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LAPLACIAN WITH SINGULAR DRIFT IN A CRITICAL BORDERLINE

CASE

D. KINZEBULATOV

Abstract. We establish well-posedness and regularity for parabolic diffusion equation in the
case when the singularities of a general drift reach the critical magnitude. The latter dictates the
need to work in an Orlicz space situated between all Lp and L∞.

1. Introduction and result

1.1. Introduction. The paper investigates well-posedness and other properties of the parabolic
diffusion equation in the case when the magnitude of critical-order singularities of a general drift

attains the critical value. This equation arises, in particular, in the study of particle systems when
the strength of singular attracting interactions of Hardy type reaches (and surpasses) the critical
threshold. The latter brings qualitative change in the behaviour of the particles, i.e. they start

to agglomerate and one can prove only local in time existence of solution for the corresponding
stochastic differential equation (SDE). To be more precise, consider SDE

Xt − x = −
√

δ
d − 2

2

∫ t

0
|Xs|−2Xsds +

√
2Bt, (1)

where Bt is the standard Brownian motion in R
d, d ≥ 3, with initial condition X0 = x and the

drift that pushes the trajectories towards the origin. (This SDE is obtained from a two-particle

system with attracting interaction, Xt being the difference between their trajectories, see Remark
1.) If X0 = 0 and δ > 4( d

d−2 )2, then this SDE does not have a weak solution. If δ > 4, then
for every X0 6= 0 Xt arrives at the origin in finite time with positive probability. Informally, the

attraction to the origin by the drift is too strong. The proof can be found in [BFGM].
On the other hand, in [KiS1, Theorem 1.3], Semënov and the author proved the following

result. Consider SDE

Xt − x = −
∫ t

0
b(Xs)ds +

√
2Bt, x ∈ R

d, (2)

where Bt is the standard Brownian motion in R
d, d ≥ 3, and drift b : Rd → R

d is form-bounded,

i.e. |b| ∈ L2
loc and the following quadratic form inequality holds:

‖bϕ‖2
2 ≤ δ‖∇ϕ‖2

2 + cδ‖ϕ‖2
2 ∀ϕ ∈ C∞

c (3)

for some constants δ > 0 and cδ < ∞ (here and in what follows, ‖ · ‖p := ‖ · ‖Lp). We abbreviate
(3) as b ∈ Fδ. A broad sufficient condition for b ∈ Fδ is a scaling-invariant Morrey class

‖b‖M2+ε
:= sup

r>0,x∈Rd

r

(

1

|Br(x)|

∫

Br(x)
|b|2+εdx

)

1
2+ε

< ∞,
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2 D. KINZEBULATOV

for ε > 0 fixed arbitrarily small. Here Br(x) denotes the ball of radius r centered at x. Then the
form-bound δ = cd‖b‖M2+ε

[F], see also [CF]. In particular, vector fields b with entries in Ld or in

the weak Ld classes are form-bounded1. The form-boundedness condition in fact appears already
in the Lax-Milgram theorem since it provides coercivity for the corresponding Dirichlet form, see
discussion in the end of Section 1.2. A model example of a form-bounded drift b with |b| 6∈ Ld is

b(x) = ±
√

δ
d − 2

2
|x|−2x. (4)

The fact that this b ∈ Fδ with cδ = 0 is the well known Hardy inequality. So, SDE (1) is a special
case of (2). We emphasize that the form-boundedness of b does not require the existence of even
locally summable divergence div b or any kind of symmetry of b. Returning to the result in [KiS1,

Theorem 1.3], there the authors proved that if

δ < 4,

then SDE (2) has a martingale solution for every initial point x ∈ R
d. The proof in [KiS1] used

some elements of De Giorgi’s method ran in Lp, p > 2
2−

√
δ
.

The present papers deals with the borderline case

δ = 4

at the level of the corresponding to (2) backwad Kolmogorov equation

(∂t − ∆ + b · ∇)u = 0 (5)

on the torus, for the entire class of form-bounded vector fields b ∈ Fδ. Our main result (Theorem

1) is a well-posedness theory of (5) in an Orlicz space situated between all Lp and L∞. This
space is essentially dictated by the drift term. Orlicz spaces are known to appear in analysis
and the theory of PDEs in various borderline situations, cf. Trudinger’s theorem, or see [KM, M]
regarding Orlicz spaces arising in the study of dynamics of compressible fluids. Theorem 1 gives

another examples of a borderline situation where an Orlicz space appears. We consider Theorem
1 to be the first step towards a theory of (5) for δ = 4 that should establish a link with singular
SDEs.

