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ON PARTICLE SYSTEMS AND CRITICAL STRENGTHS OF GENERAL

SINGULAR INTERACTIONS

D. KINZEBULATOV

Abstract. For finite interacting particle systems with strong repulsing-attracting or general
interactions, we prove global weak well-posedness almost up to the critical threshold of the
strengths of attracting interactions (independent of the number of particles), and establish
other regularity results, such as a heat kernel bound in the regions where strongly attracting
particles are close to each other. Our main analytic instruments are a variant of De Giorgi’s
method in Lp and an abstract desingularization theorem.
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2 PARTICLE SYSTEMS WITH SINGULAR INTERACTIONS

1. Introduction

The paper is devoted to study of well-posedness and other properties of multi-particle system

dXi = Mi(Xi)dt − 1

N

N
∑

j=1,j 6=i
Kij(Xi −Xj)dt+

√
2dBi, Xi(0) = xi ∈ R

d (1.1)

(i = 1, . . . , N), where [0,∞[∋ t 7→ Xi(t) is the trajectory of the i-th particle in R
d, {Bi(t)}t≥0

are d-dimensional independent Brownian motions, under broad assumptions on singular drifts
and interaction kernels Mi, Kij : R

d → R
d that can be repulsing-attracting or have general

form, e.g. |K| in Ld or weak Ld (Definitions 2-4). Concrete examples include critical-order point
singularities

K(y) = ±
√
κ
d− 2

2

y

|y|2 , y ∈ R
d (1.2)

(defined to be zero at the origin) or hypersurface singularities

|K(y)|2 = C
1{ 1

2
≤|y|≤ 3

2
}

∣

∣|y| − 1
∣

∣(− ln
∣

∣|y| − 1
∣

∣)β
, β > 1 (1.3)

(so |K| 6∈ L2+ǫ
loc for any ǫ > 0), or their sums. Throughout the paper, dimension d ≥ 3. Important

case d = 2 requires separate study which we plan to carry out elsewhere.
In Theorems 1-4 we cover half-critical or critical (at least in high dimensions d) ranges of

the strength of attracting interactions, establish, in particular, global weak well-posedness of
stochastic particle system (1.1) and, for the model singular attracting kernel in (1.2), prove a
necessarily non-Gaussian upper bound on the heat kernel of (1.1) which we believe to be optimal
in the regions where the particles are close to each other. To this end, we use a variant of De
Giorgi’s method and an abstract desingularization theorem obtained earlier in [33].

To illustrate the notion of the critical strength of interactions, let us consider particle system
(1.1) with the model singular attracting kernel (1.2)

dXi = − 1

N

N
∑

j=1,j 6=i

√
κ
d− 2

2

Xi −Xj

|Xi −Xj |2
dt+

√
2dBi. (1.4)

As the strength of attraction κ increases, the behaviour of trajectories Xi undergoes qualitative
changes, e.g. the particles start to agglomerate and one can prove for (1.4) only local existence
until the moment the particles collide. The strength of attraction κ∗ = 16( d

d−2 )2 is a critical

threshold for system (1.4)1. Informally, this can be seen by inspecting the density of the formal
invariant measure of (1.4):

ψ(x) =
∏

1≤i<j≤N
|xi − xj|−

√
κ d−2

2
1
N , x = (x1, . . . , xN ) ∈ R

Nd,

which is locally summable if and only if κ < κ∗ (also, as κ reaches and surpasses κ∗∗ = 16, ψ

ceases to be in W 2,1
loc ).

In the case N = 2, one can show that if κ > κ∗ and X1(0) = X2(0), then system (1.4) has
no weak solution, and if κ > κ∗∗, then particles collide in finite time with positive probability2.
However, if κ < κ∗∗, then (1.4) has global in time weak solution.

1This normalization of the coefficient in (1.4) is due to the use of Hardy’s inequality, see Example 1(b).
2Z = (X1 − X2)/

√
2 satisfies dZ = −

√
κ

2
d−2

2
Z|Z|−2dt +

√
2dB in R

d, so a well-known counterexample applies,

see e.g. [7].
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Regarding the case when the number of particles N is large, we refer to [9, 13] for the proofs
of weak well-posedness of the two-dimensional counterpart of (1.4) and analysis of the phase
transition effects as the strength of attraction κ increases. The well-posedness and blow-up effects
for the two-dimensional McKean-Vlasov SDE arising as the limit of the particle system as N →
∞ (the corresponding McKean-Vlasov PDE is the famous Keller-Segel model of chemotaxis)
is studied in [13] and in recent papers [14, 47] where the authors handle the entire ranges of
the strengths of attracting interactions as well as the critical threshold. The proofs in the cited
papers exploit the special structure of the interaction kernel K(y) = c|y|−2y.

Many applications require one to handle more general than K(y) = c|y|−2y singular inter-
actions in dimension d = 2, 3 and higher. There is extensive literature on singular interaction
kernels having special form, e.g. gradient form, which includes many kernels arising in Statistical
Physics. We refer, in particular, to [3, 40] where the authors proved for such interaction kernels
weak and strong well-posedness of particle system (1.1), however, excluding the singularities
of (1.2). We also refer to [17, 47] where the authors prove, as a part of their results on the
propagation of chaos, strong well-posedness of the particle system (1.1) for K in the sub-critical
Ladyzhenskaya-Prodi-Serrin class. Applied to (1.1), their condition reads as |K| ∈ Lp + L∞,
p > d, as is needed to use Girsanov’s transform, which, again, excludes (1.2). We also mention
article [8] where the authors work at the PDE level on the torus, consider interaction kernels of
gradient form with the interaction potential pointwise comparable to

√
κd−2

2 log |x| (which thus
includes the attracting kernel in (1.2)) and obtain quantitative estimates on the propagation of
chaos for the McKean-Vlasov PDE for all κ < κ∗.

In the present paper we address the problem of well-posedness of stochastic particle system
(1.1) directly, by rewriting (1.1) as SDE

dZ = b(Z)dt +
√

2dB, B is a Brownian motion in R
Nd (1.5)

with Z = (X1, . . . ,XN ) and drift b = (b1, . . . , bN ) : RNd → R
Nd defined by

bi(x) :=
1

N

N
∑

j=1,j 6=i
Kij(xi − xj), x = (x1, . . . , xN ) ∈ R

Nd, 1 ≤ i ≤ N (1.6)

and then applying results on well-posedness for SDEs with general drifts, in particular, our
Theorem 5 below. Until recently, the results on general singular SDEs could not compete, in
terms of the admissible point singularities of the drift, with the aforementioned results on particle
systems with model interactions (1.2). In the past few years, however, there was a substantial
progress in proving weak and strong well-posedness of SDE (1.5) with general drift b, which now
can have critical-order singularities, see [27, 28, 25, 24], [37, 38, 39], [43, 44]. That said, to apply
these results to (1.1) in a way that would allow to control the strength of interactions (measured,
in the case of (1.2), by constant κ), one needs to keep track of the strength of the singularities
of the drift b (measured by “form-bounds”, see below). To the best of our knowledge, the only
paper that covered all (at least in high dimensions) admissible values of the form-bound of
general drift b was [28]. In a number of ways, the present paper continues [28].

More specifically, below we consider interaction kernels satisfying the following dimension-free
conditions. Let 〈 , 〉 denote the integration over R

d and ‖ · ‖2 the L2 norm. For a general K we
require that the following quadratic form inequality holds:

〈|K|2ϕ,ϕ〉 ≤ κ‖∇ϕ‖2
2 + cκ‖ϕ‖2

2 ∀ϕ ∈ C∞
c . (1.7)
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In the case K has an attraction component, we require
{ 〈|K|ϕ,ϕ〉 ≤ κ0‖∇ϕ‖2‖ϕ‖2 + cκ0‖ϕ‖2

2

〈(divK)+ϕ,ϕ〉 ≤ κ+‖∇ϕ‖2
2 + cκ+‖ϕ‖2

2,
(1.8)

where constant κ+ measures the strength of attraction; κ0 and cκ, cκ0 , cκ+ are any finite con-
stants. These are broad assumoptions on the interaction kernel K that allow it to have critical-
order singularities. See the next section for examples which include interaction kernels (1.2) and
(1.3). The constants κ, κ0 and κ+ are called form-bounds. Importantly, the vector field b defined
by (1.6) satisfies the same conditions but with the integration over RNd and essentially the same
form-bounds (i.e. obtained from κ, κ+ by dividing the latter by constants that tend to 1 as the
number of particles increases). Thus, we obtain our results for the interacting particle system
(1.1) (Theorems 1-4) right away from our results on the general singular SDE (1.5). These are
Theorem 5-7. For this to work, in Theorem 5 we need to impose dimension-free assumptions on
the form-bounds of the drift b in R

Nd (so that the assumptions on the strengths of interactions
κ, κ+ would not depend on the number of particles). This is achieved, as in [28], by means of
De Giorgi’s method ran in Lp which allows to “decouple” the proof of the tightness estimate
needed to establish the existence of a martingale solution (cf. (2.17)) from any strong gradient
bounds on solutions of the corresponding elliptic or parabolic equations (that, in turn, introduce
dependence on the dimension in the assumptions on the form-bounds of b). Let us add that
running De Giorgi’s method in Lp with p large (rather than with the usual p = 2) allows to
maximize admissible values of the form bounds/strengths of interactions.

Theorem 5-7 on the general singular SDE (1.5) are of interest on their own. The existence of
a martingale solution part of Theorem 5 under condition (A1) (i.e. analogue of (1.7)) was estab-
lished in [28], but we included this statement in Theorem 5 anyway for the sake of completeness.
The novelty of Theorem 5 is related to condition (1.8), the strong Markov and Feller properties.
See comments after Theorem 3.

The analytic core of the paper are Theorems 8 and 9 from which Theorem 5 and a number of
other results follow. Theorem 8 is proved by showing that solution of the elliptic Kolmogorov
equation u belongs to appropriate Lp De Giorgi’s classes and then following De Giorgi’s method.
These De Giorgi classes, however, are somewhat different from the Lp De Giorgi classes found
in the literature, i.e. they contain the integrals of

|∇(u− k)
p/2
+ |2, k ∈ R,

rather than the integrals of |∇(u − k)+|p, the latter arising naturally in the problems of op-
timization. Theorem 9, i.e. the embedding theorem, plays a key role in the proof of Theorem
5, but also has applications outside of the present paper. In order to establish Caccioppoli’s
inequality under condition (1.8) (as is needed to prove Theorems 8 and 9) we extend to the
non-homogeneous Lp setting the iteration procedure introduced in earlier paper [34].

De Giorgi’s method was used earler in the context of singular SDEs in [43, 51, 53]. There the
authors considered singular drifts arising in the study of 3D Navier-Stokes equations.

Let us also mention recent results in [11] on interacting particle systems and McKean-Vlasov
SDEs with the interaction kernels and drifts in Besov’s spaces of distributions, see also references
therein. However, these assumptions are somewhat orthogonal to the present work and, at least
at the moment, do not include the model interaction kernels (1.2) (while including other highly
irregular distributional kernels) or keep track of the strength of interactions κ. We also comment
in Remark 9 on the existing literature on SDEs with supercritical drifts.
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1.1. Notations. Put

〈f〉 :=

∫

Rd
f(y)dy, 〈f, g〉 := 〈fg〉

(all functions in this paper are real-valued). Let Lp = Lp(Rd, dy) be the Lebesgue spaces endowed
with the norm ‖ · ‖p. Let W 1,p denote the corresponding Sobolev spaces. Denote by [Lp]d the

space of vector fields R
d → R

d with entries in Lp. We denote by ‖ · ‖p→q the Lp → Lq operator

norm. Let C∞ denote the space of continuous functions on R
d vanishing at infinity, endowed

with the sup-norm. Let BR(y) ⊂ R
d be the open ball of radius R centered at y ∈ R

d, |BR(x)|
denotes its volume. Set BR := BR(0). Given a function f , we denote its positive and negative
parts by

(f)+ := f ∨ 0, (f)− := −(f ∧ 0).

Set

γ(x) :=

{

c exp
(

1
|x|2−1

)

if |x| < 1,

0, if |x| > 1,

where c is adjusted to
∫

Rd γ(x)dx = 1, and put γε(x) := 1
εdγ

(

x
ε

)

, ε > 0, x ∈ R
d. Define the

Friedrichs mollifier of a function h ∈ L1
loc (or a vector field with entries in L1

loc) by Eεh := γε ∗h.

2. Main results

2.1. Particle systems. Let us first consider particle system

Xi(t) = xi − 1

N

N
∑

j=1,j 6=i

∫ t

0
Kij

(

Xi(s) −Xj(s)
)

ds+
√

2Bi(t), 1 ≤ i ≤ N, t ∈ [0, T ], (2.1)

where x = (x1, . . . , xN ) ∈ R
Nd, N ≥ 2. That is, we exclude the drift terms M(Xi) from (1.1).

However, we will explain in Remark 5 below how to put the drifts back there.
Let et : C([0, T ],RNd) → R

Nd be defined by et(ω) := ωt.

Definition 1. A probability measure Px (x ∈ R
Nd) on the canonical space of continuous

trajectories ω = (ω1, . . . , ωN ) in R
Nd is called a martingale solution to particle system (2.1) on

[0, T ] if
1) Px,0 = δx, where Px,t := P ◦ e−1

t (on R
Nd);

2) Ex
∑N
i=1

∑N
j=1,j 6=i

∫ T
0 |Kij(ω

i
t − ωjt )|dt < ∞;

3) for every φ ∈ C2
c (RNd) the process

[0, T ] ∋ r 7→ φ(ωr) − φ(x) +

∫ r

0
(−∆yφ(ωt) +

1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kij(ω

i
t − ωjt ) · ∇yiφ(ωt)dt

is a martingale under Px.

We start with the general interaction kernels.

Definition 2. A vector field K ∈ [L2
loc]

d is said to be form-bounded if it satisfies quadratic
form inequality

〈|K|2ϕ,ϕ〉 ≤ κ‖∇ϕ‖2
2 + cκ‖ϕ‖2

2 (2.2)

for all ϕ ∈ W 1,2 for some constants κ (“form-bound”) and cκ. This is written as K ∈ Fκ.
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The class of form-bounded vector fields Fκ is closed with respect to addition and multiplication
by functions from L∞ (up to change of κ).

The form-boundedness condition b appears already in the Lax-Milgram theorem. It provides
coercivity in L2 of the Dirichlet form of −∇ · a · ∇ + b · ∇ with a uniformly elliptic matrix a.

Example 1. (a) If |K| ∈ Lp for some d ≤ p ≤ ∞, then K is in Fκ with arbitrarily small
form-bound κ (in this sense the class |K| ∈ Ld is sub-critical). Indeed, if e.g. |K| ∈ Ld,
then, for every ε > 0, we can represent K = K1+K2, where ‖K1‖d < ε and ‖K2‖∞ < ∞.
So, we obtain, using the Sobolev embedding theorem,

‖Kϕ‖2
2 ≤ 2‖K1‖2

d‖ϕ‖2
2d

d−2

+ 2‖K2‖2
∞‖ϕ‖2

2 ≤ CS2‖K1‖2
d‖∇ϕ‖2

2 + 2‖K2‖2
∞‖ϕ‖2

2,

hence K ∈ Fκ with κ = CS2ε and cκ = 2‖K2‖2
∞.

(b) (Critical point singularities) The model singular interaction kernel

K(y) = ±
√
κ
d− 2

2

y

|y|2 , y ∈ R
d, (2.3)

is in Fκ with cκ = 0 (but it is not in any Fκ′ with κ′ < κ, regardless of the value of cκ′).
This is the well known Hardy inequality.

(c) (Weak Ld class interaction kernels) More generally, vector fields K in Ld,∞, i.e. such
that

‖K‖d,∞ := sup
s>0

s|{y ∈ R
d : |K(y)| > s}|1/d < ∞ (2.4)

are in Fκ with
√
κ = ‖K‖d,∞|B1(0)|− 1

d
2
d−2 , see [35]. This example includes (2.3).

(d) (Morrey class interaction kernels) The scaling-invariant Morrey class M2+ε, with ε > 0
fixed arbitrarily small, consists of vector fields K ∈ [L2+ε

loc ]d such that

‖K‖M2+ε := sup
r>0,y∈Rd

r

(

1

|Br(y)|

∫

Br(y)
|K|2+εdy

)

1
2+ε

< ∞. (2.5)

By [12], if K ∈ M2+ε, then K ∈ Fκ with κ = c‖K‖M2+ε for a constant c = c(ε).
This sufficient condition for form-boundedness can be further refined by considering the
Chang-Wilson-Wolff class [10].

On the other hand, a simple argument with cutoff functions shows that the class of
form-bounded vector fields Fκ is contained in the Morrey class M2.

(e) (Hypersurface singularities) Any interaction kernel K of the form (1.3) is form-bounded,
which can be seen from the previous example by arguing locally.

An example of different kind is given by the weighted Hardy inequality of [19]. Fix

0 ≤ Φ ∈ Lq(Sd−1) for some q ≥ 2(d−2)2

2(d−1) + 1, where Sd−1 is the unit sphere in R
d. If

|K(y)|2 ≤ κ
(d − 2)2

4
c
Φ(y/|y|)

|y|2 ,

where c := |Sd−1|
1
q

‖Φ‖
Lq(Sd−1)

, then K ∈ Fκ with cκ = 0.

Put

F := {K | K ∈ Fκ for some κ < ∞}.
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Theorem 1. Assume that the interaction kernels Kij in particle system (2.1) satisfy

Kij ∈ Fκ with κ < 4

(

N

N − 1

)2

(2.6)

Then the following are true:

(i) There exists a strong Markov family of martingale solutions {Px}x∈RNd of particle system
(2.1).

(ii) The function

u(x) := EPx

∫ ∞

0
e−λsf(ω1

s , . . . , ω
N
s )ds, x ∈ R

Nd, f ∈ C∞
c (RNd), (2.7)

where λ is assumed to be sufficiently large, is a locally Hölder continuous weak solution
to elliptic Kolmogorov equation

(

λ− ∆ +
1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kij(xi − xj) · ∇xi

)

u = f, x = (x1, . . . , xN ), (2.8)

see definitions in Remark 8 where we also discuss the uniqueness of u.

Using a standard argument, we can further show that the martingale solutions in assertion
(i) are weak solutions. We recall from the discussion in the introduction that if κ is taken to be
too large then a weak solution to the particle system (2.1) ceases to exist. So, in Theorem 1(i)
we are dealing with the critical scale of the strength of interactions.

Having at hand Theorem 1, we are now in position to ask what additional assumptions on Kij

provide other regularity properties of the particle system. Indeed, in Theorems 3 and 4 we will
make the assertion of Theorem 1 and of its counterpart in the case Kij have repulsion-attraction
structure – Theorem 2 – more detailed, at expense of imposing some additional assumptions on
the interaction kernels Kij .

In Remark 3 we comment on the regularity theory of the backward Kolmogorov equation for
particle system (2.1) in the case when κ = 4( N

N−1 )2.
We now turn to the interaction kernels having repulsion-attraction structure.

Definition 3. A vector field K ∈ [L1
loc]

d is said to be multiplicatively form-bounded if

〈|K|ϕ,ϕ〉 ≤ κ0‖∇ϕ‖2‖ϕ‖2 + cκ0‖ϕ‖2
2 (2.9)

for all ϕ ∈ W 1,2 for some constants κ0 (“multiplicative form-bound”) and cκ0 . We abbreviate
this as K ∈ MFκ0.

Every form-bounded vector field is multiplicatively form-bounded, but not vice versa, see
Remark 6. But we will additionally require from the positive part (divK)+ of divK, which can
be viewed as describing attraction between the particles, to be a form-bounded “potential”:

Definition 4. (divK)+ ∈ L1
loc is said to be form-bounded if there exists constant κ+ such that

〈(divK)+ϕ,ϕ〉 ≤ κ+‖∇ϕ‖2
2 + cκ+‖ϕ‖2

2 (2.10)

for some cκ+ . We abbreviate this, with slight abuse of notation, as (divK)
1
2
+ ∈ Fκ+.

Example 2. (a) (Critical point singularities) The model singular interaction kernel (2.3)
is multiplicatively form-bounded, see Remark 6. In turn,

divK = ±
√
κ

(d− 2)2

2
|y|−2,
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so, if there is plus in front of
√
κ (attraction), then by Hardy’s inequality (divK)

1
2
+ ∈ Fκ+ ,

κ+ = 2
√
κ, cκ+ = 0.

