we are applying quadratic inequality)

$$
\left.\leq C_{4} \int_{T_{0}}^{T_{1}}\left\langle f_{n}^{2}\right\rangle d s+\left.\frac{1}{2} \int_{T_{0}}^{T_{1}}\langle | \nabla u_{n}(s)\right|^{2}\right\rangle d s
$$

(we are using assumption $\left(A^{\prime}\right)$ that all f_{i} have support in $B_{R}(0)$, and apply (7) to $\int_{T_{0}}^{T_{1}}\left\langle f_{n}^{2} \varphi^{2}\right\rangle d s \geq \int_{T_{0}}^{T_{1}}\left\langle f_{n}^{2}\right\rangle d s$ for a smooth $\left.\varphi \geq \mathbf{1}_{B_{R}(0)}\right)$ $\left.\leq C_{5}\left(T_{1}-T_{0}\right)+\left.\frac{1}{2} \int_{T_{0}}^{T_{1}}\langle | \nabla u_{n}(s)\right|^{2}\right\rangle d s$.
Thus, $\left.\left.\frac{1}{2} \int_{T_{0}}^{T_{1}}\langle | \nabla u_{n}(s)\right|^{2}\right\rangle d s \leq C_{5}\left(T_{1}-T_{0}\right)$. Combining this with the previous estimate, we obtain $\left\langle U^{2}\left(T_{1}\right)\right\rangle \leq C_{2}\left(\frac{C_{2}}{C_{1}}\right)^{n-2} 2 C_{5}\left(T_{1}-T_{0}\right)$, which gives the required estimate with $K:=\frac{C_{2}}{C_{1}}$.
Remark 2. Let us comment on what happens if in Theorem 1 we assume that g_{δ} is non-zero. We have to assume that

$$
0 \leq g_{\delta} \in L_{\mathrm{loc}}^{1+\varepsilon}(\mathbb{R}), \quad \text { for a fixed } \varepsilon>0
$$

(It should be added that this $\varepsilon>0$ does not allow to include completely the critical Ladyzhenskaya-Prodi-Serrin class ($\overline{\mathrm{LPS}}$) even with $p>2$ there, as is assumed in [RZ. It does include, however, the case that interests us the most: $p=\infty, q=d$. It also includes with case $p>2, q=\infty)$.

Only the proof of Proposition has to be changed, where we assume in (7) $0 \leq g_{\nu} \in L_{\mathrm{loc}}^{1+\varepsilon}(\mathbb{R})$. Then the estimate of Proposition $\mathbb{\square}$ changes to

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left|\mathbf{E} \int_{\Delta_{n}\left(T_{0}, T_{1}\right)} \prod_{i=1}^{n} \nabla_{\alpha_{i}} f_{i}\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}\right|^{2} d x \leq C_{0}^{\prime} K^{n}\left(T_{1}-T_{0}\right)^{\frac{\varepsilon}{1+\varepsilon}} \tag{14}
\end{equation*}
$$

which does not affect the validity of the result of the proof. The proof of (14) goes as follows. Put $F(t):=\lambda \int_{0}^{t}\left[g_{\delta}(s)+g_{\nu}(s)\right] d s$, where λ is to be fixed sufficiently large (depending on the values of δ and ν). We multiply equation (9) for U by e^{-F}, obtaining

$$
\partial_{t}\left(e^{-F} U\right)+F^{\prime} e^{-F} U-\frac{1}{2} \Delta e^{-F} U-B \cdot \nabla e^{-F} U-e^{-F} G=0, \quad U(0)=0
$$

where $e^{-F} G=\left(\partial_{\alpha_{1}} f_{1}\left(T_{1}-t, \cdot\right)\right) \mathbf{1}_{\left[0, T_{1}-T_{0}\right]}(t) e^{-F(t)} u_{2}\left(T_{1}-t, \cdot\right)$. After multiplying the previous equation by U, integrating and fixing $\lambda>\frac{1}{2 \sqrt{\delta}}+\varepsilon+\beta$, one sees that the term

$$
\int_{0}^{T_{1}}\left\langle F^{\prime} e^{-F} U^{2}\right\rangle d s=\lambda \int_{0}^{T_{1}}\left\langle\left(g_{\delta}+g_{\nu}\right) e^{-F} U^{2}\right\rangle d s
$$