Remark 1 (On interacting particle systems). SDE (2) considered in R
Nd, with Bt = (B1

t , . . . , BN
t )

being the vector of N independent d-dimensional Brownian motions, N ≥ 2, Xt = (Y 1
t , . . . , Y N

t )
where Y i

t is the position of the i-th particle in R
d at time t, and drift b = (b1, . . . , bN ) : RNd → R

Nd,
defined by

bi(y1, . . . , yN ) :=
1

N

N
∑

j=1,j 6=i

K(yi − yj), 1 ≤ i ≤ N, yj ∈ R
d, (6)

describes the dynamics of N interacting particles with the interaction kernel K : Rd → R
d. If

K ∈ Fκ (on R
d), then a simple calculation shows that b defined by (6) satisfies

b ∈ Fδ on R
Nd, δ = 4

(

N

N − 1

)2

,

1The former inclusion is easily seen directly: if |b| ∈ Ld, then, for every ε > 0, we can represent b = b1 + b2,
where ‖b1‖d < ε and ‖b2‖∞ < ∞. So, we obtain, using the Sobolev inequality,

‖bϕ‖2
2 ≤ 2‖b1‖2

d‖ϕ‖2
2d

d−2

+ 2‖b2‖2
∞‖ϕ‖2

2 ≤ CS2‖b1‖2
d‖∇ϕ‖2

2 + 2‖b2‖2
∞‖ϕ‖2

2,

so b ∈ Fδ with δ = CS2ε. Thus, δ can be chosen arbitrarily small. In this sense, class |b| ∈ Ld is sub-critical.
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moreover, for K(y) = ±
√

δ d−2
2 |y|−2y, y ∈ R

d, one can improve (i.e. lower) the form-bound δ using

the multi-particle Hardy inequality of [HHLT]. See [Ki4]. Theorem 1 below thus applies to the
backward Kolmogorov equation that is behind the multi-particle stochastic system (2), (6).

As N → ∞, the empirical measures of the trajectories of Y i
t are expected to converge (cf. [FJ])

to solution of the McKean-Vlasov SDE whose law ρt(·) satisfies the non-linear McKean-Vlasov
PDE in R

d

∂tρ − ∆ρ − ∇ · (b̃ρ) = 0, b̃(t) := K ∗ ρ(t). (7)

with the initial probability distribution ρ0 ≥ 0,
∫

Rd ρ0(y)dy = 1. This b is itself a time-dependent

form-bounded vector field, i.e. for every t ≥ 0 (let 〈 〉 denote the integration over R
d)

〈|b̃(t)|2ϕ2〉 =
〈

|〈K(· − z)ρt(z)〉z |2ϕ2〉

(apply Cauchy-Schwartz inequality in z and use 〈ρt(z)〉z = 1)

≤
〈

〈|K(· − z)|2ρt(z)〉zϕ2〉

=
〈

〈|K(· − z)|2ϕ2〉ρt(z)
〉

z

(apply K ∈ Fκ(Rd) and use again 〈ρt(z)〉z = 1)

≤ κ〈|∇ϕ|2〉 + cκ〈ϕ2〉.
(At this point we should add that our Theorem 1 extends easily to time-dependent form-bounded
b, with propagators instead of semigroups, see comments in Section 1.4.) We exploit this in
Section 1.3 to rule out using Theorem 1 the blow up of solution of the forward Kolmogorov

equation of type (7), i.e. the formation of a delta-function in ρt in finite time, under appropriate
condition on the initial probability distribution. The questions of well-posedness and blow up of
solutions of (7) received a lot of attention in the past few years, see [CP, FJ] and recent papers

[FT, T] dealing with the borderline strengths of attraction. Our results, however, are parallel to
these developments, at least at the moment: there the authors work in dimension d = 2 with
the Hardy-type attracting interaction K(y) = c|y|−2y, y ∈ R

d, as needed for applications to the

famous Keller-Segel model of chemotaxis. Moreover, their proofs rely on the special structure
of c|y|−2y. We, on the other hand, deal with the entire class of form-bounded vector fields in
dimensions d ≥ 3. (Speaking of the critical strengths of interactions, see also [BJW] who proved

quantitative propagation of chaos for (7) for a class of singular vector fields of gradient form in
dimensions d ≥ 2, covering the entire range, up to the equality, of the strengths of attracting
interactions.)

Remark 2 (On the sub-critical condition δ < 4). Let us explain where does condition δ < 4

come from. The authors of [KS] proved, among many other results, that one can construct a
strongly continuous semigroup corresponding to parabolic equation (5) for all δ < 4 by working
in Lp, p > 2

2−
√

δ
. The following calculation illustrates this. Consider initial-value problem

{

(∂t − ∆ + b · ∇)u = 0 on [0, ∞[×R
d,

u(0, ·) = f(·),
(8)

where b and f are assumed to be smooth (but the constants in the estimates should not depend
on the smoothness of b and f). Replacing u by v := ue−λt, λ ≥ 0, we can deal with initial-value

problem (λ + ∂t − ∆ + b · ∇)v = 0, v(0) = f. Multiply this equation by vp−1, where, without
loss of generality, p is rational with odd denominator (so that we can raise negative functions to
power p − 1), and integrate by parts:

λ〈vp〉 +
1

p
〈∂tv

p〉 +
4(p − 1)

p2
〈|∇v

p

2 |2〉 +
2

p
〈b · ∇v

p

2 , v
p

2 〉 = 0.
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Applying quadratic inequality in the last term (and multiplying by p), we arrive at

pλ〈vp〉 + 〈∂tv
p〉 +

4(p − 1)

p
〈|∇v

p

2 |2〉 ≤ α〈|b|2, vp〉 +
1

α
〈|∇v

p

2 |2〉

Now, applying b ∈ Fδ and selecting α = 1√
δ
, we obtain the energy inequality

[

pλ − cδ√
δ

]

〈vp〉 + 〈∂tv
p〉 +

[

4(p − 1)

p
− 2

√
δ

]

〈|∇v
p

2 |2〉 ≤ 0, λ ≥ cδ

p
√

δ
. (9)

Thus, in order keep the dispersion term one needs 4(p−1)
p

− 2
√

δ > 0, i.e. p > 2
2−

√
δ
, hence the

requirement δ < 4. (And even if one is ready to sacrifice the dispersion term, in order to control
〈vp〉 one still needs it to be zero, hence one needs δ < 4.)