(b) (Essentially largest possible scaling-invariant Morrey class) The class MFκ0 contains
the largest possible up to the strict inequality in ε > 0 scaling-invariant Morrey class
M1+ε, i.e. if

‖K‖M1+ε := sup
r>0,y∈Rd

r

(

1

|Br(y)|

∫

Br(y)
|K|1+εdy

)

1
1+ε

< ∞,

then M1+ε ⊂ MFκ0 with κ0 = c(d, ε)‖K‖M1+ε , see Remark 6. Similarly, if the following
Morrey class condition is satisfied

sup
r>0,y∈Rd

r2
(

1

|Br(y)|

∫

Br(y)
|(divK)+|1+εdy

)

1
1+ε

< ∞

then (divK)
1
2
+ ∈ Fκ+ with appropriate κ+.

The class b ∈ MFδ under additional hypothesis div b = 0 appeared in [45] as a broad sufficient
condition for two-sided Gaussian bounds on the heat kernel of −∇ · a · ∇ + b · ∇, proved using
a variant of Nash’s method.

Put
MF := {K | K ∈ MFκ for some κ < ∞}.

Theorem 2. Assume that the interaction kernels Kij in particle system (2.1) satisfy

Kij ∈ MF,

{

(divKij)− ∈ L1 + L∞,

(divKij)
1
2
+ ∈ Fκ+ with κ+ < 4 N

N−1

|Kij |
1+α

2 ∈ F (2.11)

for some α > 0 fixed arbitrarily close to zero. Then all assertions of Theorem 1 are valid for
such interaction kernels as well.

Theorem 3. (i) For the interaction kernels

Kij(y) =
√
κ
d− 2

2
|y|−2y +K0,ij(y), y ∈ R

d, (2.12)

if the strength of attraction

κ < 16

and K0,ij satisfy (2.6) or (2.11) with sufficiently small form-bounds, then all assertions
of Theorems 1 and 2 remain valid.

(ii) Furthermore, for the model attracting interaction kernel K(y) =
√
κd−2

2 |y|−2y, κ < 16,

the heat kernel e−tΛ(x, z) of particle system (2.1) (which exists by Theorem 4(i)) satisfies,
up to modification on a measure zero set, the heat kernel bound

e−tΛ(x, z) ≤ Ct−
Nd
2

∏

1≤i<j≤N
η(t−

1
2 |zi − zj |), t ∈]0, T ],

for some C = CT , for all x ∈ R
Nd, z = (z1, . . . , zN ) ∈ R

Nd provided zi 6= zj (i 6= j), for
a fixed function 1 ≤ η ∈ C2(]0,∞[) such that

η(r) =

{

r−√
κ d−2

2
1
N 0 < r < 1,

2, r > 2.
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Remark 1 (On Theorems 1, 2 and their proofs). It is not difficult to modify the proofs of
Theorems 1 and 2 to extend them to the sums of the interaction kernels satisfying (2.6) and
(2.11), under properly adjusted assumptions on the form-bounds.

We prove Theorems 1 and 2 by embedding the multi-particle system (2.1) in the general SDE
(2.30) considered in R

Nd, with drift b = (b1, . . . , bN ) : RNd → R
Nd defined by

bi(x) :=
1

N

N
∑

j=1,j 6=i
Kij(xi − xj), x = (x1, . . . , xN ) ∈ R

Nd, 1 ≤ i ≤ N. (2.13)

Lemma 1. If Kij ∈ Fκ(Rd), then b defined by (2.13) satisfies
{

b ∈ Fδ(R
Nd)

with δ = (N−1)2

N2 κ, cδ = (N−1)2

N cκ.

Lemma 2. If Kij ∈ MFκ(Rd), (divKij)
1
2
+ ∈ Fκ+(Rd), |Kij |

1+α
2 ∈ Fσ(Rd), then b defined by

(2.13) satisfies
{

b ∈ MFδ(R
Nd)

with δ = N−1√
N
κ, cδ = (N − 1)cκ,

(2.14)

{

(div b)
1
2
+ ∈ Fδ+(RNd),

with δ+ = N−1
N κ+, cδ+ = (N − 1)cκ+ ,

(2.15)

{

|b| 1+α
2 ∈ Fχ(RNd),

with χ = (N−1)1+α

N1+α σ2α, cχ = (N−1)1+α

Nα cσ2α.
(2.16)

Lemmas 1, 2 allow us to obtain the existence of a strong Markov family of martingale solutions
to (2.1) in Theorem 1(i) and Theorem 2(i) from Theorem 5(i) for SDE (2.30). Theorem 5, and
other results in Section 2.2 dealing with general singular drifts, are of interest on their own.

In Theorem 5 the family of martingale solutions for (2.30) is constructed by applying a
tightness argument where the central role belongs to the estimate

E

∫ t1

t0
|bε(Yε(s))|ds ≤ C(t1 − t0)

γ
1+γ , t0, t1 ∈ [0, T ] (2.17)

(this is (8.5)), where bε is a regularization of b that does not increase form-bounds δ, δ+ (see
Definition 5) in Lemmas 1, 2, and Yε is the strong solution of (2.30) with drift bε. Constants C,
γ > 0 are independent of ε.

To prove (2.17) and, furthermore, to prove the strong Markov property, we establish regularity
results for non-homogeneous elliptic PDEs (2.38) and (2.43). These are Theorems 8 and 9,
obtained via De Giorgi’s method ran in Lp, where p depends on the values of form-bounds δ
and δ+. Theorems 8 and 9 are the analytic core of the present paper.

We prove Theorem 8 by showing that u belongs to Lp De Giorgi’s classes and then following
the arguments in [15, Ch. 7], that is, applying De Giorgi’s method. As was mentioned in the
introduction, our Lp De Giorgi classes are somewhat different from the Lp De Giorgi classes
found in the literature (cf. [15]).

The observation that working in Lp for large p allows to relax the assumptions on the form-
bounds goes back to [36] where the authors dealt with Kolmogorov operator

−∆ + b · ∇, b ∈ Fδ, δ < 4

at the level of the semigroup theory.
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In [28], the authors proved, using De Giorgi’s iterations in Lp, that the general SDE (2.30) with
b ∈ Fδ, δ < 4 has a martingale solution for every initial point. This result yields the existence
of a martingale solution part of Theorem 5 under condition (A1) on b, which we included in
Theorem 5 for the sake of completeness. In what concerns (A1), in the present paper we make
the next step and also prove the strong Markov property.

One of the main observations of the present paper is related to condition (A2) of Theorem 5.
This condition dictates the assumption (2.11) on the interaction kernel K when the latter has
repulsion-attraction structure. In (A2), we relax the a priori condition |b| ∈ L2

loc as in (A1) to

|b| ∈ L1+α
loc for α > 0 fixed arbitrarily small, aiming at stronger hypersurface singularities of b

(and thus of K). To achieve this, we once again need to work in Lp for p large. In fact, when
dealing with the right-hand side of non-homogeneous equation

(µ − ∆ + b · ∇)u = |b|f (f ∈ C∞
c ),

as is needed to prove weak well-posedness of the general SDE (2.30), we require

p′ =
p

p− 1
≥ 1 + α

(cf. Theorem 9). If we were to consider this non-homogeneous equation in L2, we would have to
take α = 1, and so (A2) and (2.11) would force the old form-boundedness assumption on drift
b, i.e. as in (A1). Thus, in the present paper we find another compelling reason to work in Lp

with p large, not related to the values of form-bounds.
Another technical novelty of the paper is Theorem 9, i.e. the embedding theorem, which has

applications beyond this paper.
The proof of Caccioppoli’s inequality (Proposition 1) under assumption (2.11) uses an iteration

procedure introduced in [34]. In [34], the authors worked in L2 and used Moser’s method to
prove the Harnack inequality for positive solutions of (−∇ · a · ∇ + b · ∇)u = 0 with measurable
uniformly elliptic matrix a and b ∈ MFδ, δ < ∞, provided that the form-bounds of the positive
and the negative parts of div b satisfy some sub-critical assumptions.

The additional right-most condition on Kij in (2.11) is essentially much weaker than the
left-most condition (informally, the former treats |K| as a potential, while a proper “potential
analogue” of the drift perturbation K · ∇ would be |K|2). For instance, if we were to state
condition (2.11) on the scale of Lp spaces, then it would become

|K| ∈ Ld + L∞,

{

(divK)− ∈ L1 + L∞,

(divK)+ ∈ L
d
2 + L∞ |K| ∈ L

d
2

(1+α) + L∞,

where, recall, α > 0 is fixed arbitrarily small, i.e. the right-most condition follows from the left-
most one. The same would happen if we were working on the scale of scaling-invariant Morrey
spaces (cf. Example 1(d)).

If in Theorem 2 (divKij)+ = 0, i.e. there is no attraction, then we essentially impose only
a condition on |Kij |, which can have any finite multiplicative form-bound. In fact, in a purely
repulsing situation considered in [3] one can relax the assumptions on the interaction kernels
Kij of gradient form even further.

Remark 2 (On Theorem 3 and its proof). The improvement of the assumptions on κ in Theorem
3(i), compared to Theorems 1 and 2, is due to a refinement of Lemma 2 by means of the multi-
particle Hardy inequality of [20]: for d ≥ 3, all N ≥ 2,

Cd,N
∑

1≤i<j≤N

∫

RNd

|ϕ(x)|2
|xi − xj |2

dx ≤
∫

RNd
|∇ϕ(x)|2dx, x = (x1, . . . , xN ), (2.18)
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for all ϕ ∈ W 1,2(RNd), where

Cd,N := (d− 2)2 max

{

1

N
,

1

1 +

√

1 + 3(d−2)2

2(d−1)2 (N − 1)(N − 2)

}

.

In the proof of Theorem 3(ii) we replace constant Cd,N with smaller constant (d−2)2

N . However,
the maximum for large N and d ≤ 6 is actually attained on the second argument. So, constant 16
in Theorem 3 can be somewhat improved for d ≤ 6. See also [16] regarding further improvements
of Cd,N .

The heat kernel bound in Theorem 3(ii) is not unexpected (although we could not find it in
the literature). Indeed, an elementary calculation shows that

ψ(x) :=
∏

1≤i<j≤N
|xi − xj|−

√
κ d−2

2
1
N .

is a Lyapunov function of the formal adjoint of Λ = −∆x−√
κd−2

2
1
N

∑N
i=1

∑N
j=1,j 6=i

xi−xj

|xi−xj |2 ·∇xi ,

i.e. the following identity holds:

−∆xψ +
√
κ
d− 2

2

1

N

N
∑

i=1

∇xi

( N
∑

j=1,j 6=i

xi − xj
|xi − xj |2

ψ

)

= 0.

One can expect that such Lyapunov function will appear as a multiple in the heat kernel bounds.
That said, the question of how to prove such an estimate is non-trivial due to singularities in the
drift. An interesting aspect of Theorem 3(ii) is its proof, which uses an abstract desingularization
result from [33], see Appendix A.

In Theorem 3(ii), we expect to have two-sided bound

C1e
− |x−y|2

c2t ϕt(y) ≤ e−tΛ(x, y) ≤ C3e
− |x−y|2

c4t ϕt(y), (2.19)

where

ϕt(y) :=
∏

1≤i<j≤N
η(t−

1
2 |yi − yj |),

as is suggested by the analogous results for Kolmogorov operator −∆ − √
κ|x|−2x · ∇, 0 < κ < 4

on R
d, see [41]. Moreover, there should be an analogous to Theorem 3(ii) and (2.19) result in

the case of attracting interactions, see [41] and [32] regarding −∆ +
√
κ|x|−2x · ∇, 0 < κ < ∞.

([32, 33] deal with the fractional Laplacian (−∆)α/2 perturbed by the model singular drift term
c|x|−αx · ∇, 1 < α < 2.)

In the next theorem we show that if one is willing to replace the multiplicative form-boundedness
condition (2.11) by more restrictive condition (2.21), or even restrict admissible values of the
strength of the interactions, then more can be said about the martingale solutions {Px}x∈RNd

constructed in Theorems 1 and 2.
We will need the following definition. Let K satisfy (2.2), let {Kε} be some sequence of vector

fields.

Definition 5. Let us say that Kε do not increase the form-bounds of K if

‖Kεϕ‖2
2 ≤ κ‖∇ϕ‖2

2 + cκ‖ϕ‖2
2 ∀ϕ ∈ W 1,2(Rd), ∀ ε > 0,

i.e. {Kε} satisfy (2.2) with the same constants as K.



12 PARTICLE SYSTEMS WITH SINGULAR INTERACTIONS

The previous definition extends naturally to K satisfying (2.9), (2.10) or (2.21) below. In all
these cases, in Section 3 we show that the vector fields Kε defined by

Kε := EεK, ε ↓ 0, Eε is the Friedrichs mollifier, (2.20)

are bounded, smooth and do not increase the form-bounds of K.

Theorem 4. Assume that the interaction kernels Kij in particle system (2.1) satisfy either
condition (2.6) in Theorem 1, i.e.

Kij ∈ Fκ with κ < 4

(

N

N − 1

)2

,

or a more restrictive condition than (2.11) in Theorem 2:

Kij ∈ F,

{

(divKij)− ∈ L1 + L∞,

(divKij)
1
2
+ ∈ Fκ+ with κ+ < 4 N

N−1 .
(2.21)

If Kij satisfy (2.6), fix p > 2
2− N−1

N

√
κ
. If Kij satisfy (2.21), fix p > 4

4− N−1
N

κ+
. Let {Px}x∈RNd be

the strong Markov family of martingale solutions of particle system (2.1) constructed in Theorems
1 and 2.

(i) The family of operators {Pt}t≥0 defined by

Ptf(x) := EPx [f(ω1
t , . . . , ω

N
t )], f ∈ C∞

c (RNd),

admits extension by continuity to a strongly continuous quasi contraction Markov semig-
roup on Lp of integral operators, say Pt =: e−tΛp , such that

‖e−tΛp‖p→q ≤ cwωtt
− Nd

2
( 1

p
− 1

q
)
, p ≤ q ≤ ∞ (2.22)

for appropriate constants c and ω. If p = 2, then we have

Λ2 ⊃ −∆ +
1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kij(xi − xj) · ∇xi ↾ C

∞
c (RNd).

This semigroup is unique in the following sense: for any sequence of bounded smooth
interaction kernels Kn

ij → Kij in [L2
loc(R

d)]d that do not increase the form-bounds of K,

for every f ∈ C∞
c (RNd) solutions {vn} to

(

∂t − ∆ +
1

N

N
∑

i=1

N
∑

j=1,j 6=i
Kn
ij(xi − xj) · ∇xi

)

vn = 0, vn(0) = f

converge to the same limit e−tΛpf in Lp(RNd) loc. uniformly in t ≥ 0.

(ii) If

K ∈ Fκ with κ <
1

(N − 1)2d2
,

then, for every x ∈ R
Nd, martingale solution Px satisfies for a given q ∈]Nd, N

N−1κ
− 1

2 [
Krylov-type bounds







Ex
∫ T

0 |h(s,X1(s), . . . ,XN (s))|ds ≤ c‖h‖Lq([0,T ]×RNd) and

Ex
∫ T

0 |b(X1(s), . . . ,XN (s))||h(τ,X1(s), . . . ,XN (s))|ds ≤ c‖b|h| q
2 ‖

2
q

L2([0,T ]×RNd)
,

(2.23)
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for all h ∈ Cc([0, T ] × R
Nd), for some constant c > 0, where vector field b : RNd → R

Nd

is defined by (2.13).

Moreover, Px is the only martingale solution to (2.1) that satisfies (2.23).

(iii) Assertions (i), (ii) are also valid for interaction kernels of the form

Kij(xi, xi − xj) = ζ(xi)K
0
ij(xi − xj), (2.24)

where

‖ζ‖∞ ≤ 1, K0
ij ∈ Fκ with κ < 4

(

N

N − 1

)2

.

(iv) There exists constant C < 1 such that if Kij is of the form (2.24) with ζ additionally
having compact support and

κ <
C

(N − 1)2d2
, (2.25)

then for every (x1, . . . , xN ) ∈ R
Nd particle system (2.1) has a strong solution on [0, T ]

that is unique among all strong solutions defined on the same probability space satisfying
(2.23).

The proof of Theorem 4 uses results from [25, 26, 29, 36, 45]. Theorem 4 also extends to the
interaction kernels considered in Theorem 3 with (2.11) replaced with (2.21).

Remark 3 (Borderline strengths of interactions). One can reach the borderline values of the
strengths of interactions

κ = 4

(

N

N − 1

)2

if (2.6) holds, or

κ+ = 4
N

N − 1
if (2.21) holds

although, at the moment, only on the torus and at the PDE level, by considering the correspond-
ing to (2.1) Kolmogorov backward equation in the Orlicz space with gauge function Φ = cosh −1.
This space is situated between all Lp and L∞. We refer to [22] for details.

Remark 4 (On Theorem 4 and its proof). Assertion (iv) follows, after applying Lemma 1, from
the result in [25] whose proof, in turn, follows closely the method of Röckner-Zhao [44]. In [25],
the authors needed a technical hypothesis that b has compact support, hence the condition in
(iv) on the support of ζ.

We are rather satisfied with Theorems 1-3 and assertion (i) of Theorem 4 where the assump-
tions on κ and κ+ stabilize to positive values as N → ∞. In assertions (ii) and (iv) of Theorem
4, however, the admissible strength of interactions κ degenerates as the number of particles N
goes to infinity, which is a by-product of our method of embedding particle system (2.1) in the
general SDE (2.30). Another drawback of assertions (ii) and (iv) is the difficulty with taking
into account the repulsion/attraction structure of the interaction kernel K simply by looking
at the divergence of K. Regarding the conditional weak uniqueness as in (ii), in Theorem 7
we consider the general SDE (2.30) and propose another condition on the drift b that provides
conditional weak uniqueness for (2.30) while taking into account the repulsion/attraction. We
show in Example 3 that there is some truth to this condition: it is always satisfied in dimen-
sions d ≥ 4 for the model repulsing drift b(x) = −

√
δ d−2

2 |x|−2x, regardless of the value for
the form-bound δ > 0, as one would expect. This requires us to obtain gradient bounds in Lq

starting with q > d− 2, hence the need to work in the elliptic setting. (In the parabolic setting
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we would need q > d.) That said, this result, when applied via Lemma 2 to drift (2.13) with
Kij(y) = −√

κd−2
2 |y|−2y, leads to a condition on κ that still depends on the number of particles

N . So, there is still work to be done to find a proper analogue of Theorem 7 for particle system
(2.1).

Remark 5 (Drifts). One can easily extend Theorems 1-4 to more general particle system

dXi = Mi(Xi)dt − 1

N

N
∑

j=1,j 6=i
Kij(Xi −Xj)dt +

√
2dBi,

where, for every 1 ≤ i ≤ N ,

Mi ∈ Fµ.

Let us discuss for simplicity the case when Kij satisfy (2.6). We require that µ, κ satisfy

(√
µ+

N − 1

N

√
κ

)2
< 4.

We only need to embed this particle system into (2.30), i.e. prove an analogue of Lemma 1 for
vector field b = bM + bK with bM , bK : RNd → R

Nd having components

bMi (x) := Mi(xi), bKi (x) :=
1

N

N
∑

j=1,j 6=i
Kij(xi − xj), 1 ≤ i ≤ N, (2.26)

and then e.g. use Theorem 5 for the general SDE (2.30) as we do in the proof of Theorem 2.
Repeating the proof of Lemma 1, we obtain right away that

bK ∈ FδK (RNd) with δK =
(N − 1)2

N2
κ, cδK =

(N − 1)2

N
cκ

and

bM ∈ FδM (RNd) with δM = µ, cδM = Ncµ,

see Remark 10 in Section 4 for the proof. It remains to note that the sum of two form-bounded

vector fields is form-bounded, i.e. b = bM + bK is in Fδ with
√
δ =

√
δM +

√
δK , and δ must be

strictly less than 4, cf. Theorem 5.
Arguing similarly, one can treat general drifts Mi(X1, . . . ,XN ) (1 ≤ i ≤ N) in the particle

system (adjusting the hypothesis on the form-bound, i.e. now δM = Nµ).