will absorb the "new" terms $\frac{1}{2 \sqrt{\delta}} \int_{0}^{T_{1}}\left\langle g_{\delta} e^{-F} U^{2}\right\rangle d s$ and $(\varepsilon+\beta) \int_{0}^{T_{1}}\left\langle g_{\nu} e^{-F} U^{2}\right\rangle d s$ that will now appear in (11) and (12). This will give us, instead of (13), the estimate:

$$
\left.\left.\left\langle e^{-F\left(T_{1}\right)} U^{2}\left(T_{1}\right)\right\rangle+\left.C_{1} \int_{0}^{T_{1}}\left\langle e^{-F}\right| \nabla U\right|^{2}\right\rangle d s \leq\left. C_{2} \int_{T_{0}}^{T_{1}}\left\langle e^{-\tilde{F}}\right| \nabla u_{2}(s)\right|^{2}\right\rangle d s,
$$

where $\tilde{F}(t):=F\left(T_{1}-s\right)$.
In turn, the multiple $e^{-\tilde{F}(t)}$ factors through all equations (8) with the same effect of absorbing the "new" terms containing g_{δ} and g_{ν}, that is, we get

$$
\left.\left.\left.\int_{T_{0}}^{T_{1}}\left\langle e^{-\tilde{F}}\right| \nabla u_{2}\right|^{2}\right\rangle d s \leq\left.\frac{C_{2}}{C_{1}} \int_{T_{0}}^{T_{1}}\left\langle e^{-\tilde{F}}\right| \nabla u_{3}\right|^{2}\right\rangle d s
$$

and so on:

$$
\left.\left.\left.\int_{T_{0}}^{T_{1}}\langle | e^{-\tilde{F}} \nabla u_{2}\right|^{2}\right\rangle d s \leq\left.\left(\frac{C_{2}}{C_{1}}\right)^{n-2} \int_{T_{0}}^{T_{1}}\left\langle e^{-\tilde{F}}\right| \nabla u_{n}\right|^{2}\right\rangle d s
$$

Finally, $e^{-\tilde{F}}$ does not affect the estimate on u_{n}, only the constant C_{5}. Thus, we arrive at (14) with the same constant K that does not depend on g_{δ} or g_{ν}.

For a given vector field $Y=\left(Y_{i}\right)_{i=1}^{d}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$, denote

$$
\nabla Y=\nabla_{x} Y(x):=\left(\begin{array}{cccc}
\nabla_{1} Y_{1} & \nabla_{2} Y_{1} & \ldots & \nabla_{k} Y_{1} \tag{15}\\
& & \ldots & \\
\nabla_{1} Y_{m} & \nabla_{2} Y_{m} & \ldots & \nabla_{k} Y_{m}
\end{array}\right)
$$

Proposition 2. For every $r \geq 1$, there exist constants K_{1}, K_{2} (independent of smoothness or boundedness of b) such that
(i) $\left\|\nabla X_{t}^{x}-I\right\|_{L^{2 r}\left(\mathbb{R}^{d}, L^{r}(\Omega)\right)} \leq K_{1} t^{\frac{1}{2 r}}$ for all $0 \leq t \leq T$;
(ii) $\left\|D_{s} X_{t}^{x}-I\right\|_{L^{2 r}\left(\mathbb{R}^{d}, L^{r}(\Omega)\right)} \leq K_{1}(t-s)^{\frac{1}{4 r}}$ for a.e.s $\in[0, T]$ and $0 \leq s \leq t \leq T$;
(iii) $\left\|D_{s} X_{t}^{x}-D_{s^{\prime}} X_{t}^{x}\right\|_{L^{2 r}\left(\mathbb{R}^{d}, L^{r}(\Omega)\right)} \leq K_{2}\left|s-s^{\prime}\right| \frac{1}{4 r}$ for a.e. $s, s^{\prime} \in[0, T]$ and $0 \leq s, s^{\prime} \leq t \leq T$.

Proof. The proof repeats [RZ, Proof of Prop.4.1] essentially word in word. We give an outline of the proof of (i). Since b is bounded and smooth, one has

$$
\nabla X_{t}^{x}-I=\int_{0}^{t} \nabla b\left(s, X_{s}^{x}\right) \nabla X_{s}^{x} d s
$$

The goal is to iterate this identity, obtaining an expression for the left-hand side that one can control:

$$
\nabla X_{t}^{x}-I=\sum_{n=1}^{\infty} \int_{\Delta_{n}(t)} \prod_{i=1}^{n} \nabla b\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}
$$

so

$$
\begin{equation*}
\left\|\nabla X_{t}^{x}-I\right\|_{L^{2 r}\left(\mathbb{R}^{d}, L^{r}(\Omega)\right)} \leq \sum_{n=1}^{\infty}\left\|\int_{\Delta_{n}(t)} \prod_{i=1}^{n} \nabla b\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}\right\|_{L^{2 r}\left(\mathbb{R}^{d}, L^{r}(\Omega)\right)} \tag{16}
\end{equation*}
$$