Under the sub-critical condition δ < 4, one can remove the assumption of smoothness of b and

construct the corresponding strongly continuous quasi-contraction semigroup e−tΛp(b)f := u(t) in
Lp, see [KS, KiS2].

Although the interval of quasi contraction solvability p ∈] 2
2−

√
δ
, ∞[ tends to ∅ as δ ↑ 4, this

interval can be extended to the interval of quasi-bounded solvability q ∈] 2
2− d−2

d

√
δ
, ∞[:

‖e−tΛq(b)‖q ≤ Mq,δeλq,δt‖f‖q, t > 0,

see [KiS2] where the authors also demonstrated that the interval of quasi-bounded solvability is

sharp. Notice that as δ ↑ 4 the interval of quasi-bounded solvability tends to ]d
2 , ∞[. However,

Mq,δ → ∞ as δ ↑ 4, so this still does not give a strongly continuous semigroup for (5) for δ = 4
in any Lq with finite q.

It should be added that one has a priori bound ‖u(t)‖∞ ≤ ‖f‖∞ for solution u of (8) regardless
of the value of δ. However, the existing methods of constructing Feller semigroup for −∆+b·∇ on
R

d (i.e. a strongly continuous semigroup in the space of continuous functions vanishing at infinity

endowed with norm ‖ · ‖∞) are based on the regularity theory of (8), such as strong gradient
bounds or De Giorgi’s method, see [KS, Ki, Ki2]. So, these methods require the dispersion term
in (9), and hence the strict inequality δ < 4. (That said, in Theorem 1 we still prove an energy

inequality for δ = 4 with some weakened dispersion term.)

1.2. Main result. Critical case δ = 4. In the rest of the paper we work over d-dimensional
torus Πd obtained as the quotient of [−1

2 , 1
2 ]d. This is not a technical assumption since the volume

of the torus enters the estimates; the case of Rd requires separate study. Still, since δ measures
the magnitude of local singularities of b, working on a torus is sufficient for the purposes of this

paper.
The functions/vector fields on Πd are identified with 1-periodic functions/vector fields on R

d.
Let dx denote the Lebesgue measure on Πd. Given a Borel measurable function f : Πd → R, we

put

〈f〉 :=

∫

Πd
f(x)dx, 〈f, g〉 := 〈fg〉.

We have |Πd| = 〈1〉 = 1. Let ‖ · ‖p denote the norm in Lp ≡ Lp(Πd, dx). Put C∞ := C∞(Πd).
We now introduce the “critical” Orlicz space on the torus. Define the gauge function

Φ(y) := cosh(y) − 1, y ∈ R

It is clear that Φ(y) = Φ(|y|) is convex on R, Φ(y) = 0 if and only if y = 0, Φ(y)/y → 0 if y → 0
and Φ(y)/y → ∞ if y → ∞. Therefore,

‖f‖Φ := inf
{

c > 0 | 〈Φ
(f

c

)

〉 ≤ 1
}

< ∞, (10)
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is a norm and we can define LΦ to be the closure of C∞(Πd) in the Orlicz space LΦ, see [AF,
Ch. 8]. With some abuse of terminology, we will call LΦ itself the Orlicz space with gauge function
Φ.

It follows from the Taylor series representation Φ(y) =
∑∞

k=1
y2k

(2k)! that

‖ · ‖Φ ≥ 1

(2p)!
‖ · ‖2p, p = 1, 2, . . . , (11)

i.e. ‖ · ‖Φ is stronger than ‖ · ‖p regardless of how large (finite) p is. It is, however, weaker than
‖ · ‖∞.

The definition of form-bounded vector fields on the torus does not change.

Definition. A vector field b ∈ [L2(Πd)]d is called form-bounded if there exists constant δ > 0
such that quadratic form inequality

‖bϕ‖2
2 ≤ δ‖∇ϕ‖2

2 + cδ‖ϕ‖2
2 ∀ϕ ∈ C∞

holds for some constant cδ. This will also be written, with some abuse of notation, as b ∈ Fδ.

The examples of form-bounded vector fields on R
d remain essentially unchanged when one

transitions to Πd. For relevant papers, we refer to [BO, G]. One necessary comment, however, is
related to the fact that when working over the torus the Hardy inequality is often obtained for
functions having zero average. This does not cause a problem for us (also because, in principle,
we could also work with zero average functions in Theorem 1). For instance, a Hardy inequality

in [G]
∫

Πd
V (x)|ϕ(x) − 〈ϕ〉|2dx ≤ 3d2 + 8d + 4

d(d − 2)2

∫

Πd
|∇ϕ(x)|2dx, V (x) :=

1
∑d

j=1 sin2(xj/2)
,

where 〈ϕ〉 :=
∫

Πd ϕ(x)dx coincides with the average of ϕ on Πd, gives us, using Cauchy-Schwartz
inequality,

∫

Πd
V (x)ϕ2(x) ≤ 3d2 + 8d + 4

d(d − 2)2

∫

Πd
|∇ϕ(x)|2dx + c

∫

Πd
ϕ2(x)dx

for all ϕ ∈ C∞(Πd), where constant c = C(1+
∫

Πd V 2(y)dy) with
∫

Πd V 2(y)dy < ∞ in dimensions

d ≥ 5.