Remark 6 (Sufficient condition for multiplicative form-boundedness). A Borel measurable vec-
tor field K : Rd → R

d is said to belong to the class of weakly form-bounded vector fields F1/2
κ if

|K| ∈ L1
loc and

‖|K| 1
2 (λ− ∆)− 1

4 ‖2→2 ≤
√
κ (L2 → L2 operator norm) (2.27)

for some λ > 0. We have

F1/2
κ ⊂ MFκ. (2.28)

Indeed, if K ∈ F1/2
κ , then, arguing as in [45], we have

〈|K|ϕ,ϕ〉 ≤ κ〈(λ − ∆)
1
2ϕ,ϕ〉 ≤ κ‖(λ− ∆)

1
2ϕ‖2‖ϕ‖2

= κ
√

‖∇ϕ‖2
2 + λ‖ϕ‖2

2‖ϕ‖2 ≤ κ‖∇ϕ‖2‖ϕ‖2 + κ
√
λ‖ϕ‖2

2,

i.e.K ∈ MFκ.
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The class F1/2
κ (and therefore MFκ) contains the largest possible up to the strict inequality

in ε > 0 scaling-invariant Morrey class M1+ε, i.e. if

‖K‖M1+ε := sup
r>0,x∈Rd

r

(

1

|Br|

∫

Br(x)
|K|1+εdx

)

1
1+ε

< ∞,

then M1+ε ⊂ F1/2
κ with κ = c(d, ε)‖K‖M1+ε [1].

It is easily seen that M1+ε is larger than M2, which, in turn, contains Fκ. That said, we also
need to control the form-bounds. In fact, we have

Fκ ⊂ F
1/2√
κ
. (2.29)

Indeed, rewriting K ∈ Fκ as

‖|K|(λ− ∆)− 1
2 ‖2→2 ≤

√
κ

(with λ = cκ/κ), we obtain the required result by applying the Heinz inequality. In (2.29) we
have a proper inclusion because the class of weakly form-bounded vector fields also contains the

Kato class of vector fields ‖|K|(λ− ∆)− 1
2 ‖∞ ≤ √

κ while Fκ does not (see [29]).

Remark 7 (Stronger hypersurface singularities). We refer to [24] and [27] for a weak well-
posedness theory of the general SDE (2.30) with b ∈ F

1/2

δ or with b in the time-inhomogeneous
analogue of the Morrey class M1+ε which allows to include some critical singularities of b in
time. This allows to treat

b(x) = ± cx
∣

∣|x| − 1
∣

∣

1−γ η(x),

for a fixed 0 < γ < 1, c ∈ R and 0 ≤ η ∈ C∞
c , i.e. hypersurface singularities that are essentially

twice more singular than (1.3). That said, in this result the assumption on the form-bound δ
is also dimension-dependent, so if we were to apply this result to (2.1), we would arrive at the
assumption on the strength of interaction κ of the form κ < C

(Nd)2 .

Remark 8 (On the uniqueness of weak solution to elliptic Kolmogorov PDE). 1. Our most
complete uniqueness result for the Kolmogorov elliptic equation in (2.8) with interaction kernels
satisfying (2.6) or (2.21) is in fact proved in [22] on the torus, see Remark 3. Speaking of Rd,
let us first say a few words about the case of very sub-critical strengths of interactions.

Definition 6. If K satisfies (2.6) with κ < ( N
N−1)2, we say that u is a weak solution of (2.8) if

u ∈ W 1,2 ∩ L∞ and

µ〈u, ϕ〉 + 〈∇u,∇ϕ〉 +
1

N

〈 N
∑

i=1

N
∑

j=1,j 6=i
Kij(xi − xj) · ∇xiu, ϕ

〉

= 〈f, ϕ〉

for every ϕ ∈ W 1,2. (Recall that in (2.8) the initial function is bounded, so the solution is
bounded as well.)

Definition 7. If K satisfies (2.21) with κ+ < 2 N
N−1 , then u is a weak solution to (2.8) if

u ∈ W 1,2 ∩ L∞ and

µ〈u, ϕ〉 + 〈∇u,∇ϕ〉

− 1

N

N
∑

i=1

N
∑

j=1,j 6=i

[

〈divKij(xi − xj)u, ϕ〉 + 〈Kij(xi − xj)u,∇xiϕ〉
]

= 〈f, ϕ〉

for all ϕ ∈ W 1,2.
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In both cases the uniqueness of the weak solution follows upon applying Lemmas 1, 2 and the
Lax-Milgram theorem in L2, i.e. we can take p = 2 in Theorem 4.

In the general case, we need to consider (2.8) in Lp, where p is as in Theorem 4. In this regard,
we refer to [45] for the definition of weak solution and results on weak solutions of parabolic
equations in Lp.

2. If K satisfies (2.11), then we can prove that u constructed in Theorem 2(i) is a weak
solution of (2.8) e.g. in the following sense.

Definition 8. IfK satisfies (2.11), then we say that u is a weak solution of (2.8) if u ∈ W 1,2
loc ∩L∞

and

µ〈u, ϕ〉 + 〈∇u,∇ϕ〉

− 1

N

N
∑

i=1

N
∑

j=1,j 6=i

[

〈divKij(xi − xj)u, ϕ〉 + 〈Kij(xi − xj)u,∇xiϕ〉
]

= 〈f, ϕ〉

for all ϕ ∈ W 1,2
loc ∩ L∞

c (L∞
c are bounded functions with compact supports).

The latter is a way to establish a link between function u defined by (2.7) and the formal
elliptic equation (2.8). However, the proof of uniqueness of such a weak solution under condition
(2.11) remains elusive. Still, we can prove that u given by (2.7) is unique among weak solutions
that can be obtained via a reasonable regularization of K, cf. Theorem 6. Alternatively, we
can restrict our attention to the subclass of weakly form-bounded vector fields, see Remark
6, and prove uniqueness via the Lax-Milgram theorem in the triple of Bessel potential spaces
W 1

2
,2 ⊂ W− 1

2
,2 ⊂ W− 3

2
,2 (rather than the standard W 1,2 ⊂ L2 ⊂ W−1,2), see [31], although this

comes at the cost of requiring that the weak form-bound of K (and therefore its multiplicative
form-bound κ0, cf. (2.28)) must be strictly less than 1.

2.2. SDEs with general singular drifts. Theorems 1, 2 and 3(i) are proved by embedding
the particle system in a general SDE with singular drift, which we consider here, to lighten the
notations, in R

d instead of RNd:

Y (t) = y −
∫ t

0
b
(

Y (s)
)

ds+
√

2B(t), t ∈ [0, T ], y ∈ R
d, (2.30)

where a priori b ∈ [L1
loc]

d, {B(t)}t≥0 is a Brownian motion in R
d, and then applying Theorem 5

below.
Set

bn := Eεnb, εn ↓ 0, Eε is the Friedrichs mollifier, εn ↓ 0. (2.31)

Theorem 5. Assume that a Borel measurable vector field b in SDE (2.30) satisfies one of the
following two conditions:

b ∈ Fδ with δ < 4 (A1)

or

b ∈ MF,







(div b)− ∈ L1 + L∞,

(div b)
1
2
+ ∈ Fδ+ with δ+ < 4,

|b| 1+α
2 ∈ F (A2)

for some α > 0 fixed arbitrarily small. Then the following are true:

(i) There exists a strong Markov family {Py}y∈Rd of martingale solutions of SDE (2.30).
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(ii) The function

u(x) := EPx

∫ ∞

0
e−λsf(ωs)ds, x ∈ R

d, f ∈ C∞
c (Rd), (2.32)

where λ is assumed to be sufficiently large, is a locally Hölder continuous weak solution
to elliptic Kolmogorov equation

(

λ− ∆ + b · ∇
)

u = f (see Remark 8 for the definitions).

From now on, let us replace condition (A2) with somewhat more restrictive hypothesis
{

b ∈ F,

(div b)
1
2
+ ∈ Fδ+ with δ+ < 4, (div b)

1
2
− ∈ L1 + L∞.

(A3)

If b satisfies (A1), fix p > 2
2−

√
δ
. If b satisfies (A3), fix p > 4

4−δ+
.

(iii) ([36, 45], see also [29]) The family of operators

Ptf(x) := EPx[f(ωt)], t > 0, f ∈ C∞
c

admits extension by continuity to a strongly continuous quasi contraction Markov semig-
roup on Lp, say, Pt =: e−tΛp , such that

‖e−tΛp‖p→q ≤ ceωtt−
d
2

( 1
p

− 1
q

), p ≤ q ≤ ∞
for appropriate constants c and ω. The semigroup is unique in the sense that for any
sequence of bounded smooth vector fields

bn → b in [L2
loc]

d

that do not increase the form-bounds on b in (A2) or (A3), the classical solutions vn to
(

∂t − ∆ + bn · ∇
)

vn = 0, vn(0) = f ∈ C∞
c

converge to the same limit e−tΛpf in Lp loc. uniformly in t ≥ 0.

(iv) The resolvent (µ+ Λp(b))
−1 has Feller property, i.e. for each µ greater than some µ0 > 0

it extends by continuity to a bounded linear operator on C∞:

Rµ(b) :=
[

(µ+ Λp(b))
−1 ↾ Lp ∩ C∞

]clos

C∞→C∞
∈ B(C∞).

Moreover,

Rµ(bn) → Rµ(b) strongly in C∞, µ ≥ µ0,

where Rµ(bn) coincides with the resolvent of −∆ + bn · ∇ on C∞, n = 1, 2, . . .

In (iii) we can consider bn defined by (2.31).

The next result shows that, in principle, there is nothing pathological about condition (A2).
That said, its proof, compared to the proof of the approximation uniqueness in Theorem 5(iii)
under condition (A3), requires more detailed information about the solutions of the correspond-
ing elliptic equation.

Theorem 6 (On the approximation uniqueness). Assume that a Borel measurable vector field
b satisfies

{

b ∈ MF,

(div b)− ∈ L1 + L∞, (div b)
1
2
+ ∈ Fδ+ with δ+ < 2

(2.33)

Then there exist constants µ0 and 0 < κ < 1 such that if, additionally, |b| ∈ L2−κ, then, for any
sequence bn of bounded smooth vector fields satisfying (2.33) with the same constants as b and
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such that bn → b in L2−κ, the sequence of the classical solutions un to (µ− ∆ + bn · ∇)un = f ,
f ∈ C∞

c , µ ≥ µ0, converge:

un → u in L2.

Moreover, if {b̃n} is some other sequence satisfying the same assumptions as {bn}, then the
corresponding solutions ũn converge in L2 to the same limit u.

Notice more restrictive than in Theorem 5 condition on δ+ in (2.33). The proof of Theorem 6
follows the argument in [34] dealing with the approximation uniqueness of solution to the corres-
ponding Dirichlet problem in a bounded domain. That is, it also uses Caccioppoli’s inequality
(Proposition 1) and Gehring’s lemma.

Combining Theorem 6 with Theorem 8, we can show that the limit u is locally Hölder con-
tinuous. One can further show that u is a weak solution of (µ − ∆ + b · ∇)u = f and construct
the corresponding semigroup in Lp, but we will not pursue this here.

We need assertion (iv) of Theorem 5, obtained by means of Theorems 8 and 9, in the proof
of the following uniqueness result.

Theorem 7 (Krylov-type estimates and conditional uniqueness). Assume that a Borel measur-
able vector field b satisfies one of the following conditions:

b ∈ Fδ with δ <

(

2

q

)2

∧ 1 for some q > (d− 2) ∨ 2 (B1)

or


















b ∈ Fδ ∩ [W 1,1
loc (Rd)]d for some finite δ, has symmetric Jacobian Db := (∇kbi)

d
k,i=1,

the normalized eigenvectors ej and eigenvalues λj ≥ 0 of the negative part of Db− div b
q I

for some q > (d− 2) ∨ 2 satisfy
√

λjej ∈ Fνj with ν :=
∑d
j=1 νj <

4(q−1)
q2 .

(B2)
Then the following are true for the strong Markov family of martingale solutions of SDE (2.30)
constructed in Theorem 5:

(i) For every y ∈ R
d, martingale solution Py satisfies Krylov-type bound

EPy

∫ ∞

0
e−λs|gf |(ωs)ds ≤ C‖g|f |

q
2 ‖

2
q

2 , ∀ g ∈ F, ∀ f ∈ Cc, (2.34)

for q > (d− 2) ∨ 2 close to (d− 2) ∨ 2, for all λ sufficiently large.

(i′) {Py}y∈Rd is the only Markov family of martingale solutions to (2.30) that satisfies Krylov-
type bound in (i).

(ii) For every y ∈ R
d, Px satisfies Krylov bound:

EPy

∫ ∞

0
e−λs|f(ωs)|ds ≤ C‖f‖ qd

d+q−2
, ∀ f ∈ Cc (2.35)

for all λ sufficiently large.

(ii′) We make (2.35) more restrictive by selecting q close to (d − 2) ∨ 2, so that in (2.35)
qd

d+q−2 = d
2−ε ∧ 2

1−ε for some ε > 0 small. Let {P2
y}t∈Rd be another Markov family of martingale

solutions for (2.30) that satisfies Krylov bound

EP2
y

∫ ∞

0
e−λs|f |(ωs)ds ≤ C‖f‖ d

2−ε
∧ 2

1−ε
, ∀ f ∈ Cc (2.36)
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(one such family exists, it is {Py}y∈Rd from above). Assume additionally that, for some ε1 ∈]ε, 1[
we have

(1 + |x|−2)−β|b|
d

2−ε1
∨ 2

1−ε1 ∈ L1

for some β > d
2 fixed arbitrarily large, and either (B1) holds with δ < 4

q2∗
∧ 1, where

q∗ :=

{

d−2
ε1−ε if d ≥ 4,

2
( 1

3(ε1−ε) ∨ 1
)

if d = 3,

or (B2) holds with q = q∗ and ν < 4(q∗−1)
q2∗

. Then {P2
y}y∈Rd coincides with {Py}y∈Rd from above.

Some remarks are in order.

1. In the last assertion, the uniqueness class of martingale solutions satisfying Krylov bound
(2.36), which depends on our choice of ε, determines the extra conditions that one needs
to impose on b. Note that if in (B1) one has |b| ∈ Ld, or in (B2) the eigenvectors have
entries in Ld, then the form-bounds δ and νj (j = 1, . . . , d), respectively, can be chosen
arbitrarily small, in which case these extra conditions on b are trivially satisfied.

2. In (B2) we require Jacobian Db to be symmetric, so b = ∇V for some potential V .

Let us illustrate condition (B2) with the following example.

Example 3. Let d ≥ 4. Let

b(x) = −
√
δ
d− 2

2

x

|x|2 ,

a drift that pushes solution Yt of (2.30) away from the origin. Put for brevity c :=
√
δ d−2

2 > 0.

We have div b = −c(d − 2)|x|−2 and ∇jbi = c
[

−|x|−2δij + 2xixj|x|−4
]

. Therefore, for every

ξ = (ξi) ∈ R
d,

ξ⊤(Db− div b

q
)ξ =

d
∑

i,j=1

ξj[(∇jbi) − 1

q
(div b)I]ξi = c

(

d− 2

q
− 1

)

|x|−2|ξ|2 + 2c|x|−4(x · ξ)2

= B+ −B−,

where B+ ≥ 0 is the matrix with entries 2cxixj |x|−4, and B− := −c(d−2
q − 1)|x|−2I ≥ 0. Thus,

constant ν in condition (B2) can be made as small as needed by selecting q > d− 2 sufficiently
close to d− 2, and so for this b condition (B2) can be satisfied for any strength of repulsion from
the origin.

In the previous example it is crucial that we can select q as close to d − 2 as needed. By
working in the parabolic setting we could obtain a stronger uniqueness results, i.e. for every fixed
initial point x. However, the parabolic setting requires us to take q > d [26], and so the previous
example becomes invalid: we have to require smallness of δ even in the case of repulsion.

Remark 9 (On some other classes of singular vector fields arising in the study of singular SDEs
and PDEs). 1. A number of important results on the regularity theory of −∆+b·∇ was obtained
in [49, 50] which considered supercritical form-boundedness type conditions on b (in the context
of the study of 3D Navier-Stokes equations). These are conditions of the type: there exists
ε ∈]0, 1] such that |b| ∈ L1+ε

loc ([0,∞[×R
d) and

∫ ∞

0

∫

Rd
|b(t, ·)|1+εξ2(t, ·)dt ≤ δ

∫ ∞

0
‖∇ξ(t, ·)‖2

2dt +

∫ ∞

0
g(t)‖ξ(t, ·)‖2

2dt

for all ξ ∈ C∞
c ([0,∞[×R

d) (2.37)
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for some δ > 0 and 0 ≤ g ∈ L1
loc([0,∞[) under, necessarily, some assumptions on div b which can-

not be too singular. Here supercriticality/criticality/subcriticality refer to how the assumptions
on b behave under rescaling the equation. In the supercritical case one has to sacrifice a large
portion of the regularity theory of −∆ + b · ∇ including the usual Harnack inequality and the
Hölder continuity of solutions to the elliptic and parabolic equations. See also counterexample
to the uniqueness in law for SDEs with supercritical drifts in [53]. However, some parts of the
theory, such as the local boundedness of weak solutions, can be salvaged, see cited papers, see
also recent developments in [4, 18]. Let us also note that if we were to specify (2.37) to the
critical case when the usual regularity theory is still valid, then we would need to take ε = 1,
i.e. we would obtain condition (2.21), but not more general condition (2.11).

2. As was noted in [28], after supplementing (2.37) with condition (div b)
1
2
+ ∈ Fν for some

ν < 4, one can still prove the existence of a martingale solution to SDE (2.30). In the present
paper we work in the critical setting which allows to us preserve most of the important results
in the regularity theory of elliptic equations that do not involve estimates on the second order
derivatives of the solutions (which are destroyed by the form-boundedness assumptions), and
thus allows to prove, e.g. the strong Markov property, approximation uniqueness or conditional
weak uniqueness results for particle system (1.1) (see, however, [18] who constructed a Markov
family of weak solutions in a supercritical setting using a selection procedure).

Let us also add that above supercriticality refers to the assumptions on b, but not on (div b)+.
In fact, as the counterexample to weak solvability of (1.5) with the model attracting drift shows,
one cannot go beyond the form-boundedness assumption (critical) on (div b)+.

2.3. Embedding theorem and Hölder continuity of solutions. To prove Theorem 5, we
need the following regularity results for non-homogeneous elliptic equations (2.38), (2.43). In
these results we assume additionally that the coefficients of (2.38), (2.43) are bounded and
smooth. However, importantly, the constants in the regularity estimates are generic, i.e. they
depend only on the structure parameters of the equation such as the dimension d, constant term
λ and the form-bounds of the vector fields (but not on the smoothness or boundedness of the
coefficients).

Theorem 8 (Hölder continuity of solutions). Let b : Rd → R
d be a bounded smooth vector field

such that either (A1) (i.e. b ∈ Fδ with δ < 4) holds, or






b ∈ MF,

(div b+)
1
2 ∈ Fδ+ with δ+ < 4,

(Ā2)

where div b = div b+ − div b− for some bounded smooth functions div b± ≥ 0. Then a classical
solution u to non-homogeneous equation

(

λ− ∆ + b · ∇
)

u = f ∈ C∞
c , λ ≥ 0, (2.38)

is locally Hölder continuous with generic constants that also depend on ‖f‖∞.

(The difference between (Ā2) and (A2) is that in the former case we do not require div b± to
be positive and negative parts of div b, which are continuous but not necessarily smooth.)

The fact that the constants are generic is of course the main point of Theorem 8.

Define weight

ρ(y) = (1 + k|y|2)− d
2

−1, y ∈ R
d, (2.39)
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where constant constant k > 0 will be chosen sufficiently small. This weight has property

|∇ρ| ≤
(

d

2
+ 1

) √
kρ. (2.40)

For a fixed x ∈ R
d, put ρx(y) := ρ(y − x).

Theorem 9 (Embedding theorem). Let b, h : Rd → R
d be bounded smooth vector fields such

that

b ∈ Fδ with δ < 4, h ∈ F (2.41)

or






b ∈ MF,

(div b+)
1
2 ∈ Fδ+ with δ+ < 4,

|h|
1+γ

2 ∈ F for some small γ > 0, (2.42)

where div b = div b+ −div b− for some bounded smooth functions div b± ≥ 0. In the former case,
fix p > 2

2−
√
δ
, p ≥ 2, and in the latter case fix p > 4

4−δ+
, p′ ≤ 1 + γ, p ≥ 2.