Let us estimate

$$
\left\|\int_{\Delta_{n}(t)} \prod_{i=1}^{n} \nabla b\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}\right\|_{L^{2 r}\left(\mathbb{R}^{d}, L^{r}(\Omega)\right)}=\left[\int_{\mathbb{R}^{d}}\left[\mathbf{E}\left(\int_{\Delta_{n}(t)} \prod_{i=1}^{n} \nabla b\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}\right)^{r}\right]^{2} d x\right]^{\frac{1}{2 r}}
$$

First, note that by subdividing $\Delta_{n}(t) \times \cdots \times \Delta_{n}(t)(r$ times) into sub-simplexes, and recalling definition (15), one can represent

$$
\begin{equation*}
\left(\int_{\Delta_{n}(t)} \prod_{i=1}^{n} \nabla b\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}\right)^{r} \tag{17}
\end{equation*}
$$

as a sum of at most $r n$ terms of the form

$$
\begin{equation*}
\int_{\Delta_{r n}(t)} \prod_{i=1}^{n} \nabla_{\gamma_{1}} b_{\beta_{1}}\left(t_{1}, X_{t_{1}}^{x}\right) \ldots \nabla_{\gamma_{r n}} b_{\beta_{r n}}\left(t_{r n}, X_{t_{r n}}^{x}\right) d t_{1} \ldots d t_{r n} \tag{18}
\end{equation*}
$$

so

$$
\begin{aligned}
& \left\|\int_{\Delta_{n}(t)} \prod_{i=1}^{n} \nabla b\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}\right\|_{L^{2 r}\left(\mathbb{R}^{d}, L^{r}(\Omega)\right)} \\
& \leq \sum\left[\int_{\mathbb{R}^{d}}\left[\sum_{\beta, \gamma} \mathbf{E} \int_{\Delta_{r n}(t)} \prod_{i=1}^{n} \nabla_{\gamma_{1}} b_{\beta_{1}}\left(t_{1}, X_{t_{1}}^{x}\right) \ldots \nabla_{\gamma_{r n}} b_{\beta_{r n}}\left(t_{r n}, X_{t_{r n}}^{x}\right) d t_{1} \ldots d t_{r n}\right]^{2} d x\right]^{\frac{1}{2 r}} \\
& \leq \sum\left[\sum_{\beta, \gamma}\left\|\mathbf{E} \int_{\Delta_{r n}(t)} \prod_{i=1}^{n} \nabla_{\gamma_{1}} b_{\beta_{1}}\left(t_{1}, X_{t_{1}}^{x}\right) \ldots \nabla_{\gamma_{r n}} b_{\beta_{r n}}\left(t_{r n}, X_{t_{r n}}^{x}\right) d t_{1} \ldots d t_{r n}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}\right]^{\frac{1}{r}}
\end{aligned}
$$

where both sums are finite (the first sum comes from the coordinate representation of the product of n matrices $\nabla b\left(t_{i}, X_{t_{i}}^{x}\right)$, the second sum contains $r^{r n}$ terms). Finally, applying Proposition (1, one obtains

$$
\left\|\int_{\Delta_{n}(t)} \prod_{i=1}^{n} \nabla b\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}\right\|_{L^{2 r}\left(\mathbb{R}^{d}, L^{r}(\Omega)\right)} \leq\left(C_{6} r\right)^{n} C_{7}^{\frac{1}{r}} K^{n} t^{\frac{1}{r}} .
$$

Now, recalling that K can be made as small as needed by assuming that δ is sufficiently small, one has $\left\|\int_{\Delta_{n}(t)} \prod_{i=1}^{n} \nabla b\left(t_{i}, X_{t_{i}}^{x}\right) d t_{1} \ldots d t_{n}\right\|_{L^{2 r}\left(\mathbb{R}^{d}, L^{r}(\Omega)\right)} \leq C_{8}^{n} t^{\frac{1}{r}}$ for a positive constant $C_{8}<1$