Given a b ∈ Fδ, we put

bn := Eεnb,

where {εn} ↓ 0 is fixed arbitrarily and Eε := eε∆ is the De Giorgi mollifier on Πd. Then

bn → b in L2(Πd) (12)

and, importantly, bn ∈ Fδ with the same constant cδ as the one for b, see the beginning of the
proof of Theorem 1.

By the standard theory, for every n = 1, 2, . . . , for every f ∈ C∞(Πd), Cauchy problem for the
backward Kolmogorov equation

(∂t − ∆ + bn · ∇)un = 0, un(0) = f

has unique classical solution, moreover, the operators e−tΛ(bn) defined by

e−tΛ(bn)f := un(t), t ≥ 0,

constitute a semigroup that is strongly continuous on smooth f in the norm of LΦ since it is
strongly continuous in the stronger norm of L∞.
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Theorem 1. Let b ∈ Fδ = Fδ(Πd), 0 < δ ≤ 4. The following are true:

(i) There exists a strongly continuous quasi contraction Markov semigroup e−tΛ(b) on LΦ,

‖e−tΛ(b)f‖Φ ≤ e
2

cδ√
δ

t‖f‖Φ, t ≥ 0,

such that, for every f ∈ C∞,

‖e−tΛ(b)f − e−tΛ(bn)f‖Φ → 0 as n → ∞ loc. uniformly in t ≥ 0. (13)

The generator Λ(b) of the semigroup is the appropriate operator realization of the formal operator

−∆ + b · ∇ in LΦ, so u(t) := e−tΛ(b)f , f ∈ LΦ is the strong solution of the Cauchy problem for

the backward Kolmogorov equation (∂t − ∆ + b · ∇)u = 0, u(0) = f in LΦ.

(ii) This semigroup is unique in the sense that for any other the choice of smooth vector fields

bn → b in L2 that do not increase constants δ, cδ we have convergence (13) to the same limit

semigroup e−tΛ(bn).

(iii) The function v := (µ + Λ(b))−1f , f ∈ C∞(Πd), µ > 2cδ√
δ

is the unique weak solution to

elliptic Kolmogorov equation

(µ − ∆ + b · ∇)v = f, (14)

i.e. v ∈ W 1,2(Πd) ∩ L∞(Πd) and

µ〈v, ϕ〉 + 〈∇v, ∇ϕ〉 + 〈b · ∇v, ϕ〉 = 〈f, ϕ〉
for every ϕ ∈ W 1,2(Πd) ∩ L∞(Πd).

(iv) Let p ≥ 2 be rational with odd denominator. The following a priori energy inequality holds

for u = e−tΛ(bn)f :

sup
s∈[0,t]

〈eup(s)〉 + 4
(p − 1)

p

∫ t

0
〈(∇u

p

2 )2eup〉ds + 2(2 −
√

δ)

∫ t

0
〈(∇e

up

2 )2〉ds

≤ 〈efp〉 +
cδ√

δ

∫ t

0
〈eup〉ds.

In particular, for δ = 4,

1

2
sup

s∈[0,t]
〈eup(s)〉 + 4

(p − 1)

p

∫ t

0
〈(∇u

p

2 )2eup〉ds ≤ 〈efp〉, p = 2, 4, . . .

provided cδ√
δ
t < 1

2 ; the last constraint can be removed using the semigroup property.

It is not yet clear what kind of well-posedness result is valid for SDE (2) in the critical case

δ = 4. Of course, in the sub-critical case δ < 4 a lot more is known. Other than the result from
[KiS1] on the weak solvability of SDE (2) discussed in the beginning of the paper, let us mention
[KiS3] dealing with similar thresholds in the proofs of Gaussian lower and/or upper heat kernel

bounds for (5) and the general divergence-form equation (15).
In Theorem 1 we could work over any compact Riemannian manifold without boundary. How-

ever, as was mentioned above, the finiteness of the volume of the manifold is important since the

volume enters the estimates.
The last assertion of Theorem 1 is noteworthy: at the first sight, it seems like the possibility

to pass to δ = 4 comes at the cost of killing off the dispersion term. Nevertheless, it turns out

that some gradient estimates persist even for δ = 4.
A crucial feature of Theorem 1 is that it covers the entire class of form-bounded vector fields

for the critical value of δ and not just some of its representatives as e.g. Hardy drift (4). In fact,
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(4) is better than a typical representative of Fδ since, on a bounded domain, such b satisfies an
“improved form-boundedness condition”

c‖ϕ‖2
2j + ‖bϕ‖2

2 ≤ δ‖∇ϕ‖2
2 + cδ‖ϕ‖2

2, j <
d

d − 2
, c > 0.

The latter is a re-statement of the improved Hardy inequality due to [BV] (there cδ = 0). Also,

for this b, the corresponding forward Kolmogorov operator admits, at least formally, an explicit
invariant measure, which opens up other ways for studying this equation; see [BKRS] in this
regard.