Then, for a fixed 1 < θ < d
d−2 , there exist generic constants λ0, k (in ρ), C and β ∈]0, 1[ such

that the classical solution u to non-homogeneous equation

(λ− ∆ + b · ∇)u = |hf |, f ∈ C∞
c (2.43)

on R
d satisfies

‖u‖∞ ≤ C sup
x∈ 1

2
Zd

(

(λ− λ0)
− 1

pθ 〈
(

1|h|>1 + |h|pθ1|h|≤1

)

|f |pθρx〉
1

pθ

+ λ−β〈
(

1|h|>1 + |h|pθ′
1|h|≤1

)

|f |pθ′
ρx〉

1
pθ′

)

for all λ ≥ λ0 ∨ 1.

2.4. Gradient bounds. The following result is used in the proof of Theorem 7.

Theorem 10 (Gradient bounds). Assume that a bounded smooth vector field b satisfies either
condition (B1) of Theorem 7 or



















b ∈ Fδ ∩ [W 1,1
loc (Rd)]d with finite δ and symmetric Jacobian Db := (∇kbi)

d
k,i=1,

and the negative part B− of matrix Db− div b
q I for some q > (d− 2) ∨ 2

satisfies 〈B−h, h〉 ≤ ν〈|∇|h||2〉 + cν〈|h|2〉 for some ν < 4(q−1)
q2 .

(B̄2)

Then the following are true:

(i) For every g ∈ F there exist generic constants µ0 and K such that, for every µ > µ0, the
classical solution u to elliptic equation (µ − ∆ − b · ∇)u = |g|f , f ∈ C∞

c , satisfies

‖∇|∇u|
q
2 ‖2 ≤ K(µ− µ0)− 1

q ‖g|f |
q
2 ‖2.

(ii) There exist generic constants µ0 and K such that the classical solution u to elliptic
equation (µ− ∆ − b · ∇)u = f , f ∈ C∞

c , satisfies, for all µ > µ0,

‖∇|∇u| q
2 ‖2 ≤ K(µ− µ0)− 1

q ‖f‖ qd
d+q−2

.
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For example, condition (B̄2) holds if condition (B2) of Theorem 7 is satisfied, see Lemma 11.

Assuming that b ∈ Fδ, δ < ( 2
d−2 )2 ∧ 1, [36] proved estimate

‖∇|∇u|
q
2 ‖2 ≤ K(µ− µ0)

1
q

− 1
2 ‖f‖q, q ∈](d− 2) ∨ 2,

2√
δ

[ (2.44)

for solution u to elliptic equation (µ−∆−b·∇)u = f . This estimate was used in [36] to construct
the corresponding to −∆−b·∇ Feller semigroup via a Moser-type iteration procedure. The norm
‖f‖q in the right-hand side of (2.44) does not allow to obtain the uniqueness result in Theorem

7 from (2.44), unless b satisfies additional assumption |b| ∈ L(d−2)∨2. Still, the argument of [36]
can be modified to include a weaker norm of f , and this is what we do in the proof of Theorem
10. In particular, we use the test function

φ = −∇ · (∇u|∇u|q−2) (2.45)

of [36]. In more recent literature one can find other test functions that give gradient bounds on
u of the same type as in Theorem 10 (moreover, these test functions work for larger classes of
equations). However, importantly, test function (2.45) yields the least restrictive assumptions
on form-bounds δ and ν, which are in the focus of the present paper. In fact, one can argue
that by multiplying the elliptic equation by test function (2.45) and integrating by parts, one
differentiates the equation in the optimal direction ∇u

|∇u| . We refer to [23] for more detailed

discussion and references.

3. Smooth approximation of form-bounded vector fields

The proofs of Lemmas 3-6 employ some arguments from [30]. Let b ∈ [L1
loc(R

d)]d. Define

bε := Eεb, ε > 0,

where, recall, Eεh denotes the Friedrichs mollifier of function (or vector field) h, see Section 1.1
for the definition.

Lemma 3. If b ∈ Fδ, then the following is true:

1. bε ∈ [L∞(Rd) ∩ C∞(Rd)]d, bε → b in [L2
loc(R

d)]d as ε ↓ 0.

2. bε ∈ Fδ with the same constant cδ (thus, independent of ε).

Proof. 1. The smoothness of bε and the convergence follow from the standard properties of
Friedrichs mollifiers, so it remains to prove that |bε| ∈ L∞. By Hölder’s inequality,

|bε(x)| ≤
√

Eε|b|2(x) =
√

γε(x− ·)|b(·)|2,
so

|bε(x)| ≤
〈

|b(·)|2γε(x− ·)
〉

1
2

(we apply the hypothesis b ∈ Fδ)

≤
(

δ
〈∣

∣∇
√

γε(x− ·)
∣

∣

2〉

+ cδ
)

1
2 = (Cε−1 + cδ)

1
2 .

Hence |bε| ∈ L∞ for each ε > 0.
2. Put ϕε =

√

Eε|ϕ|2, ϕ ∈ W 1,2. Then

‖bεϕ‖2
2 ≤ 〈Eε|b|2, |ϕ|2〉 = ‖bϕε‖2

2 ≤ δ‖∇ϕε‖2
2 + c(δ)‖ϕε‖2

2,
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where

‖∇ϕε‖2 =
∥

∥

Eε(|ϕ||∇ϕ|)
√

Eε|ϕ|2
∥

∥

2
≤ ‖

√

Eε|∇|ϕ||2‖2 = ‖Eε|∇|ϕ||2‖
1
2
1 ≤ ‖∇|ϕ|‖2 ≤ ‖∇ϕ‖2 (3.1)

and, clearly, ‖ϕε‖2 ≤ ‖ϕ‖2. �

Lemma 4. If b ∈ MFδ, then the following is true:

1. bε ∈ [L∞(Rd) ∩ C∞(Rd)]d, bε → b in [L1
loc(R

d)]d.

2. bε ∈ MFδ with the same cδ.

Proof. 1. We only need to prove |bε| ∈ L∞. By b ∈ MFδ, for all x ∈ R
d,

|bε(x)| ≤
〈

|b(·)|γε(x− ·)
〉

≤ δ
〈∣

∣∇
√

γε(x− ·)
∣

∣

2〉

1
2 + cδ = Cε− 1

2 + cδ .

2. Let ϕε =
√

Eε|ϕ|2, ϕ ∈ W 1,2. We have

〈|bε|ϕ,ϕ〉 = 〈|b|Eε|ϕ|2〉 = 〈|b|ϕ2
ε〉 ≤ δ‖∇ϕε‖2‖ϕε‖2 + cδ‖ϕε‖2

2,

where, repeating the previous proof, ‖∇ϕε‖2 ≤ ‖∇ϕ‖2, ‖ϕε‖2 ≤ ‖ϕ‖2. �

Assume that div b ∈ L1
loc. We can represent div bε = Eεdiv b as

div bε = div bε,+ − div bε,−,

where

div bε,+ := Eε(div b)+, div bε,− := Eε(div b)−.

Note that smooth functions div bε,± ≥ 0 are in general greater than the positive and the negative
parts (div bε)+ := div bε ∨ 0, (div bε)− := −(div bε ∧ 0) of div bε.

Lemma 5. If (div b)+ ∈ Fδ+ , (div b)− ∈ L1 + L∞, then the following is true:

1. div bε,+ ∈ L∞ ∩ C∞, div bε,+ → (div b)+ in L1
loc as ε ↓ 0.

2. div bε,+ ∈ Fδ+ with the same cδ+ as the one for b.

Proof. The first statement follows from the properties of Friedrichs mollifiers and the following
estimate (we use notations from the previous proof): for every x ∈ R

d,

div bε,+(x) ≤
〈

(div b)+(·)γε(x− ·)
〉

≤ δ+
〈∣

∣∇
√

γε(x− ·)
∣

∣

2〉

+ cδ+ = Cε−1 + cδ,

Let us prove the second statement:

〈div bε,+ϕ,ϕ〉 = 〈(div b)+ϕ
2
ε〉 ≤ δ+‖∇ϕε‖2

2 + cδ+‖ϕε‖2
2 ≤ δ+‖∇ϕ‖2

2 + cδ+‖ϕ‖2
2.

�

Finally, we will need

Lemma 6. If |h| 1+γ
2 ∈ Fχ (γ > 0), then the following is true:

1. hε := Eεh ∈ [L∞(Rd) ∩ C∞(Rd)]d, hε → h in [L1
loc(R

d)]d as ε ↓ 0,
2. |hε| ∈ Fχ with the same cχ.

Proof. By Hölder’s inequality, |hε|1+γ ≤ Eε|h|1+γ , so 〈|hε|1+γϕ2〉 ≤ 〈|h|1+γ , ϕ2
ε〉, where, recall,

ϕε =
√

Eε|ϕ|2, ϕ ∈ W 1,2. Now we apply |h| 1+γ
2 ∈ Fχ and use ‖∇ϕε‖2 ≤ ‖∇ϕ‖2, ‖ϕε‖2 ≤

‖ϕ‖2. �
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4. Proofs of Lemmas 1 and 2

Recall: b = (b1, . . . , bN ) : RNd → R
Nd is defined by

bi(x) :=
1

N

N
∑

j=1,j 6=i
Kij(xi − xj), x = (x1, . . . , xn) ∈ R

Nd, 1 ≤ i ≤ N.

Below | · | denotes, depending on the context, the Euclidean norm in R
Nd or R

d. In this section,
〈 , 〉 is the integration over R

Nd.

Proof of Lemma 1. We have

|b(x)|2 ≤
N

∑

i=1

|bi(x)|2 ≤
N

∑

i=1

(

1

N

N
∑

j=1,j 6=i
|Kij(xi − xj)|

)2

≤
N

∑

i=1

N − 1

N2

N
∑

j=1,j 6=i
|Kij(xi − xj)|2.

Therefore, 〈|b|2ϕ2〉 ≤ ∑N
i=1

N−1
N2

∑N
j=1,j 6=i〈|Kij(xi −xj)|2ϕ2〉, where, denoting by x̄ vector x with

component xi removed, we estimate

〈|Kij(xi − xj)|2ϕ2〉 =

∫

R(N−1)d

∫

Rd
|Kij(xi − xj)|2ϕ2(xi, x̄)dxidx̄

(we use Kij ∈ Fκ(Rd) in xi variable)

≤ κ

∫

R(N−1)d

∫

Rd
|∇xiϕ(xi, x̄)|2dxidx̄+ cκ

∫

RNd
ϕ2dx

= κ〈|∇xiϕ|2〉 + cκ〈ϕ2〉.

Hence 〈|b|2ϕ2〉 ≤ (N−1)2

N2 κ〈|∇ϕ|2〉 + (N−1)2

N cκ〈ϕ2〉, as claimed. �

Proof of Lemma 2. Let us first prove (2.14). We have

〈|b|ϕ2〉 ≤
N

∑

i=1

〈|bi|ϕ2〉 =
N

∑

i=1

1

N

N
∑

j=1,j 6=i
〈|Kij(xi − xj)|ϕ2〉. (4.1)

Denoting by x̄ the variable x with component xi removed, we estimate

〈|Kij(xi − xj)|ϕ2〉 =

∫

R(N−1)d

∫

Rd
|Kij(xi − xj)|ϕ2(xi, x̄)dxidx̄

(apply Kij ∈ MFκ(Rd) in xi variable)

≤
∫

R(N−1)d

[(
∫

Rd
|∇xiϕ(xi, x̄)|2dxi

)

1
2
(

∫

Rd
ϕ2(xi, x̄)dxi

)

1
2

+ cκ

∫

Rd
ϕ2(xi, x̄)dxi

]

dx̄

≤ κ〈|∇xiϕ|2〉 1
2 〈ϕ2〉 1

2 + cκ〈ϕ2〉.
Therefore,

N
∑

i=1

1

N

N
∑

j=1,j 6=i
〈|Kij(xi − xj)|ϕ2〉 ≤

N
∑

i=1

N − 1

N

[

κ〈|∇xiϕ|2〉 1
2 〈ϕ2〉 1

2 + cκ〈ϕ2〉
]

≤ N − 1

N

√
Nκ〈|∇ϕ|2〉 1

2 〈ϕ2〉 1
2 + (N − 1)cκ〈ϕ2〉.
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Applying these estimates in (4.1), we obtain (2.14).

Next, we prove (2.15). We have div b(x) =
∑N
i=1

1
N

∑N
j=1,j 6=i(divKij)(xi − xj). So,

(div b)+ =
N

∑

i=1

1

N

N
∑

j=1,j 6=i
(divKij)+(xi − xj).

Hence, by (divKij)
1
2
+ ∈ Fκ+(Rd) (note that this condition is linear in (divKij)+),

〈(div b)+, ϕ
2〉 ≤ N − 1

N
κ+〈|∇ϕ|2〉 + (N − 1)cκ+〈ϕ2〉,

i.e. we have proved (2.15) for (div b)+.
Now, we prove (2.16). We have

|b|1+α ≤
N

∑

i=1

|bi(x)|1+α ≤
N

∑

i=1

(

1

N

N
∑

j=1,j 6=i
|Kij(xi − xj)|

)1+α

≤ 2α
N

∑

i=1

(N − 1)α

N1+α

N
∑

j=1,j 6=i
|Kij(xi − xj)|1+α.

Therefore, applying |Kij |
1+α

2 ∈ Fσ(Rd), we obtain

〈|b|1+αϕ2〉 ≤ (N − 1)1+α

N1+α
σ2α〈|∇ϕ|2〉 +N

(N − 1)1+α

N1+α
cσ2α〈ϕ2〉,

which gives us (2.16). �

Remark 10. In Remark 5 we promised to prove that vector field bM : RNd → R
Nd defined by

(2.26) is in FδM (RNd) with δM = µ, cδM = Ncµ. Here is the proof:

|bM (x)|2 =
N

∑

i=1

|Mi(xi)|2,

where (recall that 〈 , 〉 is the integration over RNd, x̄ is vector x ∈ R
Nd with component xi ∈ R

d)

〈|Mi(xi)|ϕ2〉 =

∫

R(N−1)d

∫

Rd
|Mi(xi)|ϕ2(xi, x̄)dxidx̄

(we use Mi ∈ Fµ(Rd) in xi variable)

≤ µ

∫

R(N−1)d

∫

Rd
|∇xiϕ(xi, x̄)|2dxidx̄+ cµ

∫

RNd
ϕ2dx = µ〈|∇xiϕ|2〉 + cµ〈ϕ2〉.

So,

〈|bM (x)|2ϕ2〉 =
N

∑

i=1

〈|Mi(xi)|2〉 ≤ µ〈|∇ϕ|2〉 +Ncµ〈ϕ2〉,

as claimed.
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5. Caccioppoli’s inequality

We use the next proposition in the proofs of Theorems 8 and 9.

Proposition 1. Let b, h : Rd → R
d be bounded smooth vector fields such that either

b ∈ Fδ with δ < 4, h ∈ Fχ with χ < ∞ (5.1)

or






b ∈ MFδ for some δ < ∞,

(div b+)
1
2 ∈ Fδ+ with δ+ < 4,

|h|
1+γ

2 ∈ Fχ with χ < ∞ (5.2)

for some γ > 0 fixed arbitrarily small, where div b = div b+ − div b− for some bounded smooth
functions div b± ≥ 0.

In the former case, fix p > 2
2−

√
δ
, p ≥ 2, and in the latter case fix p > 4

4−δ+
, p′ ≤ 1+γ, p ≥ 2.

Let u be a classical solution to non-homogeneous equation

(λ− ∆ + b · ∇)u = |hf |, f ∈ C∞
c , λ ≥ 0. (5.3)

Fix R0 ≤ 1. Then, for all 0 < r < R ≤ R0 and every k ∈ R the positive part v := (u − k)+ of
u− k satisfies

λ‖v
p
2 1Br ‖2

2 + ‖(∇v
p
2 )1Br ‖2

2 ≤ K1

(R− r)2
‖v

p
2 1BR

‖2
2

+K2‖
(

1|h|>1 + |h|
p
2 1|h|≤1

)

|f |
p
2 1u>c1BR

‖2
2

for generic constants K1, K2 (so, independent of r, R and k).

Proof. Let us first carry out the proof in the more difficult case when b and h satisfy condition
(5.2). We attend to the case when b and h satisfy (5.1) in Remark 11.

We fix a family of [0, 1]-valued smooth cut-off functions {η = ηr1,r2}0<r1<r2<R on R
d satisfying

η =

{

1 in Br1 ,
0 in R

d − B̄r2,

and
|∇η|2
η

≤ c

(r2 − r1)2
1Br2

, (5.4)

√

|∇η| ≤ c√
r2 − r1

1Br2
, (5.5)

|∇
√

|∇η|| ≤ c

(r2 − r1)
3
2

1Br2
(5.6)

for some constant c. For instance, one can take, for r1 ≤ |y| ≤ r2,

η(y) := 1 −
∫ 1+

|y|−r1
r2−r1

1
ϕ(s)ds, where ϕ(s) := Ce

− 1
1
4

−(s− 3
2

)2
, sprtϕ = [1, 2],

with constant C adjusted to
∫ 2

1 ϕ(s)ds = 1.
We multiply equation (5.3) by vp−1η and integrate to obtain

λ〈vpη〉 +
4(p − 1)

p2
〈∇v

p
2 , (∇v

p
2 )η〉 +

2

p
〈∇v

p
2 , v

p
2 ∇η〉

+
2

p
〈b · ∇v p

2 , v
p
2 η〉 = 〈|h|f, vp−1η〉.
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Then, applying quadratic inequality (fix some ǫ > 0), we have

pλ〈vpη〉 +

(

4(p− 1)

p
− 4

p
ǫ

)

〈|∇v p
2 |2η〉 ≤ p

4ǫ

〈

vp
|∇η|2
η

〉

− 2〈b · ∇v p
2 , v

p
2 η〉 + p〈|h|f, vp−1η〉 (5.7)

(we are integrating by parts)

≤ p

4ǫ

〈

vp
|∇η|2
η

〉

+ 〈bv
p
2 , v

p
2 ∇η〉 + 〈div b, vpη〉 + p〈|h|f, vp−1η〉 =: I1 + I2 + I3 + I4.

By (5.4),

I1 ≤ cp

4ǫ(r2 − r1)2
‖v

p
2 1Br2

‖2
2.

By (5.2),

I2 ≤ 〈|b|v
p
2 , v

p
2 |∇η|〉

≤ δ‖∇(v
p
2

√

|∇η|)‖2‖v
p
2

√

|∇η|‖2 + cδ‖v
p
2

√

|∇η|‖2
2

≤ δ

(

‖(∇v p
2 )

√

|∇η|‖2 + ‖v p
2 ∇

√

|∇η|‖2

)

‖v p
2

√

|∇η|‖2 + cδ‖v
p
2

√

|∇η|‖2
2.

Hence, using (5.5), (5.6), we obtain

I2 ≤ δc

(

1√
r2 − r1

‖(∇v
p
2 )1Br2

‖2 +
1

(r2 − r1)
3
2

‖v
p
2 1Br2

‖2

)

1√
r2 − r1

‖v
p
2 1Br2

‖2

+
cδc

r2 − r1
‖v p

2 1Br2
‖2

2.