Returning to (16), one obtains

$$
\left\|\nabla X_{t}^{x}-I\right\|_{L^{2 r}\left(\mathbb{R}^{d}, L^{r}(\Omega)\right)} \leq \sum_{n=1}^{\infty} C_{8}^{n} t^{\frac{1}{r}}
$$

as needed.
The Malliavin derivative $D_{s} X_{t}^{x}$ satisfies (see e.g. B)

$$
D_{s} X_{t}^{x}-I=\int_{s}^{t} \nabla b\left(\tau, X_{\tau}^{x}\right) D_{s} X_{\tau}^{x} d \tau
$$

so one can iterate this identity and estimate $D_{s} X_{t}^{x}-I$ in the same way as above, which yields (ii). The latter yields (iii), see [RZ, Proof of Prop.4.1] for details.
2.3. Proof of Theorem 1. The proof repeats the argument in RZ. However, since we will have to use some estimates and some convergence results established in [KM, we included the details for the ease of the reader.

We consider a general $b \in \mathbf{F}_{\delta}$ as in the assumptions of the theorem. Let us fix an approximation $\left\{b_{m}\right\} \subset C^{\infty}\left(\mathbb{R}^{d+1}, \mathbb{R}^{d}\right) \cap L^{\infty}\left(\mathbb{R}^{d+1}, \mathbb{R}^{d}\right)$ of $b:$

$$
\begin{equation*}
b_{m} \rightarrow b \quad \text { in } L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{d+1}, \mathbb{R}^{d}\right) \text { as } m \rightarrow \infty \tag{19}
\end{equation*}
$$

and for all $t \in \mathbb{R}$

$$
\begin{equation*}
\left\|b_{m}(t) \varphi\right\|_{2}^{2} \leq \delta\|\nabla \varphi\|_{2}^{2} \tag{20}
\end{equation*}
$$

Example. It is easy to show that the following b_{m}, with $\varepsilon_{m} \downarrow 0$ sufficiently rapidly and $c_{m} \uparrow 1$ sufficiently slow, satisfy (19), (20).

$$
b_{m}:=c_{m} E_{\varepsilon_{m}}^{1+d}\left(\mathbf{1}_{m} b\right)
$$

where $\mathbf{1}_{m}$ is the indicator of $\left\{(t, x) \in[0, T] \times \mathbb{R}^{d}| | b(t, x) \mid \leq m\right\}, E_{\varepsilon}^{1+d}$ is the Friedrichs mollifier on $\mathbb{R} \times \mathbb{R}^{d}$, see details e.g. in [KM]. Note that, by selecting $\varepsilon_{n} \downarrow 0$ rapidly, one can treat b_{m} as essentially a cutoff of b.
(Of course, since by our assumption b in this paper has compact support, in (19) one has convergence in $L^{2}\left(\mathbb{R}^{d+1}, \mathbb{R}^{d}\right)$.)

Let $\mathrm{f} \in \mathbf{F}_{\nu}$ be bounded and smooth with function $g_{\nu}=0$. (Below we will need $\mathrm{f}=b_{m}$, in which case $\nu=\delta$, or $\mathrm{f}=b_{m}-b_{k}$, in which case $\nu=2 \delta$.) Let us emphasize that the constants in the estimates below do not depend on n or boundedness or smoothness of f. They will depend on the dimension d, T and form-bounds δ and ν.

Since b_{n} are bounded and smooth, by the classical theory there exists a unique continuous random field $X^{m}: \Delta_{2}(T) \times \mathbb{R}^{d} \times \Omega \rightarrow \mathbb{R}^{d}$ such that

$$
\begin{equation*}
X_{s, t}^{x, m}=x+\int_{s}^{t} b_{m}\left(s, X_{s, r}^{x, m}\right) d r+W_{t}-W_{s}, \quad 0 \leq s \leq t \leq T, \quad x \in \mathbb{R}^{d} \tag{21}
\end{equation*}
$$

By Itô's formula, for all $m, k=1,2, \ldots, s \leq t_{1} \leq t_{2} \leq T$,

$$
-u_{m}\left(t_{1}, X_{s, t_{1}}^{x, m}\right)=-\int_{t_{1}}^{t_{2}}\left|\mathbf{f}\left(t, X_{s, t}^{x, m}\right)\right| d t+\int_{t_{1}}^{t_{2}} \nabla u_{m}\left(t, X_{s, t}^{x, m}\right) d W_{t}
$$

where $u_{m}(t), s<t \leq t_{2}$ is the classical solution to

$$
\partial_{t} u_{m}+\frac{1}{2} \Delta u_{m}+b_{m} \cdot \nabla u_{m}=-|\boldsymbol{f}|, \quad u_{m}\left(t_{2}\right)=0 .
$$