The class of form-bounded vector fields appears naturally in connection with divergence-form
parabolic equation

(∂t − ∇ · a · ∇ + b · ∇)u = 0, (15)

where a is a symmetric uniformly elliptic matrix, i.e. σI ≤ a ∈ [L∞]d×d for some σ > 0. More

specifically, b ∈ Fδ with δ < σ allows to verify coercivity of the corresponding sesquilinear form
on W 1,2 and hence to apply the Kato-Lions-Lax-Milgram-Nelson (KLMN) theorem [K, Ch.VI],
which yields the strong solution theory of −∇ · a · ∇ + b · ∇ in L2. Moreover, if one focuses on
the assumptions on b in terms of |b| only, as we do in the present paper, then condition b ∈ Fδ is

in fact necessary for such L2 theory to exist, see [MV].

1.3. Forward Kolmogorov equation and absence of blow up. We discuss briefly the for-
ward Kolmogorov equation

∂tρt − ∆ρt − ∇ · (bρt) = 0, b ∈ Fδ, δ ≤ 4, (16)

with the initial condition ρ0 = g, 0 ≤ g, 〈g〉 = 1. The method of constructing semigroup e−tΛ(b)

in the proof of Theorem 1 (i.e. verifying Cauchy criterion in L∞([0, 1], LΦ)) does two things at
the same time: it produces, for each t > 0, the operators e−tΛ ∈ B(LΦ), and yields the strong

continuity of the semigroup in LΦ. It is not clear how to adapt this argument to (16). In fact,
the strong continuity of the semigroup seems to be an obstacle here.

In view of Theorem 1, one expects (16) to be posed in the dual of the Orlicz space LΦ. By a

classical result (see [AF, Ch. 8]), the dual of LΦ is isomorphic and homeomorphic to LΨ, where Ψ
is the complimentary function (of logarithmic type) of Φ = cosh −1. By the Phillips theorem, the
adjoint operators (e−tΛ)∗ ∈ B(LΨ) constitute a semigroup in LΨ, although this semigroup does

not have to be strongly continuous, see [Yo, Sect. IX.13]. We thus can pose, even if formally,

ρt := (e−tΛ)∗g, for all t > 0

provided that the initial probability distribution g satisfies additional condition ‖g‖LΨ
< ∞.

Returning to our discussion in Remark 1, we note that since the delta-function does not belong

to LΨ, condition ‖g‖LΨ
< ∞ excludes the blow up of ρt in finite time.

1.4. Further remarks. 1. Speaking of the paper [KS] that introduced strong solution theory
of (5) with δ < 4, the goal of the authors there was to detect the dependence of the regularity

properties of solutions of (5) on the value of δ, which they did by showing that the strongly
continuous semigroup for (5) exists in Lp for p > 2

2−
√

δ
. But to reach δ = 4 one needs to work in

a space that “does not sense” 0 < δ ≤ 4, such as the Orlicz space LΦ, Φ = cosh −1.

2. The proof of Theorem 1 also works for form-bounded b = b(t, x), i.e. b ∈ L2([0, ∞[×Πd) and
for a.e. t ≥ 0

‖b(t)ϕ‖2
2 ≤ δ‖∇ϕ‖2

2 + gδ(t)‖ϕ‖2
2 ∀ϕ ∈ C∞

for a function 0 ≤ gδ ∈ L1
loc[0, ∞[.
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3. Estimate (iv) of Theorem 1 extends right away to solutions of divergence form equation (15)
where the uniformly elliptic matrix a ≥ σI and the vector field b are assumed to be smooth and
bounded, but the constants in (iv) do not depend on the smoothness of a, b, or the boundedness

of b (i.e. these are a priori estimates).

Define vector field ∇a by (∇a)k :=
∑d

i=1 ∇iaik (1 ≤ k ≤ d). One obtains similar results for
solutions of the non-divergence form equation via the representation

−a · ∇2 + b · ∇ := −∇ · a · ∇ + (∇a + b) · ∇,

provided that ∇a + b ∈ Fδ, δ ≤ 4σ2. This condition includes some matrices a having critical
discontinuities. For instance, working for simplicity on R

d, if a = I + cx ⊗ x|x|−2, c > −1, then

∇a = c(d − 1)|x|−2x ∈ Fδ with δ = 4c2(d − 1)2/(d − 2)2, see [KiS2, Sect. 4]. Since we can now
reach the critical value of the form-bound δ, we can treat previously inaccessible, at least in the
presence of a form-bounded drift, magnitude of critical discontinuities of a.

2. Proof of Theorem 1

Before we begin the proof, let us first show that bn := Eεnb (De Giorgi mollifier on Πd) indeed
do not increase constants δ and cδ of b. Arguing as in [KiS3], we note that |bε| ≤

√

Eε|b|2 and so

‖bεϕ‖2
2 ≤ 〈Eε|b|2, ϕ2〉 = ‖b

√

Eεϕ2‖2
2 ≤ δ‖∇

√

Eεϕ2‖2
2 + cδ‖ϕ‖2

2,

where

‖∇
√

Eε|ϕ|2‖2 =
∥

∥

Eε(|ϕ||∇|ϕ|)
√

Eε|ϕ|2
∥

∥

2

≤ ‖
√

Eε|∇|ϕ||2‖2 = ‖Eε|∇|ϕ||2‖
1
2
1

≤ ‖∇|f |‖2 ≤ ‖∇ϕ‖2,

i.e. bε ∈ Fδ with the same cδ as b, as claimed.