Thus, since r2 − r1 < 1,

I2 ≤ C1

r2 − r1
‖(∇v

p
2 )1Br2

‖2‖v
p
2 1Br2

‖2 + C1

(

1 +
1

(r2 − r1)2

)

‖v
p
2 1Br2

‖2
2

for appropriate constant C1.
Next, by (5.2),

I3 ≤ 〈div b+, v
pη〉 ≤ δ+‖∇(v

p
2
√
η)‖2

2 + cδ+‖v√
η‖2

2

= δ+‖(∇v p
2 )

√
η + v

∇η√
η

‖2
2 + cδ+‖v√

η‖2
2

≤ δ+

(

(1 + ǫ′)‖(∇v
p
2 )

√
η‖2

2 +

(

1 +
1

ǫ′

)

1

4
‖v

p
2

∇η√
η

‖2
2

)

+ cδ+‖v
p
2
√
η‖2

2 (ǫ′ > 0)

≤ δ+(1 + ǫ′)‖(∇v
p
2 )

√
η‖2

2 +
c1

(r2 − r1)2
‖v

p
2 1Br2

‖2
2, c1 := δ+

(

1 +
1

ǫ′

)

1

4
c+ cδ+ .
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Again by (5.2),

1

p
I4 = 〈(|h|1|h|>1 + h1|h|≤1)f, vp−1η〉

(we open the brackets and apply Young’s inequality)

≤ ε′′〈|h|p′
1|h|>1v

pη〉 +
1

4ε′′ 〈1|h|>1|f |pη〉

+ ε′′〈vpη〉 +
1

4ε′′ 〈|h|p1|h|≤1|f |pη〉

(we are applying |h|
1+γ

2 ∈ Fχ in the first term (recall: p′ ≤ 1 + γ))

≤ 2ε′′χ〈|∇v
p
2 |2η〉 + 2ε′′χ〈vp |∇η|2

η
〉 + ε′′(cχ + 1)〈vpη〉 +

1

4ε′′
〈

Θ|f |p1v>0η
〉

,

where Θ := 1|h|>1 + |h|p1|h|≤1. Selecting ε′′ sufficiently small and applying the estimates on I1-I4

in (5.7), we obtain

λ‖v
p
2 1Br1

‖2
2 + ‖|∇v

p
2 |1Br1

‖2
2 ≤ C1

r2 − r1
‖(∇v

p
2 )1Br2

‖2‖v
p
2 1BR

‖2

+ C2

(

1 +
1

(r2 − r1)2

)

‖v
p
2 1BR

‖2
2 + C3‖Θ

1
2 |f |

p
2 1v>01BR

‖2
2. (5.8)

Divide (5.8) by ‖v p
2 1BR

‖2
2:

λ‖v p
2 1Br1

‖2
2 + ‖(∇v p

2 )1Br1
‖2

2

‖v p
2 1BR

‖2
2

≤ C1

r2 − r1

λ‖v p
2 1Br2

‖2
2 + ‖(∇v p

2 )1Br2
‖2

‖v p
2 1BR

‖2

(5.9)

+ C2

(

1 +
1

(r2 − r1)2

)

+ C3S
2, (5.10)

where

S2 :=
‖Θ

1
2 |f | p

2 1v>01BR
‖2

2

‖v p
2 1v>01BR

‖2
2

.

Inequality (5.10) is the pre-Caccioppoli inequality that we will now iterate.
Put

a2
n :=

λ‖v p
2 1B

R− R−r

2n−1

‖2
2 + ‖(∇v p

2 )1B
R− R−r

2n−1

‖2
2

‖v p
2 1v>01BR

‖2
2

,

the inequality (5.10) yields

a2
n ≤ C(R− r)−12nan+1 + C2(R− r)−222n + C2S2

with constant C independent of n. We multiply this inequality by (R−r)2 and divide by C222n.

Then, setting yn := (R−r)an

C2n , we obtain

y2
n ≤ yn+1 + 1 + (R− r)2S2 (5.11)

for all n = 1, 2, . . . A priori, all an’s are bounded by a non-generic constant

(λ‖v p
2 1B‖2

2 + ‖(∇v p
2 )1BR

‖2)/‖v p
2 1BR

‖2 < ∞,
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so supn yn < ∞. Therefore, we can iterate (5.11) and thus estimate all yn, n = 1, 2, . . . , via

nested square roots 1 + (R− r)2S2 +
√

1 + (R − r)2S2 +
√
. . ., obtaining

y2
n ≤ 3 + 2(R − r)2S2, n = 1, 2, . . .

Taking n = 1, we arrive at a1 ≤ K1(R− r)−2 +K2S
2 for appropriate constants K1 and K2, i.e.

λ‖v p
2 1Br ‖2

2 + ‖(∇v p
2 )1Br ‖2

2

‖v p
2 1BR

‖2
2

≤ K1(R − r)−2 +K2
‖Θ

1
2 |f | p

2 1v>01BR
‖2

2

‖v p
2 1BR

‖2
2

,

as claimed.

Remark 11. If b and h satisfy condition (5.1), then we can work with somewhat simpler cutoff
functions η ∈ C∞

c , η = 1 in Br1 , η = 0 in R
d \Br2, i.e. |∇η| ≤ c1(r2 −r1)−1, |∆η| ≤ c2(r2 −r1)−2,

and we do not need to integrate by parts in order to estimate the second term in the RHS of
(5.7). Instead, we can just apply quadratic inequality:

2|〈b · ∇v
p
2 , v

p
2 η〉| ≤ α〈|∇v|

p
2 η〉 +

1

4α
〈|b|2, vpη〉, α =

2√
δ
.

Regarding the terms containing h, we simply take γ = 1, which transforms condition |h| 1+γ
2 ∈ Fχ,

χ < ∞ from (5.2) into condition h ∈ Fχ in (5.1), and argue as in the estimate on I4 above.

This ends the proof of Proposition 1. �

6. Proof of Theorem 8

If b satisfies (A1), then we fix throughout this proof p > 2
2−

√
δ
, p ≥ 2. If b satisfies (Ā2), then

we fix p > 2
4−δ+

, p ≥ 2. Let u be a classical solution to non-homogeneous equation

(λ− ∆ + b · ∇)u = f, f ∈ C∞
c .

Set

v := (u− k)+, k ∈ R.

Fix R0 ≤ 1. Here is a special case of Proposition 1 obtained by taking h = 1 and discarding the
term containing λ there. (Strictly speaking, in Proposition 1 we have |f | in the RHS, but this
does not affect the proof.)

Proposition 2. For all 0 < r < R ≤ R0,

‖(∇v
p
2 )1Br ‖2

2 ≤ K1

(R− r)2
‖v

p
2 1BR

‖2
2 +K2‖|f |

p
2 1u>k1BR

‖2
2

for generic constants K1, K2.

Lemma 7 ([15, Sect.7.2]). If {zm}∞
m=0 ⊂ R+ is a sequence of positive real numbers such that

zm+1 ≤ NCm0 z
1+α
m

for some C0 > 1, α > 0, and

z0 ≤ N− 1
αC

− 1
α2

0 .

Then limm zm = 0.
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Below we follow closely De Giorgi’s method as it is presented in [15, Ch. 7], with appro-
priate modifications to account for our somewhat different definition of Lp De Giorgi’s classes
(i.e. functions satisfying the inequality in Proposition 2), see discussion in Remark 1.

Proposition 3. For all 0 < r < R ≤ R0,

sup
BR

2

u ≤ C1

(

1

|BR| 〈u
p1BR∩{u>0}〉

)

1
p
( |BR ∩ {u > 0}|

|BR|

)

α
p

+ C2‖f‖∞R
2
p

for generic constants C1, C2 that also depend on ‖f‖∞, where α > 0 is fixed by α(α+ 1) = 2
d .

Proof. Without loss of generality, R0 = 1. Let 1
2 < r < ρ ≤ 1. Fix η ∈ C∞

c , η = 1 on Br, η = 0

on R
d \ B̄ r+ρ

2
, |∇η| ≤ 4

ρ−r . Set ζ := ηv = η(u − k)+, k ∈ R. Using Hölder’s inequality and

Sobolev’s embedding theorem, we obtain

‖v
p
2 1Br ‖2

2 ≤ ‖ζ
p
2 1Br ‖2

2 ≤ 〈1Br∩{u>k}〉 2
d 〈ζ

pd
d−2 1B r+ρ

2

〉 d−2
d

≤ c1|Br ∩ {u > k}| 2
d 〈|∇ζ

p
2 |21B r+ρ

2

〉

= c1|Br ∩ {u > k}| 2
d 〈|(∇η

p
2 )v

p
2 ) + η

p
2 ∇v

p
2 |21B r+ρ

2

〉

Hence

‖v
p
2 1Br ‖2

2 ≤ c2|Br ∩ {u > k}| 2
d

(

1

(ρ− r)2
‖v

p
2 1B r+ρ

2

‖2
2 + ‖(∇v

p
2 )1B r+ρ

2

‖2
2

)

.

Proposition 2 yields:

‖(∇v
p
2 )1B r+ρ

2

‖2
2 ≤ K1

(ρ− r)2
‖v

p
2 1Bρ‖2

2 +K2‖f‖p∞
∣

∣Bρ ∩ {u > k}
∣

∣, (6.1)

so

‖v
p
2 1Br ‖2

2 ≤ C|Br ∩ {u > k}| 2
d

(

1

(ρ− r)2
‖v

p
2 1Bρ‖2

2 + ‖f‖p∞
∣

∣Bρ ∩ {u > k}
∣

∣

)

≤ C|Bρ ∩ {u > k}| 2
d

(ρ− r)2
‖v

p
2 1Bρ‖2

2 + C‖f‖p∞|Bρ ∩ {u > k}|1+ 2
d . (6.2)

Now, returning from notation v to (u−k)+, we note that if h < k, then ‖(u−k)
p
2 1Bρ∩{u>k}‖2 ≤

‖(u−h)
p
2 1Bρ∩{u>h}‖2 and ‖(u−h)

p
2 1Bρ∩{u>h}‖2

2 ≥ (k−h)p|Br ∩{u > h}|. Therefore, we obtain
from (6.2)

‖(u− k)
p
2
+1Br ‖2

2 ≤ C

(ρ− r)2
‖(u− h)

p
2
+1Bρ‖2

2|Bρ ∩ {u > h}| 2
d

+
C‖f‖p∞
(k − h)p

‖(u − h)
p
2
+1Bρ‖2

2|Bρ ∩ {u > h}| 2
d .

Multiplying this inequality by |Br∩{u > k}|α
(

≤ 1
(k−h)pα ‖(u−h)

p
2
+1Bρ‖2α

2

)

and using α2+α = 2
d ,

we obtain

‖(u− k)
p
2
+1Br ‖2

2|Br ∩ {u > h}|α

≤ C

[

1

(ρ− r)2
+

‖f‖p∞
(k − h)p

]

1

(k − h)pα
(

‖(u− h)
p
2
+1Bρ‖2

2|Bρ ∩ {u > h}|α
)1+α

.
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Now, take r := ri+1, ρ := ri, where ri := R
2 (1+ 1

2i ) and k := ki+1, h := ki, where ki := ξ(1−2−i),

with constant ξ ≥ R
2
p to be chosen later. Then, setting

zi = z(ki, ri) := ‖(u− ki)
p
2
+1Bri

‖2
2|Bri ∩ {u > ki}|α,

we have zi+1 ≤ K[22i + 2piR2

ξp ] 1
R2

2piα

ξpα z
1+α
i hence

zi+1 ≤ 2p(1+α)i 2K

R2

1

dpα
z1+α
i .

We apply Lemma 7. In the notation of this lemma, C0 = 2p and N = 2K
R2

1
ξpα . We need

z0 ≤ N− 1
αC

− 1
α2

0

(where, recall, z0 = 〈up1BR∩{u>0}〉|BR ∩ {u > 0}|α), which amounts to requiring ξ ≥ C1R
2

pα z
1
p

0 .

Take ξ := R
2
p + C1R

2
pα z

1
p

0 . By Lemma 7, z(d, R2 ) = 0, i.e. supR
2
u ≤ ξ. The claimed inequality

follows. �

Set osc (u,R) := supy′,y∈BR
|u(y) − u(y′)|.

Proposition 4. Fix k0 by

2k0 = M(2R) −m(2R) := sup
B2R

u− inf
B2R

u.

Assume that |BR ∩ {u > k0}| ≤ γ|BR| for some γ < 1. If

osc (u, 2R) ≥ 2n+1C2R
2
p ,

then, for kn := M(2R) − 2−n−1osc (u, 2R),

|BR ∩ {u > kn}| ≤ cn
− d

2(d−1) |BR|.

Proof. For h ∈]k0, k[, set w := (u − h)
p
2 if h < u < k, set w := (k − h)

p
2 if u ≥ k, and w := 0 if

u ≤ h. Note that w = 0 in BR \ (BR ∩ {u > k0}). The measure of this set is greater than γ|BR|,
so the Sobolev embedding theorem applies and yields

(k − h)
p
2 |BR ∩ {u > k}| d−1

d ≤ c1〈w
d

d−1 1BR
〉 ≤ c2〈|∇w|1∆〉

≤ c2|∆| 1
2 〈|∇(u− h)

p
2 |21BR∩{u>h}〉 1

2 ,

where ∆ := BR ∩ {u > h} \ (BR ∩ {u > k}). Now, it follows from Proposition 2 that

〈|∇(u− h)
p
2 |21BR∩{u>h}〉 ≤ C3

R2
〈(u− h)p1B2R∩{u>h}〉 + C4|B2R ∩ {u > h}|

≤ C3R
d−2(M(2R) − h)p + C5R

d.

For h ≤ kn we have M(2R) − h ≥ M(2R) − kn ≥ C2R
2
p . Therefore,

(k − h)
p
2 |BR ∩ {u > k}| d−1

d ≤ c|∆| 1
2R

d−2
2 (M(2R) − h)

p
2 .

Select k = ki := M(2R) − 2−i−1osc (u, 2R), h = ki−1. Then

M(2R) − h = 2−iosc (u, 2R), |k − h| = 2−i−1osc (u, 2R),

so

|BR ∩ {u > kn}|
2(d−1)

d ≤ |BR ∩ {u > ki}|
2(d−1)

d ≤ C|∆i|Rd−2,
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where ∆i := BR ∩ {u > ki} \ (BR ∩ {u > ki−1}). Summing up in i from 1 to n, we obtain

n|BR ∩ {u > kn}|
2(d−1)

d ≤ CRd−2|BR ∩ {u > k0}| ≤ C ′R2(d−1),

and the claimed inequality follows. �

Proof of Theorem 8, completed. Fix k0 by 2k0 = M(2R) − m(2R). Without loss of generality,
|BR∩{u > k0}| ≤ 1

2 |BR| (otherwise we replace u by −u). Set kn := M(2R)−2−n−1osc (u, 2R) >
k0. By Proposition 3,

sup
BR

(u− kn) ≤ C1
( 1

|BR| 〈(u− kn)p1BR∩{u>kn}〉
)

1
p

( |BR ∩ {u > kn}|
|BR|

)

α
p

+C3R
2
p

≤ C1 sup
BR

(u− kn)

( |BR ∩ {u > kn}|
|BR|

)

1+α
p

+ C3R
2
p

Fix n by cn
− d

2(d−1) ≤ (1
2 )

p
1+α . Then, if osc (u, 2R) ≥ 2n+1C2R

2
p , we obtain from Proposition 4

M(
R

2
) − kn ≤ 1

2
(M(2R) − kn) + C3R

2
p ,

hence

osc (u,
R

2
) ≤

(

1 − 1

2n+1

)

osc (u, 2R) +C3R
2
p . (6.3)

If osc (u, 2R) ≥ 2n+1C2R
2
p , then, clearly,

osc (u,
R

2
) ≤

(

1 − 1

2n+1

)

osc (u, 2R) + 2n+1C2R
2
p . (6.4)

This yields the sought Hölder continuity of u via a standard algebraic lemma, see [15, Lemma
7.1]. �

7. Proof of Theorem 9

We will use Proposition 1. The assumptions of Theorem 9 are exactly those of Proposition 1.

Proposition 5. There exists generic constants K and β ∈]0, 1[ such that, for all λ ≥ 1, the
positive part u+ of solution u of non-homogeneous equation (2.43) satisfies

sup
B 1

2

u+ ≤ K

(

〈upθ+ 1B1〉
1

pθ + λ−β〈

(1|h|>1 + |h|p1|h|≤1)θ
′ |f |pθ′

1B1

〉

1
pθ′

)

. (7.1)

Proof. Proposition 1 yields

λ‖v
p
2 1Br ‖2

2 + ‖v
p
2 ‖2
W 1,2(Br) ≤ K̃1(R− r)−2‖v‖pLp(BR)

+K2‖Θ
1
p f1u>k‖pLp(BR), v := (u− k)+, k ∈ R,

where Θ := 1|h|>1 + |h|p1|h|≤1 and K̃1, K2 are generic constants. By the Sobolev embedding
theorem,

λ‖v‖pLp(Br) + ‖v‖p
L

pd
d−2 (Br)

≤ C1(R− r)−2‖v‖pLp(BR) + C2‖Θ
1
p f1u>k‖pLp(BR).
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By the interpolation inequality,

λpβ‖v‖pLq(Br) ≤ βλ‖v‖pLp(Br) + (1 − β)‖v‖p
L

pd
d−2 (Br)

, 0 < β < 1,
1

q
= β

1

p
+ (1 − β)

d− 2

pd
.

Put θ0 := q
p , so 1 < θ0 <

d
d−2 . We fix β ∈]0, 1[ sufficiently small so that θ < θ0 where, recall,

0 < θ < d
d−2 was fixed earlier.

Remark. We could take β = 0, in which case q = pd
d−2 and θ0 = d

d−2 . However, then factor

λpβ in the previous estimate becomes 1, which we prefer to avoid keeping in mind some future
applications of Theorem 9.

Hence, taking into account that q = pθ0,

λpβ‖v‖p
Lpθ0 (Br)

≤ C̃1(R− r)−2‖v‖pLp(BR) + C̃2‖Θ
1
p f1u>k‖pLp(BR).

Applying Hölder’s inequality in the RHS, we obtain

λpβ‖v‖p
Lpθ0 (Br)

≤ C̃1(R − r)−2|BR| θ−1
2θ ‖v‖p

Lpθ(BR)
+ C̃2‖Θ

1
p f1u>k‖pLp(BR). (7.2)

Set

Rm :=
1

2
+

1

2m+1
, m ≥ 0,

so Bm ≡ BRm is a decreasing sequence of balls converging to the ball of radius 1
2 . By (7.2),

λpβ‖v‖p
Lpθ0 (Bm+1)

≤ Ĉ122m‖v‖p
Lpθ(Bm)

+ C̃2‖Θ
1
p f1u>k‖pLp(Bm)

≤ Ĉ122m‖v‖p
Lpθ(Bm)

+ C̃2H|Bm ∩ {v > 0}| 1
θ , (7.3)

where

H := 〈Θθ′ |f |pθ′
1Bm〉 1

θ′ .

On the other hand, by Hölder’s inequality,

‖v‖pθ
Lpθ(Bm+1)

≤ ‖v‖pθ
Lpθ0 (Bm+1)

(

|Bm ∩ {v > 0}|
)1− θ

θ0

.

Applying (7.3) in the first multiple in the RHS, we obtain

‖v‖pθ
Lpθ(Bm+1)

≤ C̃λ−pβθ
(

22θm‖v‖pθ
Lpθ(Bm)

+Hθ|Bm ∩ {v > 0}|
)(

|Bm ∩ {v > 0}|
)1− θ

θ0

.

Now, put vm := (u − km)+ where km := ξ(1 − 2−m) ↑ ξ, where constant ξ > 0 will be chosen
later. Then, using 22θm ≤ 2pθm and dividing by ξpθ,

1

ξpθ
‖vm+1‖pθ

Lpθ(Bm+1)

≤ C̃λ−pβθ
(

2pθm

ξpθ
‖vm+1‖pθ

Lpθ(Bm)
+

1

ξpθ
Hθ|Bm ∩ {u > km+1}|

)(

|Bm ∩ {u > km+1}|
)1− θ

θ0

.
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Using that λ ≥ 1, we further obtain

1

ξpθ
‖vm+1‖pθ

Lpθ(Bm+1)

≤ C̃

(

2pθm

ξpθ
‖vm+1‖pθ

Lpθ(Bm)
+

1

ξpθ
λ−pβθHθ|Bm ∩ {u > km+1}|

)(

|Bm ∩ {u > km+1}|
)1− θ

θ0

.

From now on, we require that constant ξ satisfies ξp ≥ λ−pβθH, so

1

ξpθ
‖vm+1‖pθ

Lpθ(Bm+1)
(7.4)

≤ C̃

(

2pθm

ξpθ
‖vm+1‖pθ

Lpθ(Bm)
+ |Bm ∩ {u > km+1}|

)(

|Bm ∩ {u > km+1}|
)1− θ

θ0

.

Now,

|Bm ∩ {u > km+1}| = |Bm ∩
{

(
u− km

km+1 − km
)2θ > 1

}

|

≤ (km+1 − km)−pθ〈vpθm1Bm〉 = ξ−pθ2pθ(m+1)‖vm‖pθ
Lpθ(Bm)

,

so using in (7.4) ‖vm+10‖Lpθ(Bm) ≤ ‖vm‖Lpθ(Bm) and applying the previous inequality, we obtain

1

ξpθ
‖vm+1‖pθ

Lpθ(Bm+1)
≤ C̃2

pθm(2− θ
θ0

)
(

1

ξpθ
‖vm‖pθ

Lpθ(Bm)

)2− θ
θ0

.