The following estimates on $X_{s, t}^{x, m}$ and u_{m} are valid:
1)

$$
\sup _{m} \sup _{x \in \mathbb{R}^{d}} \mathbf{E}\left[\int_{t_{1}}^{t_{2}}\left|\mathbf{f}\left(t, X_{s, t}^{x, m}\right)\right| d t \mid \mathcal{F}_{t_{1}}\right] \leq C\left(t_{2}-t_{1}\right) .
$$

Indeed,

$$
\begin{aligned}
\mathbf{E}\left[\int_{t_{1}}^{t_{2}}\left|\mathfrak{f}\left(t, X_{s, t}^{x, m}\right)\right| d t \mid \mathcal{F}_{t_{1}}\right] & =\mathbf{E}\left[u_{m}\left(t_{1}, X_{s, t_{1}}^{x, m}\right) \mid \mathcal{F}_{t_{1}}\right] \\
& \leq\left\|u_{m}\left(t_{1}\right)\right\|_{\infty}
\end{aligned}
$$

(we are applying [KM, Cor. 6.4])

$$
\leq C^{\prime} \sup _{z \in \mathbb{Z}^{d}}\left\|\mathrm{f} \sqrt{\rho_{z}}\right\|_{L^{2}\left(\left[t_{1}, t_{2}\right], L^{2}\right)}
$$

where, recall, $\rho(x)=\left(1+\kappa|x|^{2}\right)^{-\theta}$ with $\theta>\frac{d}{2}$ and $\kappa>0$ fixed sufficiently small, $\rho_{z}(x)=\rho(x-z)$. In turn, since $\mathrm{f} \in \mathbf{F}_{\nu}$,

$$
\begin{aligned}
\left\|\mathrm{f} \sqrt{\rho_{z}}\right\|_{L^{2}\left(\left[t_{1}, t_{2}\right], L^{2}\right)}^{2} & \leq \frac{\nu}{4} \int_{t_{1}}^{t_{2}}\left\langle\frac{\left|\nabla \rho_{z}\right|^{2}}{\rho_{z}}\right\rangle d t \\
& \leq \frac{\nu}{4}\left(t_{2}-t_{1}\right)\|\nabla \rho / \sqrt{\rho}\|_{2}^{2} \\
& \left(\text { we are using }|\nabla \rho| \leq \theta \sqrt{\kappa} \rho,\|\sqrt{\rho}\|_{2}<\infty\right) \\
& \leq C^{\prime \prime}\left(t_{2}-t_{1}\right) .
\end{aligned}
$$

which gives us 1).
2) As a consequence of estimate 1), one has, e.g. for every integer $r \geq 1$,

$$
\sup _{m} \sup _{x \in \mathbb{R}^{d}} \mathbb{E}\left|\int_{t_{1}}^{t_{2}}\right| \mathfrak{f}\left(t, X_{s, t}^{x, m}\right)|d t|^{r} \leq C_{r}\left(t_{2}-t_{1}\right)^{r},
$$

see proof in [ZZ, Cor.3.5] (first, one represents $\mathbb{E}\left|\int_{t_{1}}^{t_{2}}\right| \mathfrak{f}\left(t, X_{s, t}^{x, m}\right)|d t|^{r}$ as the expectation of a repeated integral over $\Delta\left(t_{1}, t_{2}\right)$, cf. transition from (17) to (18), and then uses 1) r times).
3) It follows from 2) (upon selecting $f=b_{m}$) that

$$
\begin{aligned}
\mathbf{E}\left|X_{s, t_{2}}^{x, m}-X_{s, t_{1}}^{x, m}\right|^{r} & \leq C \mathbb{E}\left|\int_{t_{1}}^{t_{2}}\right| b_{m}\left(t, X_{s, t}^{x, m}\right)| |^{r}+C\left|W_{t_{2}}-W_{t_{1}}\right|^{r} \\
& \leq C\left(t_{2}-t_{1}\right)^{r}
\end{aligned}
$$

4) In particular,

$$
\sup _{m} \sup _{0 \leq s \leq t \leq T} \sup _{x \in \mathbb{R}^{d}} \mathbf{E}\left|X_{s, t}^{x, m}\right|^{r}<\infty .
$$

5) One has (the Sobolev norm is in the x variable)

$$
\sup _{m} \sup _{0 \leq s \leq t \leq T} \sup _{y \in \mathbb{R}^{d}} \mathbf{E} \int_{B_{1}(y)}\left|\nabla_{x} X_{s, t}^{x, m}\right|^{r} d x<\infty .
$$