Now, we start the proof of Theorem 1. We replace un by vn = e−λtun, λ = cδ√
δ
, which satisfies

{

(λ + ∂t − ∆ + bn · ∇)vn = 0 on [0, ∞[×Πd,

vn(0, ·) = f(·) ∈ C∞(Πd).
(17)

(i) Fix n and write for brevity v = vn. Let us first prove bound

‖v(t)‖Φ ≤ e
cδ√

δ
t‖f‖Φ. (18)

To this end, we multiply the equation by ev and integrate:

λ〈v, ev〉 + 〈∂t(e
v − 1)〉 + 4〈(∇e

v
2 )2〉 + 2〈be

v
2 , ∇e

v
2 〉 = 0.

By quadratic inequality,

λ〈v, ev〉 + 〈∂t(e
v − 1)〉 + 4〈(∇e

v
2 )2〉 ≤ α〈b2ev〉 +

1

α
〈(∇e

v
2 )2〉. (19)

Applying b ∈ Fδ and selecting α = 1√
δ
, we arrive at

λ〈v, ev〉 + 〈∂t(e
v − 1)〉 + (4 − 2

√
δ)〈(∇e

v
2 )2〉 ≤ cδ√

δ
〈ev〉. (20)
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Using δ ≤ 4 (we are interested above all in δ = 4), one obtains, after integrating in time from 0
to t:

λ

∫ t

0
〈v, ev〉ds + 〈ev(t) − 1〉 ≤ 〈ef − 1〉 +

cδ√
δ

∫ t

0
〈ev〉ds.

Replacing in the last inequality v by −v and adding up the resulting inequalities, we obtain

λ

∫ t

0
〈v sinh(v)〉ds + 〈cosh(v(t)) − 1〉 ≤ 〈cosh(f) − 1〉 +

cδ√
δ

∫ t

0
〈cosh(v)〉ds.

Applying v sinh(v) ≥ cosh(v) − 1, we arrive at

(λ − cδ√
δ

)

∫ t

0
〈cosh(v) − 1〉ds + 〈cosh(v(t)) − 1〉 ≤ 〈cosh(f) − 1〉 +

cδ√
δ

t, (21)

where at the last step we have used the fact that volume |Πd| = 1. Recall that λ = cδ√
δ
.

Since our equation is linear, replacing everywhere v by v
c
, c > 0, we have

(λ − cδ√
δ

)

∫ t

0
〈cosh(

v

c
) − 1〉ds + 〈cosh(

v(t)

c
) − 1〉 ≤ 〈cosh(

f

c
) − 1〉 +

cδ√
δ

t.

Recalling our choice of λ, we have

〈cosh(
v(t)

c
) − 1〉 ≤ 〈cosh(

f

c
) − 1〉 +

cδ√
δ

t.

Let us fix t and divide interval [0, t] into k subintervals: [0, t
k
], [ t

k
, 2t

k
], . . . , . . . , [ (k−1)t

n
, t], where k

is large, i.e. is so that

γ :=
cδ√

δ

t

k
< 1.

Now, let c∗ > 0 be minimal such that 〈cosh( f
(1−γ)c∗

) − 1〉 = 1 (i.e. ‖f‖Φ = (1 − γ)c∗). Using the

Taylor series expansion for cosh −1, one sees that

cosh(
f

(1 − γ)c∗
) − 1 ≥ 1

1 − γ

[

cosh(
f

c∗
)) − 1

]

.

So, 〈cosh( f
c∗

)) − 1〉 ≤ 1 − γ. Therefore,

〈cosh(
v( t

k
)

c∗
) − 1〉 ≤ 1,

and so

‖v(
t

k
)‖Φ ≤ c∗ ≡ 1

1 − γ
‖f‖Φ ≡ 1

1 − cδ√
δ

t
k

‖f‖Φ.

By the semigroup property,

‖v(t)‖Φ ≤ (1 − cδ√
δ

t

k
)−k‖f‖Φ.

Taking k → ∞, we obtain ‖v(t)‖Φ ≤ e
cδ√

δ
t‖f‖Φ, i.e. we have proved (18).

Next, we prove the convergence result in (i). It suffices to carry out the proof for solutions
{vn} of (17). In three steps:

Step 1. First, let us note that ∇vn are bounded in L2([0, 1] × Πd) uniformly in n. Indeed,
multiplying (λ+∂t −∆+ bn ·∇)vn = 0 by vn and integrating over [0, t]×Πd, 0 < t ≤ 1, we obtain

λ

∫ t

0
〈v2

n〉ds +
1

2
〈v2

n(t)〉 − 1

2
〈f2〉 +

∫ t

0
〈(∇vn)2〉ds = −

∫ t

0
〈bn · ∇vn, vn〉ds,
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1

2
〈v2

n(t)〉 − 1

2
〈f2〉 +

∫ t

0
〈(∇vn)2〉ds ≤ α

∫ T

0
〈(∇vn)2〉ds +

1

4α

∫ T

0
〈b2

nv2
n〉ds,

where, by ‖vn(s)‖∞ ≤ ‖f‖∞, s ∈ [0, T ],
∫ t

0
〈b2

nv2
n〉ds ≤ sup

n

∫ t

0
‖bn‖2

2ds‖f‖2
∞ =: C0‖f‖2

∞

(in view of (12), C0 < ∞). Hence, selecting above e.g. α = 1
2 , we obtain

1

2
〈v2

n(t)〉 +
1

2

∫ t

0
〈(∇vn)2〉ds ≤ 1

2
〈f2〉 +

1

2
C0‖f‖2

∞.