Denote zm := 1
ξpθ ‖vm‖pθ

Lpθ(Bm)
. Then

zm+1 ≤ C̃γmz1+α
m , m = 0, 1, 2, . . . , α := 1 − θ

θ0
, γ := 2

pθ(2− θ
θ0

)

and z0 = 1
ξpθ 〈upθ+ 1Bm〉 ≤ C̃− 1

αγ− 1
α2 provided that we fix c by

ξpθ := C̃
1
αγ

1
α2 〈upθ+ 1B1〉 + λ−pβθHθ.

Hence, by Lemma 7, zm → 0 as m → ∞. It follows that supB1/2
u+ ≤ ξ, and the claimed

inequality follows. �

To end the proof of Theorem 9, we need to estimate 〈upθ+ 1B1〉1/pθ in the RHS of (7.1) in terms

of h and f . We will do it by estimating 〈upθ+ ρ〉1/pθ, where, recall, ρ(x) = (1 + k|x|2)− d
2

−1, and
then applying inequality ρ ≥ c1B1 for appropriate constant c = cd.

Proposition 6. There exist generic constants C, k and λ0 > 0 such that for all λ ≥ λ0,

(λ− λ0)〈upρ〉 + 〈|∇u
p
2 |2ρ〉 ≤ C

〈(

1|h|>1 + |h|p1|h|≤1

)

|f |pρ
〉

. (7.5)

Proof. Let b satisfy condition (2.42). We may assume without loss of generality that p > 2
2−δ+

is

rational with odd denominator. We multiply equation (2.43) by up−1ρ and integrate to obtain

λ〈upρ〉 +
4(p− 1)

p2
〈∇u p

2 , (∇u p
2 )ρ〉 +

2

p
〈∇u p

2 , u
p
2 ∇ρ〉 +

2

p
〈b · ∇u p

2 , u
p
2 ρ〉 = 〈|h|f, up−1ρ〉.
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Now we argue as in the proof of Proposition 1, but instead of the iterations we use a straightfor-
ward estimate |∇ρ| ≤ (d2 + 1)

√
kρ in order to get rid of ∇ρ in the previous identity. We arrive

at

pλ〈upρ〉 +

(

4(p− 1)

p
− 4

p
ε

)

〈|∇u
p
2 |2ρ〉

≤ p

4ε
(
d

2
+ 1)2k〈vpρ〉 + (

d

2
+ 1)

√
k〈|b|upρ〉 + 〈div b+, u

pρ〉 (ε, ε′ > 0)

+ p

(

2ε′χ〈|∇u
p
2 |2ρ〉 + 2ε′χ(

d

2
+ 1)2k〈upρ〉 + ε′(cχ + 1)〈upρ〉 +

1

4ε′ 〈
(

1|h|>1 + |h|p1|h|≤1

)

|f |pρ〉
)

.

The terms 〈|b|upρ〉, 〈(div b)+, u
pρ〉 are estimated by applying quadratic inequality and using

condition (2.42). Selecting ε, ε′, k sufficiently small, we arrive at the sought inequality.
If b satisfies (2.41), then the proof is similar but easier (i.e. we do not need to integrate by

parts, only apply quadratic inequality to 〈b · ∇u p
2 , u

p
2 ρ〉 and use form-boundedness of b). �

Proof of Theorem 9, completed. By Proposition 5, for all λ ≥ 1,

sup
y∈B 1

2
(x)

|u(y)| ≤ K

(

〈|u|pθρx〉
1

pθ + λ−β〈(

1|h|>1 + |h|pθ′
1|h|≤1

)

|f |pθ′
ρx

〉

1
pθ′

)

,

where ρx(y) := ρ(y − x), and constant C is generic, so

‖u‖∞ ≤ K sup
x∈ 1

2
Zd

(

〈|u|pθρx〉
1

pθ + λ−β〈(

1|h|>1 + |h|pθ′
1|h|≤1

)

|f |pθ′
ρx

〉

1
pθ′

)

.

Applying Proposition 6 to the first term in the RHS (with pθ instead of p), we obtain for all
λ ≥ λ0 ∨ 1

‖u‖∞ ≤ C sup
x∈ 1

2
Zd

(

(λ− λ0)− 1
pθ

〈(

1|h|>1 + |h|pθ1|h|≤1

)

|f |pθρx
〉

1
pθ

+ λ−β〈(

1|h|>1 + |h|pθ′
1|h|≤1

)

|f |pθ′
ρx

〉
1

pθ′
)

.

This ends the proof of Theorem 9. �

8. Proof of Theorem 5

(i) By the assumption of the theorem, a Borel measurable vector field b : Rd → R
d satisfies

either
b ∈ Fδ with δ < 4 (A1)

or






























b ∈ MFδ for some δ < ∞,

(div b)− ∈ L1 + L∞,

(div b)
1
2
+ ∈ Fδ+ with δ+ < 4,

|b| 1+α
2 ∈ Fχ for some α > 0 fixed arbitrarily small, and some χ < ∞.

(A2)

We define a regularization of b as in Section 3:

bε := Eεb, ε ↓ 0,
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where Eε is the Friedrichs mollifier. Then, recall, {bε} are bounded and smooth, preserve all
form-bounds in (A1) or in (A2), and converge to b in [L2

loc]
d or in [L1

loc]
d, respectively.

Step 1. By the classical theory, for every ε > 0, there exist unique strong solution Yε to SDE

Yε(t) = y −
∫ t

0
bε(Yε(s))ds +

√
2B(t), y ∈ R

d,

where {B(t)}t≥0 is a Brownian motion in R
d on a fixed complete probability space (Ω,F ,Ft,P).

Fix T > 0.

Lemma 8. Let vector field g ∈ [Cb(R
d)]d be such that:

1. If b satisfies condition (A2), then

〈|g|1+αϕ,ϕ〉 ≤ χ‖∇ϕ‖2
2 + cχ‖ϕ‖2

2, ϕ ∈ W 1,2, (8.1)

where constants χ, cχ are from condition (A2).

2. If b satisfies condition (A1), then (8.1) holds with α = 1, χ = δ and cχ = cδ.

Fix γ > 0 by 1 + α = (1 + γ)2. Then

E

∫ t1

t0
|g(Yε(s))|ds ≤ C2(t1 − t0)

γ
1+γ , (8.2)

where constant C2 does not depend on ε, y or t0, t1 (but it depends, by Theorem 9, on constants
χ, cχ).

(We will be applying (8.2) with g = bε.)

Proof of Lemma 8. First, let g ∈ [Cc(R
d)]d. By Hölder’s inequality,

E

∫ t1

t0
|g(Yε(s))|ds = E

∫ t1

t0
eλte−λt|g(Yε(s))|ds

≤ eλT (t1 − t0)
γ

1+γ

(

E

∫ ∞

0
e−(1+γ)λt|g(Yε(s))|1+γds

)

1
1+γ

= eλT (t1 − t0)
γ

1+γ uε(x)
1

1+γ (8.3)

where uε is the classical solution to non-homogeneous elliptic equation
[

(1 + γ)λ− ∆ + bε · ∇
]

uε = |g|1+γ .

Note that, in view of the results of Section 3, condition (A2) implies the second condition (Ā2)
on b of Theorem 8 for bε. (If b satisfies condition (A1), then bε satisfy the same condition in
Theorem 8.) Further, we take in Theorem 9 h := g|g|γ and f = 1 in a neighbourhood of the

support of g. In view of 1 +α = (1 + γ)2 and (8.1), h satisfies condition |h| 1+γ
2 ∈ Fχ of Theorem

9. Thus, Theorem 9 applies and yields

‖uε‖∞ ≤ C sup
x∈ 1

2
Zd

(

〈
(

1|g|>1 + |g|(1+γ)pθ1|g|≤1

)

ρx〉
1

pθ + 〈
(

1|g|>1 + |g|(1+γ)pθ′
1|g|≤1

)

ρx〉
1

pθ′
)

, (8.4)

where the right-hand side is finite (by our choice of ρ) and clearly does not depend on ε. It is
seen now that (8.2) follows from (8.3). Using Fatou’s lemma, we can replace the requirement
that g has compact support by g ∈ [Cb(R

d)]d. �
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Inequality (8.2) yields, upon taking g := bε,

E

∫ t1

t0
|bε(Yε(s))|ds ≤ C2(t1 − t0)

γ
1+γ (8.5)

(note that |bε|1+γ have independent of ε finite form-bound χ and constant cχ, see Lemma 6).
This gives us the next lemma. We will write Y y

ε to emphasize the dependence of solution Yε on
y.

Lemma 9. (i) For every β > 0,

sup
ε>0

sup
y∈Rd

P

[

sup
t∈[0,1],σ′∈[0,σ]

|Y y
ε (t + σ′) − Y y

ε (t)| > β

]

≤ ĈH(σ), (8.6)

where constant Ĉ and function H are independent of ε, and H(σ) ↓ 0 as σ ↓ 0.

(ii) For every y ∈ R
d, the family of probability measures

P
ε
x := (P ◦ Y y

ε )−1, ε > 0,

is tight on the canonical space of continuous trajectories on [0, T ].

Proof of Lemma 9. The argument is standard. For reader’s convenience, we include it below
(we repeat more or less verbatim a part of [28]). Put for brevity T = 1. We have, for a stopping
time 0 ≤ τ ≤ 1,

Y y
ε (τ + σ) − Y yε (τ) =

∫ τ+σ

τ
bn(s, Y y

ε (s))ds+
√

2(B(τ + σ) −B(τ)), 0 < σ < 1. (8.7)

Next, note that (8.5) yields

E

∫ τ+σ

τ
|bn(s, Y y

ε (s))|ds ≤ C0σ
µ, (8.8)

see Remark 1.2 in [51] (to show that (8.5) ⇒ (8.8), the authors of [51] use a decreasing sequence
of stopping times τm converging to τ and taking values in S = {k2−m | k ∈ {0, 1, 2, . . . }}, and
note that the proof of estimate (8.8) with τm in place of τ can be reduced to applying (8.5) on
intervals [t0, t1] := [c, c + σ], c ∈ S.) Thus, applying (8.8) in (8.7), one obtains

E sup
σ′∈[0,σ]

|Y y
ε (τ + σ′) − Y y

ε (τ)| ≤ C0σ
γ

γ+1 + C1σ
1
2 =: H(σ).

Now, applying [52, Lemma 2.7], we obtain: there exists constant Ĉ independent of ε such that

sup
ε

sup
x∈Rd

E

[

sup
t∈[0,1],σ′∈[0,σ]

|Y y
ε (t + σ′) − Y y

ε (t)| 1
2

]

≤ ĈH(σ). (8.9)

Applying Chebyshev’s inequality in (8.9), since H(σ) ↓ 0 as σ ↓ 0, we obtain the first assertion
of the lemma. The second assertion follows from the first one, see [46, Theorem 1.3.2]. �

Fix y ∈ R
d. Let Py be a weak subsequential limit point of {Pεx},

P
εk
y → Py weakly for some εk ↓ 0. (8.10)

Let us rewrite (8.2) as

E
ε
y

∫ t1

t0
|g(ωs)|ds ≤ C2(t1 − t0)

γ
1+γ .
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Taking g := bεm and then applying (8.10), we obtain Ey
∫ t1
t0

|bεm(ωs)|ds ≤ C2(t1 − t0)
γ

1+γ , and

hence, using e.g. Fatou’s lemma, Ey
∫ t1
t0

|b(ωs)|ds ≤ C2(t1 − t0)
γ

1+γ < ∞.

Step 2. Let us show that, for any fixed y ∈ R
d, any subsequential limit point Py of {Pεy} (say,

(8.10) holds) is a solution to the martingale problem for SDE (2.30).
It suffices to show that Ey[M

ϕ
t1G] = Ex[M

ϕ
t0G] for every Bt0-measurable G ∈ Cb

(

C([0, T ],Rd)
)

.
We will do this by passing to the limit in k in

E
εk
y [Mϕ,εk

t1 G] = E
εk
y [Mϕ,εk

t0 G],

where

Mϕ,ε
t = ϕ(ωt) − ϕ(ω0) +

∫ t

0
(−∆ϕ+ bε · ∇ϕ)(ωs)ds, ϕ ∈ C2

c .

That is, we need to prove

lim
k

E
εk
y

∫ t

0
(bεk

· ∇ϕ)(ωs)G(ω)ds = Ey

∫ t

0
(b · ∇ϕ)(ωs)G(ω)ds, (8.11)

Proof of (8.11). First, let us note that repeating the proof of (8.2), but this time selecting
h := g|g|γ , g := bεm1

− bεm2
, f := |∇ϕ|, we have

E
ε
y

∫ t1

t0

∣

∣bεm1
(ωs) − bεm2

(ωs)
∣

∣|∇ϕ(ωs)|ds

≤ C3 sup
x∈ 1

2
Zd

(

〈
(

1|g|>1 + |g|(1+γ)pθ1|g|≤1

)

|∇ϕ|pθρx〉
1

pθ + 〈
(

1|g|>1 + |g|(1+γ)pθ′
1|g|≤1

)

|∇ϕ|pθ′
ρx〉

1
pθ′

)

1
1+γ

,

Since ϕ has compact support, the RHS converges to 0 as m1, m2 → ∞. Now, it follows from
the weak convergence (8.10) and Fatou’s lemma that

Ey

∫ t1

t0

∣

∣b(ωs) − bεm(ωs)
∣

∣|∇ϕ(ωs)|ds

≤ C3 sup
x∈ 1

2
Zd

(

〈
(

1|b−bεm |>1 + |b− bεm|(1+γ)pθ1|b−bεm |≤1

)

|∇ϕ|pθρx〉
1

pθ

+ 〈
(

1|b−bεm |>1 + |b− bεm|(1+γ)pθ′
1|b−bεm |≤1

)

|∇ϕ|pθ′
ρx〉

1
pθ′

)

1
1+γ

,

where the RHS converges to 0 as m → ∞. We are in position to prove (8.11):
∣

∣

∣

∣

E
εnk
y

∫ t

0
(bεnk

· ∇ϕ)(ωs)G(ω)ds − Ey

∫ t

0
(b · ∇ϕ)(ωs)G(ω)ds

∣

∣

∣

∣

≤
∣

∣

∣

∣

E
εnk
y

∫ t

0
|bεnk

− bεm||∇ϕ|(ωs)|G(ω)|ds
∣

∣

∣

∣

+

∣

∣

∣

∣

E
εnk
y

∫ t

0
(bεm · ∇ϕ)(ωs)G(ω)ds − Ey

∫ t

0
(bεm · ∇ϕ)(ωs)G(ω)ds

∣

∣

∣

∣

+

∣

∣

∣

∣

Ey

∫ t

0
|bεm − b||∇ϕ|(ωs)|G(ω)|ds

∣

∣

∣

∣

,

where the first and the third terms in the RHS can be made arbitrarily small using the estimates
above and the boundedness of G by selecting m, and then nk, sufficiently large. The second
term can be made arbitrarily small in view of (8.10) by selecting nk even larger. Thus, (8.11)
follows.
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Step 3. Let us now find a subsequence εk ↓ 0 that works for all y ∈ R
d and yields a strong

Markov family of probability measures Py, y ∈ R
d, solutions to the martingale problem for SDE

(2.30). Denote Rελf := uε, where uε is the classical solution of (λ − ∆ + bε · ∇)uε = f in R
d,

f ∈ C∞
c , λ ≥ λ0 ∨ 1;

Rελf(y) = EPε
y

∫ ∞

0
e−λsf(ωs)ds.

By Theorem 9, uε are uniformly in ε bounded on R
d. By Theorem 8 applied to bε, solutions uε

are Hölder continuous on every compact, also uniformly in ε > 0. By the Arzelà-Ascoli theorem
and a standard diagonal argument there exists a subsequence εk ↓ 0 such that sequence {Rελf}
converges locally uniformly on R

d, for every f in a fixed dense subset of Cb. Let us denote the
limit by Rλf . The latter, and the uniform in ε estimate ‖Rελf‖∞ ≤ 1

λ‖f‖∞ allow us to extend
Rλf to all f ∈ Cb. Thus, Rλf ∈ Cb, f ∈ Cb. Now, for thiss subsequence εk ↓ 0, for any yk → y,
any two subsequential limits P

1, P2 of {Pεk
yk

} (we use (8.10)) have the same finite-dimensional

distributions (see [5] for details, if needed) and therefore coincide: Py := P
1 = P

2. Hence

EPy

∫ ∞
0 e−λsf(ωs)ds = Rλf(y). By what was proved above, Py is a martingale solution of (2.30).

A simple argument (see [5]) now gives that, for every t > 0, y 7→ EPyf(Xt) is a continuous
function. The latter, in turn, yields that {Py}y∈Rd is a strong Markov family (the proof can be
found e.g. in [5] or [6, Sect. I.3]).

This completes the proof of assertion (i).

(ii) Let bn be defined by (2.31), so that vector fields {bn} do not increase the form-bounds of
b. In the end of the proof of (i) we show that there exists a subsequence bnk

(for brevity, {bn}
itself) such that, for every f ∈ C∞

c (Rd), the classical solutions {un} to elliptic equations

(

λ− ∆ + bn · ∇
)

un = f

converge locally uniformly on R
Nd to

x 7→ EPx

∫ ∞

0
e−λsf(ω1

s , . . . , ω
N
s )ds, x ∈ R

Nd, x ∈ R
Nd. (8.12)

where λ is assumed to be sufficiently large. This yields the local Hölder continuity of u. At the
same time, un are weak solutions of (2.8) in the sense of Definitions 6 and 8. The possibility to
pass to the limit ε ↓ 0 in these definitions follows from the standard compactness argument (for
details, if needed, see e.g. [34]).

(iii) The proof goes by showing that vn constitute a Cauchy sequence in L∞([0, 1], Lp(Rd)),
see [21], see also [29]. At the elliptic level this was done earlier in [36] using Trotter’s theorem.
The proof of the (Lp, Lq) estimate is due to [45]. (Strictly speaking, these papers did not
consider condition (A3), but it is easy to modify the proofs there to cover the case (A3) as well.)

(iv) It suffices to show that, for all µ ≥ µ0, for every f ∈ C∞
c ,

Rεµf → (µ+ Λp)
−1f in C∞ as ε ↓ 0, (8.13)

possibly after a modification of (µ + Λp)
−1f on a measure zero set. The rest follows from

estimates ‖Rµ,εf‖∞ ≤ µ−1‖f‖∞, ‖(µ + Λp)
−1f‖∞ ≤ µ−1‖f‖∞ (an immediate consequence of

the fact that the corresponding semigroups are L∞ contractions) using a density argument.
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Let us prove (8.13). Put uε := Rµ,εf , so uε is the classical solution to (µ − ∆ + b · ∇)uε = f

on R
d. Then, by Propositions 5 and 6 (with h = 1), for all µ(≥ 1 ∨ λ0) + 1

sup
y∈B 1

2
(x)

|uε(y)| ≤ C

(

〈|f |pθρx〉
1

pθ + 〈|f |pθ′
ρx〉

1
pθ′

)

for constant C independent of ε. It is seen now that for a fixed f ∈ C∞
c , for a given ε > 0, we

can find R > 0 such that

sup
y∈Rd\B̄R(0)

|uε(y)| < ε.

In turn, inside the closed ball B̄R(0), the family of solutions {uε}ε>0 is equicontinuous by The-
orem 8. So, applying Arzelà-Ascoli theorem and using the convergence result for the semigroups
in Lp from assertion (iii), we obtain (8.13). �

9. Proof of Theorem 6

The proof is an application of Proposition 1 and Gehring’s lemma:

Lemma 10. Assume that there exist constants K ≥ 1, 1 < q < ∞ such that, for given 0 ≤ g ∈
Lq, 0 ≤ h ∈ Lq ∩ L∞ we have

(

1

|BR| 〈g
q1BR

〉
)

1
q

≤ K

|B2R| 〈g1B2R
〉 +

(

1

|B2R| 〈h
q1B2R

〉
)

1
q

for all 0 < R < 1
2 . Then g ∈ Ls for some s > q and

(

1

|BR| 〈g
s1BR

〉
)

1
s

≤ C1

(

1

|B2R| 〈g
q1B2R

〉
)

1
q

+ C2

(

1

|B2R| 〈h
s1B2R

〉
)

1
s

.

Let us prove Theorem 6.

Step 1. Applying Proposition 1 (condition (5.2)) with h = 1 and p = 2 to un − (un)B2R
and

−un + (un)B2R
, where (un)B2R

:= 1
|B2R|〈un1B2R

〉, we obtain

〈|∇un|21BR
〉 ≤ K1

|B2R| 2
d

〈(un − (un)B2R
)21B2R

〉 +K2〈f21B2R
〉, 0 < R <

1

2
.