Indeed,

$$
\begin{aligned}
\mathbf{E} \int_{B_{1}(y)}\left|\nabla_{x} X_{s, t}^{x, m}\right|^{r} d x & \leq\left(\int_{B_{1}(y)}\left(\mathbf{E}\left|\nabla_{x} X_{s, t}^{x, m}\right|^{r}\right)^{2} d x\right)^{\frac{1}{2}}\left|B_{1}(y)\right|^{\frac{1}{2}} \\
& =c_{d}\left\|\nabla X_{s, t}^{m}\right\|_{L^{2 r}\left(B_{1}(y), L^{r}(\Omega)\right)}^{r},
\end{aligned}
$$

so it remains to apply Proposition $2(i)$.
Let now $r>d$. Combining 4) and 5), and using the Sobolev embedding theorem, one obtains (the Hölder norm is in the x variable)

$$
\sup _{m} \sup _{0 \leq s \leq t \leq T} \sup _{y \in \mathbb{R}^{d}} \mathbf{E}\left\|X_{s, t}^{x, m}\right\|_{C^{1-\frac{d}{r}}\left(B_{1}(y)\right)}<\infty
$$

and so one arrives at:
6) For all $0 \leq s \leq t \leq T, x, y \in \mathbb{R}^{d}$ with $|x-y| \leq 1$,

$$
\mathbf{E}\left|X_{s, t_{2}}^{x, m}-X_{s, t_{1}}^{y, m}\right|^{r} \leq C|x-y|^{r-d}, \quad r>d
$$

7) Repeating the proof from RZ (which is a combination of 3) and 6), by means of the Markov property and the independence of $X_{s_{1}, s_{2}}^{x, m}$ and $\left.X_{s_{2}, t}^{y, m}\right)$, one arrives at

$$
\mathbf{E}\left|X_{s_{1}, t}^{x, m}-X_{s_{2}, t}^{x, m}\right|^{r} \leq C\left(s_{2}-s_{1}\right)^{r-d}, \quad 0 \leq s_{1} \leq s_{2} \leq t
$$

Estimates 3), 6), 7) combined yield, for $r>d$,

$$
\begin{equation*}
\mathbf{E}\left|X_{s_{1}, t_{1}}^{x, m}-X_{s_{2}, t_{2}}^{y, m}\right|^{r} \leq C\left(\left|t_{2}-t_{1}\right|^{r}+|x-y|^{r-d}+\left|s_{2}-s_{1}\right|^{r-d}\right) \tag{22}
\end{equation*}
$$

for all $\left(s_{i}, t_{i}\right) \in \Delta_{2}(T), i=1,2$.
Now comes the final stage in the approach of Röckner-Zhao. Proposition $2(i)-(i i i)$ verifies conditions of [RZ, Lemma 3.1], i.e. of the relative compactness criterion for random fields on the Wiener-Sobolev space (see the discussion of history of this type of results in [RZ]). This, and a standard diagonal argument, allow to conclude that there is a subsequence of $\left\{X_{s, t}^{x, m}\right\}$ (without loss of generality, still denoted by $\left\{X_{s, t}^{x, m}\right\}$) and a countable subset D of \mathbb{R}^{d} such that

$$
X_{s, t}^{x, m} \rightarrow X_{s, t}^{x} \quad \text { in } L^{2}(\Omega) \quad \text { as } m \rightarrow \infty
$$

for all $(s, t) \in \mathbb{Q}^{2} \times \Delta_{2}(T), x \in D$. Moreover, in view of 4$)$, one has $X_{s, t}^{x, m} \rightarrow X_{s, t}^{x}$ in $L^{r}(\Omega), r \geq 1$. Now (22) yields for $r>d$, upon applying Fatou's lemma, that

$$
\begin{equation*}
\mathbf{E}\left|X_{s_{1}, t_{1}}^{x}-X_{s_{2}, t_{2}}^{y}\right|^{r} \leq C\left(\left|t_{2}-t_{1}\right|^{r}+|x-y|^{r-d}+\left|s_{2}-s_{1}\right|^{r-d}\right) \tag{23}
\end{equation*}
$$

for all $\left(s_{i}, t_{i}\right) \in \mathbb{Q}^{2} \times \Delta_{2}(T), i=1,2, x, y \in D$. Kolmogorov-Chentsov theorem (after selecting $r>d$ even larger) allows to extend $X_{s, t}^{x}$ to a continuous random field, and yields, together with the equicontinuity estimate (22),