In particular,

sup
n

∫ t

0
〈(∇vn)2〉ds ≤ ‖f‖2

2 + C0‖f‖2
∞. (22)

(At this step we actually do not need positive λ, but we will need it at the next step.)

Step 2. Let us show that vn − vm → 0 in LΦ as n, m → ∞ uniformly in t ∈ [0, T ], where
0 < T ≤ 1 will be chosen later. (At the next step we will define the sought semigroup on [0, T ]
as the limit of vn.)

Put

h :=
vn − vm

c
, c > 0.

We have

λh + ∂th − ∆h + bn · ∇h + (bn − bm) · c−1∇vm = 0, h(0) = 0. (23)

We multiply by eh and integrate by parts. The terms λh + ∂th − ∆h + bn · ∇h are handled as in
the beginning of the proof of (i) (but with initial condition h(0) = 0):

(λ − cδ√
δ

)

∫ t

0
〈eh − 1〉ds + 〈eh(t) − 1〉 + (4 − 2

√
δ)

∫ t

0
〈(∇e

h
2 )2〉ds

≤ −
∫ t

0
〈(bn − bm) · c−1∇vm, eh〉ds +

cδ√
δ

t. (24)

Using ‖eh(s)‖∞ ≤ e2c−1‖f‖∞ , we estimate:

∣

∣

∣

∣

∫ t

0
〈(bn − bm) · c−1∇vm, eh〉ds

∣

∣

∣

∣

≤
(

∫ t

0
‖bn − bm‖2

2ds

)

1
2

c−1
(

∫ t

0
‖∇vm‖2

2ds

)

1
2

e2c−1‖f‖∞

(use Step 1)

≤
(

∫ t

0
‖bn − bm‖2

2ds

)

1
2

c−1
(

‖f‖2
2 + C0‖f‖2

∞

)

1
2

e2c−1‖f‖∞ .

By (12),
∫ t

0 ‖bn − bm‖2
2ds → 0 as n, m → ∞. So, for every c > 0,

∣

∣

∣

∣

∫ t

0
〈(bn − bm) · c−1∇vn, eh〉ds

∣

∣

∣

∣

→ 0 as n, m → ∞ uniformly in 0 ≤ t ≤ T . (25)

Now, since δ ≤ 4, we have by (24) (recall: λ = cδ√
δ
) and (25), for every fixed c > 0, for all ε > 0

sup
t∈[0,T ]

〈e
vn(t)−vm(t)

c − 1〉 ≤ ε +
cδ√

δ
T

for all n, m sufficiently large.
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Repeating the previous argument for −h and adding up the resulting inequalities, we obtain:
for every fixed c > 0, for all ε > 0,

sup
t∈[0,T ]

〈Φ
(vn(t) − vm(t)

c
)〉 ≤ ε +

cδ√
δ

T

for all n, m sufficiently large. Selecting T such that cδ√
δ
T < 1, we thus obtain for every c > 0,

provided that ε is chosen sufficiently small: supt∈[0,T ]〈Φ
(vn(t)−vm(t)

c
)〉 ≤ 1 for all n, m large enough.

Hence ‖vn(t) − vm(t)‖Φ → 0 as n, m → ∞ uniformly in 0 ≤ t ≤ T .

Step 3. Define

Stf := LΦ- lim
n

e
cδ√

δ
t
vn(t) ≡ LΦ- lim

n
e−tΛ(bn)f, t ∈ [0, T ].

This is a continuous LΦ valued function of t ∈ [0, T ]. By passing to the limit in n in ‖vn(t)‖Φ ≤
e

cδ√
δ

t‖f‖Φ, see (i), we obtain ‖Stf‖Φ ≤ e
2

cδ√
δ

t‖f‖Φ. The linearity of St is evident. The semigroup

property (t, s ∈ [0, T ]):

‖e−tΛ(bn)e−sΛ(bn)f − StSsf‖Φ ≤ ‖(e−tΛ(bn)(e−sΛ(bn)f − Ssf)‖Φ + ‖(e−tΛ(bn) − St)Ssf)‖Φ

≤ ‖e−sΛ(bn)f − Ssf‖Φ + ‖e−tΛ(bn) − St)Ssf‖Φ → 0, n → ∞.

On the other hand, e−tΛ(bn)e−sΛ(bn)f = e−(t+s)Λ(bn)f → St+sf , and so the semigroup property

follows.

We extend St from C∞ to LΦ via the standard density argument using ‖Stf‖Φ ≤ e
2

cδ√
δ

t‖f‖Φ.
Finally, we extend St to all t > 0 by postulating the semigroup property.