By the Sobolev-Poincaré inequality,

(

1

|B2R| 〈(un − (un)B2R
)21B2R

〉
)

1
2

≤ C|BR| 1
d

(

1

|B2R| 〈|∇un|
2d

d+2 1B2R
〉
)

d+2
2d

,

i.e.

〈(un − (un)B2R
)21B2R

〉 ≤ C2|BR| 2
d

+1
(

1

|B2R| 〈|∇un|
2d

d+2 1B2R
〉
)

d+2
d

,

so the condition of the Gehring lemma is verified with g = |∇un|
2d

d+2 , gq = |∇un|2 (so q = d+2
d )

and h = c|f |
2d

d+2 . Hence there exists s > d+2
d such that

(

1

|BR| 〈|∇un|s
2d

d+2 1BR
〉
)

1
s

≤ C1

(

1

|B2R| 〈|∇un|21B2R
〉
)

d
d+2

+ C2

(

1

|B2R| 〈|f |s
2d

d+2 1B2R
〉
)

1
s

,

where all constants are independent of n.
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Now, passing in both sides of the previous inequality to the cubes (inscribed in BR in the
left-hand side and circumscribed over B2R in the right-hand side), then considering an equally
spaced grid in R

d so that the smaller cubes centered at the nodes of the grid cover R
d, applying

the previous estimate on each cube, and then summing up, we obtain the global estimate

‖∇un‖2
s 2d

d+2

≤ C3‖∇un‖2
2 + C4‖f‖2

s 2d
d+2

.

Step 2. Let us show that supn ‖∇un‖2
2 < ∞. To this end, we multiply (µ− ∆ + bn · ∇)un = f

by un and integrate: µ‖un‖2
2 + ‖∇un‖2

2 + 〈bε · ∇un, un〉 = 〈f, un〉, where, after integrating by
parts, 〈bn · ∇un, un〉 = −1

2〈div bn, u
2
n〉 ≥ −1

2〈(div bn)+, u
2
n〉. Hence, by our form-boundedness

assumption on (div bn)+,

(µ − cδ+

2
)‖un‖2

2 +

(

1 − δ+

2

)

‖∇un‖2
2 ≤ 〈f, un〉. (9.1)

So, applying the quadratic inequality in the right-hand side, we arrive at (µ− cδ+

2 − 1
2 )‖un‖2

2 +

(1 − δ+

2 )‖∇un‖2
2 ≤ 1

2‖f‖2
2. Since δ+ < 2, supn ‖∇un‖2

2 < ∞ for µ ≥ µ0 :=
cδ+

2 + 1
2 .

It follows from Steps 1 and 2 that supn ‖∇un‖2
s 2d

d+2

< ∞.

Step 3. Put h := un − um. Then

µ‖h‖2
2 + ‖∇h‖2

2 + 〈bn · ∇h, h〉 + 〈(bn − bm) · ∇um, h〉 = 0.

So,

(µ− cδ+

2
− 1

2
)‖un‖2

2 + (1 − δ+

2
)‖∇un‖2

2 ≤ |〈(bn − bm) · ∇um, h〉|. (9.2)

In turn, the right-hand side

|〈(bn − bm) · ∇um, h〉| ≤ ‖bn − bm‖2−κ‖∇um‖s 2d
d+2

2‖f‖∞

where 0 < κ < 1 is defined by

2 − κ := (s
2d

d+ 2
)′ =

s 2d
d+2

s 2d
d+2 − 1

(recall that s 2d
d+2 > 2). Since supm ‖∇um‖s 2d

d+2
< ∞ and, by our assumption, {bn} converge in

L2−κ, we obtain that the RHS of (9.2) converges to zero as n, m → ∞, so {un} is a Cauchy
sequence in L2. This yields the uniqueness result (since we can always combine two different
approximations of b obtaining again a Cauchy sequence of the approximating solutions). �

10. Proof of Theorems 1 and 2

This follows right away, in view of Lemmas 1, 2, from Theorem 5(i), (ii) where we consider
the general SDE in R

Nd with Y = (X1, . . . ,XN ), B = (B1, . . . , BN ), y = (x1, . . . , xN ) and drift
b : RNd → R

Nd defined by (2.13). �
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11. Proof of Theorem 3

(i) Since the sum of two form-bounded vector fields is again form-bounded, we only need to
improve Lemma 2 for K(y) =

√
κd−2

2 |y|−2y and then simply repeat the proof of Theorem 2. In

Lemma 2 we have three estimates (2.14), (2.15) (2.16) for b = (b1, . . . , bN ) : RNd → R
Nd, where

now

bi(x) :=
√
κ
d− 2

2

1

N

N
∑

j=1,j 6=i

xi − xj
|xi − xj |2

, x = (x1, . . . , xn) ∈ R
Nd, 1 ≤ i ≤ N. (11.1)

We do not need to change (2.14) and (2.16) since the actual values of the form-bounds there are
not important for the sake of repeating the proof of Theorem 2, only their finiteness matters. The
form-bound δ+ in (2.15), however, plays a crucial role. Let us estimate it using the multi-particle
Hardy’s inequality (2.18):

(div b)+ = div b =
N

∑

i=1

1

N

N
∑

j=1,j 6=i
divK(xi − xj)

=
√
κ

(d− 2)2

N

∑

1≤i<j≤N

1

|xi − xj|2
.

Applying (2.18), we obtain that (div b)
1
2
+ ∈ Fδ+ with δ+ =

√
κ. Armed with this result, i.e. a

replacement of Lemma 2, we repeat the proof of Theorem 2 (i.e. we apply Theorem 5 where we
still have δ+ < 4).

(ii) The assertions of Theorem 4 are also valid for such interaction kernels Kij. In view of

(2.22), Dunford-Pettis’ theorem yields that e−tΛp is a semigroup of integral operators. Their
integral kernel e−tΛ(x, z) does not depend on p and is defined to be the heat kernel of particle
system (2.1).

Now, we apply Theorem 11 from Appendix A. There Ω := R
d and µ is the Lebesgue measure

on R
d. The semigroup e−tΛ is from Theorem 4(i) with K(x) = −√

κd−2
2 |x|−2x. The weights

{ϕs}s>0 are defined by

ϕs(x) :=
∏

1≤i<j≤N
η(s− 1

2 |xi − xj|), s > 0,

where η is defined in Theorem 3(ii). It is easily seen that these weights ϕs satisfy conditions
(S2) and (S3) of Theorem 11. In turn, condition (S1) with j = d

d−2 and r > 2(2− N−1
N

√
κ)−1 was

verified in Theorem 4(i) under hypothesis (2.21), see (2.22). Let us verify the “desingularizing
L1 → L1 bound” (S4) for 0 < s ≤ t:

Step 1. Set

ηs(r) := η(s− 1
2 r), r > 0

and put

ϕεs(x) ≡ ϕε(x) :=
∏

1≤i<j≤N
ηs(|xi − xj|ε), |xi − xj |ε :=

√

|xi − xj|2 + ε, ε > 0.

Define

ψε(x) :=
∏

1≤i<j≤N
(s− 1

2 |xi − xj |ε)−√
κd−2

2
1
N .
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and put

bε := −∇xψ
ε

ψε
(clearly, independent of s).

This is a vector field R
Nd → R

Nd such that

bε · ∇x =
√
κ
d− 2

2

1

N

N
∑

i=1

N
∑

j=1,j 6=i

xi − xj
|xi − xj |2ε

· ∇xi .

Without loss of generality, we discuss the (minus) first component R
Nd → R

d of bε:

∇x1ψ
ε

ψε
=

1

ψε

∑

2≤k≤N

∏

1≤i<j≤N,j 6=k
|xi − xj |

−√
κd−2

2
1
N

ε ∇x1

(

|x1 − xk|
−√

κ d−2
2

1
N

ε

)

=
∑

2≤k≤N

∇x1|x1 − xk|
−√

κ d−2
2

1
N

ε

|x1 − xk|
−√

κ d−2
2

1
N

ε

= −
√
κ
d− 2

2

1

N

∑

2≤k≤N

x1 − xk
|x1 − xk|2ε

.

In the same way,

∇x1ϕ
ε

ϕε
=

∑

2≤k≤N

∇x1ηs(|x1 − xk|ε)
ηs(|x1 − xk|ε)

.

We now compare these quantities (this will be needed at the next step):
(a) If |x1 − xk|ε ≤ √

s for all 2 ≤ k ≤ N , then, by the definition of η,

−∇x1ψ
ε

ψε
+

∇x1ϕ
ε

ϕε
= 0.

Therefore,

∇x1ϕ
ε

ϕε
·
(

− ∇x1ψ
ε

ψε
+

∇x1ϕ
ε

ϕε
)

= 0, divx1

(

− ∇x1ψ
ε

ψε
+

∇x1ϕ
ε

ϕε
)

= 0.

(b) If there exists one k0 such that |x1 −xk0|ε ≥ 2
√
s, but for the other k 6= k0 |x1 −xk|ε ≤ √

s,
then, since x1 7→ ηs(|x1 − xk0 |ε) is constant and so ∇x1ϕ

ε = 0, we have

∇x1ψ
ε

ψε
− ∇x1ϕ

ε

ϕε
= −

√
κ
d− 2

2

1

N

x1 − xk0

|x1 − xk0|2ε
.

Hence

∇x1ϕ
ε

ϕε
·
(

− ∇x1ψ
ε

ψε
+

∇x1ϕ
ε

ϕε
)

= 0,

∣

∣

∣

∣

divx1

(

− ∇x1ψ
ε

ψε
+

∇x1ϕ
ε

ϕε
)

∣

∣

∣

∣

≤
√
κ

(d− 2)2

2

1

N
4s−1.

(c) More generally, if there exist 2 ≤ M ≤ N − 1 indices k0 such that |x1 − xk0 |ε ≥ 2
√
s, but

for the other k 6= k0 |x1 − xk|ε ≤ √
s, then we have

∇x1ϕ
ε

ϕε
·
(

− ∇x1ψ
ε

ψε
+

∇x1ϕ
ε

ϕε
)

= 0,

∣

∣

∣

∣

divx1

(

− ∇x1ψ
ε

ψε
+

∇x1ϕ
ε

ϕε
)

∣

∣

∣

∣

≤
√
κ

(d− 2)2

2

M

N
4s−1.

Over the annuli
√
s < |x1 − xk|ε < 2

√
s we make a change of variable to finally obtain, for all

possible values of |x1 − xk|ε, 2 ≤ k ≤ N ,
∣

∣

∣

∣

∇x1ϕ
ε

ϕε
·
(

− ∇x1ψε
ψε

+
∇x1ϕ

ε

ϕε
)

∣

∣

∣

∣

≤ c1
N − 1

N
s−1,

∣

∣

∣

∣

divx1

(

− ∇x1ψ
ε

ψε
+

∇x1ϕ
ε

ϕε
)

∣

∣

∣

∣

≤ c2
N − 1

N
s−1
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for constants c1 and c2 independent of ε and s.
The same holds for the other components of bε = −∇xψε

ψε
. Thus,

∣

∣

∣

∣

∇xϕ
ε

ϕε
·
(

bε +
∇xϕ

ε

ϕε
)

∣

∣

∣

∣

≤ c1
N − 1√
N

s−1,

∣

∣

∣

∣

div
(

bε +
∇xϕ

ε

ϕε
)

∣

∣

∣

∣

≤ c2
N − 1√
N

s−1. (11.2)

Step 2. Define the approximating operators Λε := −∆x + bε · ∇x having domain W2,1 = (1 −
∆)−1L1. Since ϕε, (ϕε)−1 are bounded and continuous, one sees right away that ϕεe−tΛε(ϕε)−1

is a strongly continuous semigroup in L1 whose generator coincides with −ϕεΛε(ϕε)−1 having
domain W2,1. This generator can be computed explicitly:

ϕεΛε(ϕε)−1 = −∆ + ∇ · (bε + 2
∇ϕε
ϕε

) +Wε, (11.3)

Wε := −∇ϕε
ϕε

·
(

bε +
∇ϕε
ϕε

)

− div
(

bε +
∇ϕε
ϕε

)

.

By (11.2), potential Wε is (uniformly in ε) bounded: |Wε| ≤ N−1√
N

c
s for a constant c independent

of ε. Employing formula (11.3) and using the general fact that et(∆−∇·f) is an L1 contraction,
we obtain

‖ϕεe−tΛε
(ϕε)−1h‖1 ≤ e

cN−1√
N

t
s ‖h‖1, h ∈ L1. (11.4)

It remains to pass to the limit ε ↓ 0 in (11.4). This is done at the next step.

Step 3. Define b = −∇xψ
ψ , where ψ(x) =

∏

1≤i<j≤N |xi − xj|−
√
κ d−2

2
1
N is a Lyapunov function

of the formal adjoint of Λ (see Remark 2). Then

b · ∇x =
√
κ
d− 2

2

1

N

N
∑

i=1

N
∑

j=1,j 6=i

xi − xj
|xi − xj |2

· ∇xi

It is seen using e.g. the Monotone convergence theorem that bε → b in [L2
loc]

Nd. Moreover, the

vector fields bε do not increase the form-bound δ = κ
(N−1

N

)2
(< 4) of b. Therefore, by Theorem

5(iii),

e−tΛε → e−tΛ in Lr(RNd), (11.5)

where r > 2
2− N−1

N

√
κ
.

Now, from (11.4) we have

‖ϕεe−tΛε
g‖1 ≤ e

cN−1√
N

t
s ‖ϕεg‖1, g ∈ ϕL1 ∩ L∞.

In view of (11.5) and since ϕε → ϕ a.e., we can use Fatou’s lemma to obtain ‖ϕe−tΛg‖1 ≤
ec

t
s ‖ϕg‖1, which yields condition (S4) of Theorem 11 (recall that by our assumption s ≥ t).

Thus, Theorem 11 applies and gives assertion (ii) of Theorem 3. �

12. Proof of Theorem 4

(i) follows from Theorem 5(iii) and Lemmas 1, 2.
(ii) follows from the uniqueness result in [26], see also [24], and Lemma 1.
(ii) follows upon applying appropriate (straightforward) modification of Lemma 1.
(iv) follows from the result in [25] upon applying Lemma 1.



PARTICLE SYSTEMS WITH SINGULAR INTERACTIONS 45

13. Proof of Theorem 10

We will need the following result on the regularization of the vector field b in Theorem 10.

Lemma 11. Assume that b ∈ [W 1,1
loc (Rd)]d has symmetric Jacobian Db = (∇kbi)

d
k,i=1 and the

negative part B− of matrix

B(b) := Db− div b

q
I, for some q > (d− 2) ∨ 2,

has normalized eigenvectors ej and eigenvalues λj ≥ 0 satisfying
√

λjej ∈ Fνj . Set ν :=
∑d
j=1 νj .

Set bε := Eεb. The following are true:
1.

B(bε) + EεB− ≥ 0,

2.

〈B−h, h〉 ≤ ν〈|∇|h||2〉 + cν〈|h|2〉, (13.1)

and

〈(EεB−)h, h〉 ≤ ν〈|∇|h||2〉 + cν〈|h|2〉, ε > 0,

for all h ∈ [C∞
c (Rd)]d, with cν :=

∑d
j=1 cνj .

Proof. 1. We have, by definition, B(b) = B+ − B−, and B(bε) = EεB+ − EεB−. Clearly,
EεB+ ≥ 0, which yields the required.

2. We have B− =
∑d
j=1 λjeje

⊤
j . Put for brevity λ = λj and e = ej . Denote the components

of e by ek, k = 1, . . . , d. Then

〈hλ(ee⊤), h〉 =
d

∑

k,i=1

〈hk
√
λek

√
λeihi〉 = 〈λ(h · e)2〉 ≤ 〈λ|h|2|e|2〉.

Therefore,

〈B−h, h〉 ≤
d

∑

j=1

〈λj |h|2|ej |2〉

(we use
√

λjej ∈ Fνj )

≤
d

∑

j=1

νj〈|∇|h||2〉 +
d

∑

j=1

cνj 〈|h|2〉,

which gives us the first inequality in assertion 2.
Let us prove the second inequality in assertion 2. Writing again λ = λj and e = ej and

denoting the k-th component of e by ek, we have

〈hEε(λee⊤), h〉 =
d

∑

k,i=1

〈hkEε(
√
λek

√
λei)hi〉 =

d
∑

k,i=1

〈
√
λek

√
λeiEε(hkhi)〉

≤
d

∑

k,i=1

〈
√

Eε|hk|2
√
λ|ek|

√
λ|ei|

√

Eε|hi|2〉

≤ 〈λ|e|2, |hε|2〉,
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where hε denotes the vector field with k-th component
√

Eε|hk|2. Hence, using the previous
estimate, we obtain

〈(EεB−)h, h〉 =
d

∑

j=1

〈hEε(λjeje⊤
j ), h〉 ≤

d
∑

j=1

〈λj |ej |2, |hε|2〉

(use
√

λjej ∈ Fνj )

≤ ν〈|∇|hε||2〉 + cν〈|hε|2〉

(note that |hε| =
√

Eε|h|2 and apply (3.1))

≤ 〈|∇|h||2〉 + cν〈|h|2〉,
as needed. �

Proof of Theorem 10 in the case drift b satisfies condition (B2). We start with the proof of
assertion (ii). Put

w := ∇u, wi := ∇iu.

Multiplying equation (µ − ∆ + b · ∇)u = f by the test function

φ := −
d

∑

i=1

∇i(wi|w|q−2) = −∇ · (w|w|q−2)

and integrating by parts, we obtain

µ〈|w|q〉 + Iq + (q − 2)Jq + 〈b · w,φ〉 = 〈f, φ〉, (13.2)

where

Iq :=
d

∑

i=1

〈

|∇wi|2, |w|q−2〉

, Jq :=
〈

|∇|w||2, |w|q−2〉

.

Step 1. Regarding term 〈b · w,φ〉 in (13.2), we have

〈b · w,φ〉 = 〈B̃w,w|w|q−2〉 + 〈b · ∇|w|, |w|q−1〉 B̃ := (∇kbi)
d
k,i=1

= 〈B̃w,w|w|q−2〉 − 1

q
〈div b, |w|q〉

≥ −〈B−w,w|w|q−2〉.
Hence, applying (13.1), we arrive at

〈b · w,φ〉 ≥ −ν〈
∣

∣∇|w| q
2
∣

∣

2〉 − c〈|w|q〉

= −ν q
2

4
Jq − cν〈|w|q〉,

so (13.2) yields

(µ− cν)〈|w|qκ〉 + Iq +

(

q − 2 − q2

4
ν

)

Jq ≤ 〈f, φ〉. (13.3)

Step 2. Let us estimate 〈f, φ〉 in the previous inequality. To this end, we evaluate φ:

〈f, φ〉 = −〈f, |w|q−2∆u〉 − (q − 2)〈f, |w|q−3w · ∇|w|〉. (13.4)
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(a) We estimate

|〈f, |w|q−2∆u〉| ≤ ε0〈|w|q−2|∆u|2〉 +
1

4ε0
〈f2, |w|q−2〉, (13.5)

where ε0 > 0 will be chosen sufficiently small.
Let us deal with the first term in the RHS of (13.5). Representing |∆u|2 = |∇ · w|2 and

integrating by parts twice, we obtain

〈|w|q−2|∆u|2〉 = −〈∇|w|q−2 · w,∆u〉 +
d

∑

i=1

〈wi∇|w|q−2,∇wi〉 + Iq

≤ (q − 2)

[

1

4κ
〈|w|q−2|∆v|2〉 + κJq

]

+ (q − 2)

(

1

2
Iq +

1

2
Jq

)

+ Iq.

So, for any fixed κ > q−2
4 ,

(

1 − q − 2

4κ

)

〈|w|q−2|∆v|2〉 ≤ Iq + (q − 2)

(

κJq +
1

2
Iq +

1

2
Jq

)

. (13.6)

Let us handle the second term in the RHS of (13.5):

〈f2, |w|q−2〉 ≤ ‖f‖2
qd

d+q−2

‖w‖q−2
qd

d−2

≤ cS‖f‖2
qd

d+q−2

‖∇|w|
q
2 ‖2

(q−2)
q

2 = C‖f‖2
qd

d+q−2

J
q−2

q
q , C =

4c

q2

≤ q − 2

q
Cε

q
q−2Jq +

2

q
Cε− q

2 ‖f‖q qd
d+q−2

.