$$
X_{s, t}^{x, m} \rightarrow X_{s, t}^{x} \quad \text { P-a.s. as } m \rightarrow \infty
$$

for all $(s, t) \in \Delta_{2}(T), x \in \mathbb{R}^{d}$.
By [KM, Cor. 6.4],

$$
\begin{equation*}
\mathbf{E}\left[\int_{s}^{t}\left|\mathrm{f}\left(\tau, X_{s, \tau}^{x, m}\right)\right| d \tau\right] \leq C_{1} \sup _{z \in \mathbb{Z}^{d}}\left\|\mathrm{f} \sqrt{\rho_{z}}\right\|_{L^{2}\left([s, t], L^{2}\right)} \tag{24}
\end{equation*}
$$

(cf. proof of 1) above), and so

$$
\begin{equation*}
\mathbf{E}\left[\int_{s}^{t}\left|\mathfrak{f}\left(\tau, X_{s, \tau}^{x}\right)\right| d \tau\right] \leq C_{1} \sup _{z \in \mathbb{Z}^{d}}\left\|\mathfrak{f} \sqrt{\rho_{z}}\right\|_{L^{2}\left([s, t], L^{2}\right)} \tag{25}
\end{equation*}
$$

where, recall, $\mathrm{f} \in \mathbf{F}_{\nu}$ is bounded and smooth, but the constant C_{r} does not depend on smoothness of bundedness of f . Using Fatou's lemma, one can extend (24) to all $\mathrm{f} \in \mathbf{F}_{\nu}$, i.e. not necessarily smooth. (We will be selecting e.g. $\mathrm{f}=b-b_{m}$, in which case $\nu=2 \delta$.)

Now, to show that $X_{s, t}^{x}$ is a strong solution to (21), it remains to show that $\int_{s}^{t} b_{m}\left(\tau, X_{s, \tau}^{x, m}\right) d \tau \rightarrow$ $\int_{s}^{t} b\left(\tau, X_{s, \tau}^{x}\right) d \tau$ in $L^{1}(\Omega)$. Indeed,

$$
\begin{aligned}
\mathbf{E} \mid \int_{s}^{t}\left(b_{m}\left(\tau, X_{s, \tau}^{x, m}\right) d \tau-\int_{s}^{t} b\left(\tau, X_{s, \tau}^{x}\right) d \tau \mid\right. & \leq \mathbf{E}\left|\int_{s}^{t}\left(b_{m}-b_{k}\right)\left(\tau, X_{s, \tau}^{x, m}\right) d \tau\right| \\
& +\mathbf{E}\left|\int_{s}^{t} b_{k}\left(\tau, X_{s, \tau}^{x, m}\right) d \tau-\int_{s}^{t} b_{k}\left(\tau, X_{s, \tau}^{x}\right) d \tau\right| \\
& +\mathbf{E}\left|\int_{s}^{t}\left(b_{k}-b\right)\left(\tau, X_{s, \tau}^{x}\right) d \tau\right|=: I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

By (24), $I_{1} \leq \sup _{z \in \mathbb{Z}^{d}}\left\|\left(b_{m}-b_{k}\right) \sqrt{\rho_{z}}\right\|_{L^{2}\left([s, t], L^{2}\right)} \rightarrow 0$ as $m, k \rightarrow \infty$, where the L^{2} norm tends to zero since by our assumption b has compact support. Let us fix k sufficiently large. By (25), $I_{3} \rightarrow 0$ as $m \rightarrow \infty$. Finally, $I_{2} \rightarrow 0$ as $m \rightarrow \infty$ (for k fixed above) by the Dominated convergence theorem. This yields that $X_{s, t}^{x}$ is a strong solution to (1). This strong solution, clearly, satisfies (6).

Finally, regarding uniqueness of $X_{s, t}^{x}$ in the class of strong solutions satisfying Krylov estimate (6). The proof in [RZ] is based on Cherny's theorem [C] (strong existence + weak uniqueness \Rightarrow strong uniqueness) and the result from [RZ2] on the uniqueness of weak solution to SDE (1) in the class of solutions satisfying a Krylov-type bound. In our setting, it suffices to use instead the weak uniqueness result from [KM], valid for form-bounded drifts. This yields the uniqueness result in Theorem 1 within the class (5); regarding the uniqueness within the class (6), one needs to apply the weak uniqueness result from [K].