(ii) This is clear from the construction of the semigroup via Cauchy’s criterion. That is, in
the proof of (ii), say, we have two smooth approximations {bn}, {b′

n} of b in L2 not increasing
the constants δ, cδ of b, such that, for a fixed initial function f , the corresponding solutions vn,
v′

n converge to different limits. However, mixing {bn}, {b′
n}, we obtain that the corresponding

sequence of solutions is again a Cauchy sequence, and so the limits of vn, v′
n must coincide.

We prove (iii) below.

(iv) We multiply equation (∂t − ∆ + bn · ∇)u = 0 by up−1eup
and integrate:

1

p
〈∂te

up〉 + 〈(−∆u), up−1eup〉 + 〈b · ∇u, up−1eup〉 = 0, (26)

where

〈(−∆u), up−1eup〉 = (p − 1)〈∇u, up−2(∇u)eup〉 + p〈∇u, up−1eup

up−1∇u〉

=
4(p − 1)

p2
〈(∇u

p

2 )2eup〉 +
4

p
〈(∇e

up

2 )2〉

and

〈b · ∇u, up−1eup〉 =
2

p
〈b · ∇e

up

2 , e
up

2 〉

≤ 1

p

(

α〈|b|2eup〉 +
1

α
〈(∇e

up

2 )2〉
)

≤ 1

p

(

αδ +
1

α

)

〈(∇e
up

2 )2〉 +
1

p
αcδ〈eup〉 α :=

1√
δ

≤ 2

p

√
δ〈(∇e

up

2 )2〉 +
1

p

cδ√
δ

〈eup〉. (27)
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Applying this in (26), we obtain assertion (iv).

(iii) First, we show that v = (µ + Λ(b))−1f , µ > 2cδ√
δ

where the resolvent (µ + Λ(b))−1 was

constructed in (i), is a weak solution to (14). Let vn be the classical solution to (µ−∆+bn ·∇)vn =
f . On the one hand, by assertion (i), vn → (µ + Λ(b))−1f in LΦ as n → ∞, and hence in L2.
On the other hand, the same argument as the one used in the proof of (22) but applied to the

last equation yields supn ‖∇vn‖2 < ∞ (one can also use the energy inequalities in (iv), (v), but
this will do since we assume here that f is bounded). Therefore, we can extract a sub-sequence
of {vn′} such that ∇vn′ converges weakly in L2 and, since ∇ is a closed operator, the limit is

∇v ∈ L2. We can now pass to the limit n → ∞ in

µ〈vn, ϕ〉 + 〈∇vn, ∇ϕ〉 + 〈bn · ∇vn, ϕ〉 = 〈f, ϕ〉, ϕ ∈ W 1,2(Πd) ∩ L∞(Πd)

using bn → b in L2(Πd).

The uniqueness of weak solution v now follows using a standard argument. Let ṽ be another
weak solution of (14). Set w := v − ṽ. Then

µ〈w, ϕ〉 + 〈∇w, ∇ϕ〉 + 〈b · ∇w, ϕ〉 = 0, ∀ ϕ.

Since wew2 ∈ W 1,2(Πd) ∩ L∞(Πd), we can take ϕ := wew2
, so

µ〈w2ew2〉 + 〈∇w, (∇w)ew2〉 + 2〈|∇e
w2

2 |2〉 = −〈b · ∇w, wew2〉.
Now, estimating the RHS as in (27) (take p = 2 there), we obtain

µ〈w2ew2〉 ≤ cδ√
δ

〈ew2〉.

Out goal is to prove that w = 0. To this end, we use the fact that w satisfies a linear equation,

while the last inequality is non-linear. That is, fix arbitrary ε > 0, let Aε := {|w| > ε}. First, we
note that, after replacing µ in the LHS by smaller constant cδ√

δ
and then dividing both sides by

it,

〈1Aε(w2 − 1)ew2〉 ≤ 〈1Ac
ε
ew2〉.

Next, we blow up the equation, i.e. replace w by cw, c > 0, obtaining

〈1Aε(c2w2 − 1)ec2w2〉 ≤ 〈1Ac
ε
ec2w2〉.

In the LHS, we replace w2 by smaller (on Aε) value ε2 (but not everywhere), and in the RHS we
replace w2 by larger (on Ac

ε) value ε2, obtaining

〈1Aε(c2ε2 − 1)ec2w2〉 ≤ 〈1Ac
ε
ec2ε2〉.

Now, let c > ε−1, i.e. c2ε2 − 1 > 0, so that we can also replace in the LHS ec2w2
by smaller ec2ε2

,

arriving at

(c2ε2 − 1)ec2ε2〈1Aε〉 ≤ ec2ε2〈1Ac
ε
〉.

So, using 〈1Ac
ε
〉 ≤ 1, we arrive at the inequality (c2ε2 − 1)〈1Aε〉 ≤ 1 for all ε−1 < c < ∞, which

is possible only if 〈1Aε〉 = 0. Since ε > 0 was arbitrary, w = 0, and the uniqueness of the weak

solution follows.

Remark 3. We obtained a relatively simple proof of the existence and uniqueness of the weak
solution because we were working in the elliptic setting and, importantly, restricted our attention

to the bounded right-hand side f of the elliptic equation. Arguably, this is rather sufficient for
the probabilistic setting, but from the PDE of view it is desirable to extend assertion (iii) to all
f ∈ LΦ.
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