(b) We estimate

(q − 2)|〈−f, |w|q−3w · ∇|w|〉| ≤ (q − 2)J
1
2
q 〈f2, |w|q−2〉 1

2

≤ (q − 2)
(

ε1Jq + 4ε−1
1 〈f2, |w|q−2〉

)

,

where we estimate the very last term in the same way as above.
Substituting the above estimates in (13.4), we obtain

|〈f, φ〉| ≤ cε0Iq +
c1(ε, ε1)

ε0
Jq +

c2(ε, ε1)

ε0
‖f‖q qd

d+q−2

, (13.7)

where c1(ε, ε1) > 0 can be made as small as needed by first selecting ε1 sufficiently small, and
then selecting ε even smaller.

Step 3. Now, we return to (13.3). By the pointwise inequality |∇|w||2 ≤ ∑d
i=1 |∇wi|2, we have

Jq ≤ Iq.

The latter, and (13.7) with ε0 chosen sufficiently small, yield

(

µ− cν
)

〈|w|q〉 +
(

q − 1 − q2

4
ν − c(ε0, ε, ε1)

)

Jq ≤ C(ε0, ε, ε1)‖f‖q qd
d+q−2

, (13.8)

where constant c(ε0, ε, ε1) can be made as small as needed by first selecting ε1 sufficiently small,
and then selecting ε even smaller. Take µ0 := cν . The required gradient estimate now follows
from (13.8).
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Proof of assertion (i). Steps 1 and 3 do not change. Step 2 now consists of estimating 〈|g|f, φ〉,
which we represent as

〈|g|f, φ〉 = −〈|g|f, |w|q−2∆u〉 − (q − 2)〈|g|f, |w|q−3w · ∇|w|〉.
(a′) We have

|〈|g|f, |w|q−2∆u〉| ≤ ε0〈|w|q−2|∆u|2〉 +
1

4ε0
〈|g|2f2, |w|q−2〉, ε0 > 0,

where 〈|w|q−2|∆u|2〉 is estimates in the same way as in (a) above, and

〈|g|2f2, |w|q−2〉 = 〈|g|2− 4
q |w|q−2, |g|

4
q f2〉

≤ q − 2

q
ε

q
q−2 〈|g|2|w|q〉 +

2

q
ε− q

2 〈ρ|g|2f q〉

(we are using g ∈ Fδ1)

≤ q − 2

q
ε

q
q−2

[

δ1
q2

4
Jq + cδ1〈|w|q〉

]

+
2

q
ε− q

2
〈

|g|2f q
〉

.

(b′) We estimate

(q − 2)|〈|g|f, |w|q−3w · ∇|w|〉| ≤ (q − 2)J
1
2
q 〈|g2|f2, |w|q−2〉 1

2

≤ (q − 2)
(

ε1Jq + 4ε−1
1 〈|g|2f2, |w|q−2〉

)

,

where we bound 〈|g|2f2, |w|q−2〉 as in (a′).
Now, arguing as above, we arrive at

(

µ− cν − c0(ε0, ε1, ε)
)

〈|w|q〉 +
(

q − 1 − q2

4
ν − c(ε0, ε, ε1)

)

Jq ≤ C(ε0, ε, ε1)〈|g|2f q
〉

,

where constant c(ε0, ε, ε1) can be made as small as needed by selecting ε1 sufficiently small and
then selecting ε even smaller. So, taking µ0 := cµ + c0(ε0, ε1, ε), we obtain the required gradient
estimate.

Proof of Theorem 10 in the case drift b satisfies condition (B1). One needs to estimate term
〈b ·w,φ〉 in (13.2) differently. Indeed, b is no longer differentiable and hence one cannot integrate
by parts. Instead, arguing as in [36], we evaluate the test function φ as

〈b · w,φ〉 = −〈b · w, |w|q−2∆u〉 − (q − 2)〈b · w, |w|q−3w · ∇|w|〉,
and then re-uses the elliptic equation to express ∆u in terms of µu, b · w and f (or |g|f). Then
we repeat the argument from [36] up to the estimates on |〈f, φ〉| (assertion (ii)) and |〈|g|f, φ〉|
(assertion (i)), which we take from Step 2 above.

14. Proof of Theorem 7

Let bn be constructed as in Lemma 3, i.e.

bn = Eεnb, εn ↓ 0,

so that bn are bounded, smooth, converge to b locally in L2 and, crucially, do not increase neither
form-bound δ of b nor constant cδ.
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A comment regarding the case when b satisfies condition (B2). Below we use gradient bounds
from Theorem 10 for vector fields bn. The proof of these gradient bounds depends on a somewhat
less restrictive condition than (B2), i.e. b ∈ Fδ, δ < ∞, and

〈(EεnB−)h, h〉 ≤ ν〈|∇|h||2〉 + cν〈|h|2〉, (14.1)

where B− is the negative part of matrix (∇kb
i)dk,i=1 − div b

q I. (Indeed, if B+ denotes the positive

part of the last matrix, we have

(∇kb
i
n)dk,i=1 − div bn

q
I = EεnB+ − EεnB−, EεnB± ≥ 0,

and can repeat the proof of Theorem 10 for bn and EεnB−.) By Lemma 11, inequality (14.1)

does hold with constants ν =
∑d
j=1 νj and cν =

∑d
j=1 cνj that are, obviously, independent of

{εn}, and so the constants in the gradient bounds in Theorem 10 for bn do not depend on n.

Proof of assertion (i). Let {Px}x∈Rd be the strong Markov family of martingale solutions to
(2.30) constructed in Theorem 5. Fix some y. Our goal is prove the following estimate: there
exists generic q > (d − 2) ∨ 2 and C such that, for all g ∈ Fδ1, δ1 < ∞, and all λ greater than
some generic λ0,

Ey

∫ ∞

0
e−λs|gf |(ωs)ds ≤ C‖g|f | q

2 ‖
2
q

2 (14.2)

for all f ∈ Cc. Let gm the bounded smooth regularization of g constructed according to Lemma
3. Using the gradient estimate of Theorem 10(i), after applying the Sobolev embedding theorem
twice, we obtain

EPn
y

∫ ∞

0
e−λs|gmf |(ωs)ds ≤ C‖gm|f |

q
2 ‖

2
q

2 , n,m = 1, 2, . . . ,

where P
n
x is the martingale solution of the regularized SDE

Y (t) = y −
∫ t

0
bn(Y (s))ds +

√
2B(t), t ≥ 0

and, by the construction of Px in the proof of Theorem 5, P
n
x → Px weakly (we pass to a

subsequence of {bn} if necessary). Thus, we have

EPy

∫ ∞

0
e−λs|gmf |(ωs)ds ≤ C‖gm|f |

q
2 ‖

2
q

2 , m = 1, 2, . . .

Fatou’s lemma applied in m now yields (14.2) and thus ends the proof of (i).

Proof of assertion (i′). Let {P1
x}x∈Rd , {P2

x}x∈Rd be two Markov families of martingale solutions
to SDE

Y (t) = y −
∫ t

0
b(Y (s))ds +

√
2B(t), t ≥ 0.

Fix some y. By our assumption, there exists q > (d− 2) ∨ 2 such that, for all g ∈ Fδ1 , δ1 < ∞,
and all λ greater than some generic λ0,

E
i
y

∫ ∞

0
e−λs|gf |(ωs)ds ≤ C‖g|f | q

2 ‖
2
q

2 (14.3)

for all f ∈ Cc. Let vn be the classical solution to equation

(λ− ∆ + bn · ∇)vn = −F,
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where F ∈ Cc(R
d). We will need weight ρ(x) = (1 + k|x|2)−β , k > 0, where constant β is fixed

greater than d
2 so that ρ ∈ L1(Rd). By Itô’s formula applied to e−λtρvn, we have

E
i
y[e

−λtρvn(Xt)] = ρ(y)vn(y) + E
i
y

∫ t

0
ρe−λsF (ωs)ds

+ E
i
y

∫ t

0
[e−λsρ(b− bn) · ∇vn](ωs)ds + Sn, (14.4)

where Sn is the remainder term given by

Sn := E
i
y

∫ t

0
e−λs[−(∆ρ)vn − 2∇ρ · ∇vn + bn · (∇ρ)vn](ωs)ds.

Proposition 7. For every k > 0, Eiy
∫ t

0 e
−λs[ρ(b− bn) · ∇vn](ωs)ds as n ↑ ∞ uniformly in t > 0.

Proof. We have

|Eiy
∫ t

0
[e−λsρ(b− bn) · ∇vn](ωs)ds| ≤ |Eix

∫ ∞

0
[e−λsρ(b− bn) · ∇vn](ωs)ds|

(we apply (14.3) with g := ρ(b− bn) ∈ F2δ)

≤ K‖ρ(b− bn)|∇vn| q
2 ‖

2
q

2 .

In turn, for a 0 < θ < 1, we have

‖ρ(b− bn)|∇vn|
q
2 ‖2 ≤ ‖ρ(b− bn)‖θ2‖ρ(b − bn)|∇vn|

q
2(1−θ) ‖1−θ

2 . (14.5)

Regarding the second multiple in the RHS of (14.5): we assume that θ is chosen to be
sufficiently close to 0 so that q

1−θ > (d− 2) ∨ 2. Then, by b− bn ∈ F2δ,

‖ρ(b− bn)|∇vn|
q

2(1−θ) ‖2
2 ≤ ‖(b− bn)|∇vn|

q
2(1−θ) ‖2

2

≤ 2δ‖∇|∇vn|
q

2(1−θ) ‖2
2 + 2cδ‖|∇vn|

q
2(1−θ) ‖2

2.

Hence, by the gradient estimate of Theorem 10(i), supn ‖ρ(b− bn)|∇vn|
q

2(1−θ) ‖2
2 < ∞.

The first multiple in the RHS of (14.5):

‖ρ(b− bn)‖2
2 ≤ 〈1BR(0)(b− bn)〉 + 〈(1 − 1BR(0))ρ, ρ(b− bn)2〉

≤ 〈1BR(0)(b− bn)〉 + (1 + kR2)−β〈ρ(b− bn)2〉.
Since bn → b in L2

loc, the first integral can be made as small as needed (uniformly in R) by
selecting n sufficiently large. In the second integral supn〈ρ(b−bn)2〉 < ∞, since, by b−bn ∈ F2δ,

〈ρ(b− bn)2〉 ≤ 2δ〈(∇√
ρ)2〉 + 2cδ〈ρ〉,

so it remains to apply |∇ρ| ≤ β
√
kρ. At the same time, (1 + kr2)−β can be made as small as

needed by selecting r sufficiently large. This completes the proof. �

Proposition 8. Sn → 0 as k ↓ 0 uniformly in n and t.

Proof. Using |∇ρ| ≤ β
√
kρ, |∆ρ| ≤ β2k, we have

|Sn| ≤
√
kCE

i
x

∫ t

0
[ρ|vn| + 2ρ|∇vn| + ρ|bn||vn|](ωs)ds.

Now we can argue as in the proof of the previous proposition, using additionally ‖vn‖∞ ≤
λ−1‖F‖∞, to show that supn E

i
x

∫ t
0 [ρ|vn| + 2ρ|∇vn| + ρ|bn||vn|](ωs)ds < ∞. In fact, in this case
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the proof is easier since none of the terms contains simultaneously bn and ∇vn. Selecting k
sufficiently small, we can make Sn as small as needed. �

We now complete the proof of assertion (i′). Let us note that, for every k > 0,

E
i
y[e

−λtρvn(ωt)] → 0 as t → ∞ uniformly in n.

Indeed, ‖vn‖∞ ≤ λ−1‖F‖∞, so |Eiy[e−λtρvn(ωt)]| ≤ λ−1e−λt, which yields the required. Combin-
ing this result with Propositions 7 and 8, and taking into account that, by Theorem 8(iv), {vn}
converge uniformly as n → ∞ to a continuous function v, we obtain from (14.4) upon taking
n → ∞ and then taking k ↓ 0:

0 = v(y) + E
i
y

∫ ∞

0
e−λsF (ωs)ds, i = 1, 2.

Taking into account the continuity of F and ω, and invoking the uniqueness of Laplace transform,
we obtain that E

1
yF (ωt) = E

2
yF (ωt) for all F ∈ Cc, t > 0. We deduce from here that the one-

dimensional distributions of P1
y and P

2
y coincide. Since we are dealing with Markov families of

probability measures, we conclude that P
1
y = P

2
y for every y ∈ R

d.

Proof of assertion (ii). The proof follows closely the proof of (i), but uses the gradient estimate
of Theorem 10(i) for q > (d − 2) ∨ 2 chosen closely to (d − 2) ∨ 2. In fact, this proof is easier
since we no longer need to take care of extra form-bounded vector fields g as in (i).

Proof of assertion (ii′′). We modify the previous proof of (i′). By our assumption,

E
i
x

∫ ∞

0
e−λs|f |(ωs)ds ≤ C‖f‖ d

2−ε
∧ 2

1−ε
, ∀f ∈ Cc, λ > λ0. (14.6)

The analogue of Proposition 7 is proved as follows. Clearly, hypothesis

(1 + |x|−2)−β|b|
d

2−ε1
∨ 2

1−ε1 ∈ L1, ε1 ∈]ε, 1[

implies that, for any k > 0, ρ|b|
d

2−ε1
∨ 2

1−ε1 ∈ L1. We have

|Eix
∫ t

0
[e−λsρ(b− bn) · ∇vn](ωs)ds| ≤ |Eix

∫ ∞

0
[e−λsρ(b− bn) · ∇vn](ωs)ds|

(we apply (14.6) using Fatou’s lemma)

≤ K‖ρ(b− bn) · ∇vn‖r r :=
d

2 − ε
∧ 2

1 − ε

≤ K‖ρ(b− bn)‖s′‖∇vn‖s,
1

s′ +
1

s
=

1

r
, (14.7)

where s′ = d
2−ε1

∨ 2
1−ε1

and s = q∗d
d−2 , where q∗ was defined in assertion (ii′′) of Theorem 7 that

we are proving. Theorem 10(ii), which applies by our assumptions on δ, ν and q∗ in the end of
assertion (ii′′), and the Sobolev embedding theorem, yield

sup
n

‖∇vn‖ q∗d
d−2

< ∞.

Therefore, the second multiple in the RHS of (14.7) is uniformly (in n) bounded.
In turn, for every fixed k, the first multiple in the RHS of (14.7) tends to zero as n → ∞.

Indeed, since 0 < ρ ≤ 1, we have

sup
n

‖ρs′
bs

′
n ‖1 ≤ sup

n
‖ρbs′

n ‖1 < ∞,



52 PARTICLE SYSTEMS WITH SINGULAR INTERACTIONS

where the finiteness is seen, after integrating by parts, from Eεnρ ≤ Cρ with constant C inde-
pendent of n (here we simply use the fact that the Friedrichs mollifier is a convolution with a

function having compact support) and our hypothesis ‖ρ|b|s′‖1 < ∞. Now, we represent

‖ρ(b− bn)‖s′ = ‖1BR(0)(b− bn)‖s′ + ‖(1 − 1BR(0))ρ(b− bn)‖s′

≤ ‖1BR(0)(b− bn)‖s′ + (1 + kR2)−β(s′−1)(〈ρbs′〉 + 〈ρbs′
n 〉).

The second term can be made as small as needed by selecting R sufficiently large (uniformly
in n). Then, for R thus fixed, the first term can be made as small as needed by selecting n

sufficiently large, since bn → b in Ls
′

loc by the properties of Friedrichs mollifier.

Arguing as above, we prove supn E
i
x

∫ t
0 [ρ|vn|+2ρ|∇vn|+ρ|bn||vn|](ωs)ds < ∞, and hence have

the analogue of Proposition 8.
The rest of the proof of (ii′) repeats the proof of (i′).

Appendix A. A desingularization theorem from [33]

Let X be a locally compact topological space, and µ a σ-finite Borel measure on X. In what
follows, Lr = Lr(X,µ) (1 ≤ r ≤ ∞). Let j > 1, put j′ := j

j−1 .

Let Λ be the generator of a strongly continuous semigroup e−tΛ on Lr for some r > 1, such
that for some constants c, j > 1, for all t > 0,

‖e−tΛ‖r→∞ ≤ ct−
j′
r . (S1)

We consider a family of weights ϕ = {ϕs}s>0 in X such that

0 ≤ ϕs,
1

ϕs
∈ L1

loc(X,µ) for all s > 0, (S2)

inf
s>0,x∈X

ϕs(x) ≥ c0 > 0. (S3)

Theorem 11. Assume that conditions (S1) - (S3) hold and there exists constant c1, independent
of s, such that, for all 0 < t ≤ s,

‖ϕse−tΛϕ−1
s f‖1 ≤ c1‖f‖1, f ∈ L1 ∩ L∞. (S4)

Then, for each t > 0, e−tΛ is an integral operator, and there is a constant C = C(j, c1, c0) such
that, up to change of e−tΛ(x, y) on a measure zero set, the weighted Nash initial estimate

|e−tΛ(x, y)| ≤ Ct−j
′
ϕt(y) (A.1)

is valid for µ a.e. x, y ∈ X.

Remark 12. The first desingularization result of this type appeared in the context of studying
Schrödinger operator with the inverse-square potential and is due to [42]. There the authors
introduced a weighted variant of Nash’s method with the “desingularizing weight” that either
explodes or vanishes at the origin, depending on the sign of the potential. That said, the non-
symmetric situation considered in Theorem 11 is quite different from the setting of [42] since it
cannot be recast, even formally, as following Nash’s proof of the on-diagonal bound in a weighted
space, unless one wants to impose rather restrictive assumptions on the adjoint operator that
would rule out strong singularities of the drift.

For the sake of keeping the paper self-contained, we reproduce here the proof of Theorem 11
from [33].
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Proof of Theorem 11. 1. We will use a weighted variant of the Coulhon-Raynaud extrapolation
theorem. Put

0 ≤ ψ ∈ L1 + L∞, ‖f‖
p,

√
ψ

:= 〈|f |pψ〉1/p.

Let U t,θ be a two-parameter family of operators

U t,θf = U t,τU τ,θf, f ∈ L1 ∩ L∞, 0 ≤ θ < τ < t ≤ ∞.

If for some 1 ≤ p < q < r ≤ ∞, ν > 0

‖U t,θf‖p ≤ M1‖f‖
p,

√
ψ
,

‖U t,θf‖r ≤ M2(t − θ)−ν‖f‖q

for all (t, θ) and f ∈ L1 ∩ L∞, then

‖U t,θf‖r ≤ M(t− θ)−ν/(1−β)‖f‖
p,

√
ψ
, (A.2)

where β = r
q
q−p
r−p and M = 2ν/(1−β)2

M1M
1/(1−β)
2 . Here is the proof of (A.2) for reader’s conveni-

ence. Put tθ := t+θ
2 . We have

‖U t,θf‖r ≤ M2(t− tθ)
−ν‖U tθ ,θf‖q

≤ M2(t− tθ)
−ν‖U tθ ,θf‖βr ‖U tθ ,θf‖1−β

p

≤ M2M
1−β
1 (t− tθ)

−ν‖U tθ ,θf‖βr ‖f‖1−β
p,

√
ψ
,

and hence

(t− θ)ν/(1−β)‖U t,θf‖r/‖f‖
p,

√
ψ

≤ M2M
1−β
1 2ν/(1−β)[(t− θ)ν/(1−β)‖U tθ ,θf‖r /‖f‖

p,
√
ψ

]β
.

Setting R2T := supt−θ∈]0,T ]

[

(t− θ)ν/(1−β)‖U t,θf‖r/‖f‖
p,

√
ψ

]

, we obtain from the last inequality

that R2T ≤ M1−β(RT )β. But RT ≤ R2T , and so R2T ≤ M. This gives us (A.2).

2. We are in position to complete the proof of Theorem 11. By (S4) and (S3),

‖e−tΛh‖1 ≤ c−1
0 ‖ϕse−tΛϕ−1

s ϕsh‖1

≤ c−1
0 c1‖h‖1,

√
ϕs , h ∈ L∞

com.

The latter, (S1) and the Coulhon-Raynaud extrapolation theorem with ψ := ϕs yield

‖e−tΛf‖∞ ≤ Mt−j
′‖ϕsf‖1, 0 < t ≤ s, f ∈ L∞

c .

Note that (S1) verifies the assumptions of the Dunford-Pettis theorem, which yields that e−tΛ

is an integral operator. Therefore, taking s = t in the previous estimate, we obtain (A.1). �
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