References

[B] R. Bass, Diffusions and Elliptic Operators, Springer, 1998.
[BFGM] L. Beck, F. Flandoli, M. Gubinelli and M. Maurelli, Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness. Electr. J. Probab., 24 (2019), Paper No. 136, 72 pp (arXiv:1401.1530).
[C] A.S. Cherny, On the uniqueness in law and the pathwise uniqueness for stochastic differential equations, Theory of Probability and its Applications, 46(3) (2002), 406-419.
[CFr] F. Chiarenza and M. Frasca, A remark on a paper by C. Fefferman, Proc. Amer. Math. Soc., 108 (1990), 407-409.
[F] C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
[K] D. Kinzebulatov, Parabolic equations and SDEs with time-inhomogeneous Morrey drift, arXiv:2301.13805
[K2] D. Kinzebulatov, Form-boundedness and SDEs with singular drift, arXiv:2305.00146.
[KM] D.Kinzebulatov and K.R.Madou, Stochastic equations with time-dependent singular drift, J. Differential Equations, 337 (2022), 255-293 (arXiv:2105.07312).
[KS] D. Kinzebulatov and Yu.A.Semënov, Sharp solvability for singular SDEs, Electr. J. Probab., to appear (arXiv:2110.11232).
[KS2] D. Kinzebulatov and Yu.A. Semënov, Brownian motion with general drift, Stoch. Proc. Appl., 130 (2020), 2737-2750 (arXiv:1710.06729).
[KSS] D. Kinzebulatov, Yu. A. Semënov and R.Song, Stochastic transport equation with singular drift, Ann. Inst. Henri Poincaré (B) Probab. Stat., to appear (arXiv:2102.10610).
[Kr1] N. V. Krylov, On diffusion processes with drift in L_{d}, Probab. Theory Relat. Fields 179, 165-199 (2021) (arXiv:2001.04950).
[Kr2] N. V. Krylov, On strong solutions of Itô's equations with $A \in W^{1, d}$ and $B \in L^{d}$, arXiv:2007.06040
[Kr3] N.V. Krylov, On strong solutions of Itô's equations with $D \sigma$ and b in Morrey classes containing L^{d}, arXiv:2111.13795
[Kr4] N.V. Krylov, On strong solutions of time-inhomogeneous Itô's equations with Morrey diffusion gradient and drift. A supercritical case, arXiv:2211.03719v2.
[Kr5] N.V. Krylov, Once again on weak solutions of time-inhomogeneous Itô's equations with VMO diffusion and Morrey drift, arXiv:2304.04634.
[KrR] N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields, 131 (2005), 154-196.
[MP] T. Meyer-Brandis and F. Proske, Construction of strong solutions of SDE's via Malliavin calculus, J. Funct. Anal., 258 (2010)(11), 3922-3953.
[MNP] A. Mohammed, T. Nilssen and F. Proske, Sobolev differentiable stochastic flows for SDEs with singular coefficients: applications to the transport equation, Ann. Probab., 43(3) (2015), 1535-1576.
[R] F. Rezakhanlou, Regular flows for diffusions with rough drifts, arXiv:1405.5856.
[RZ] M. Röckner and G. Zhao, SDEs with critical time dependent drifts: strong solutions, arXiv:2103.05803,
[RZ2] M. Röckner and G. Zhao, SDEs with critical time dependent drifts: weak solutions, Bernoulli, 29 (2023), 757-784 (arXiv:2012.04161).
[S] Yu. A. Semënov, Regularity theorems for parabolic equations, J. Funct. Anal., 231 (2006), 375-417.
[V] A. Yu. Veretennikov, Strong solutions and explicit formulas for solutions of stochastic integral equations, Matematicheski Sbornik (in Russian), 111(3) (1980), 434-452, English translation in Math. USSR-Sbornik, 39(3) (1981), 387-403.
[ZZ] X. Zhang and G. Zhao, Singular Brownian diffusion processes, Communications in Mathematics and Statistics, November 2018, DOI: 10.1007/s40304-018-0164-7.

Email address: damir.kinzebulatov@mat.ulaval.ca
Email address: kodjo-raphael.madou.1@ulaval.ca
Université Laval, Département de mathématiques et de statistique, Québec, QC, Canada

[^0]: ${ }^{1}$ and not contained in any $\mathbf{F}_{\delta^{\prime}}$ with $\delta^{\prime}<\delta$ regardless of the choice of $g_{\delta^{\prime}}$

