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Abstract

In this article we prove the property of unique continuation (also known for C∞ functions as quasi-
analyticity) for solutions of the differential inequality |�u| � |V u| for V from a wide class of potentials

(including L
d/2,∞
loc (Rd) class) and u in a space of solutions YV containing all eigenfunctions of the corre-

sponding self-adjoint Schrödinger operator. Motivating question: is it true that for potentials V , for which
self-adjoint Schrödinger operator is well defined, the property of unique continuation holds?
© 2009 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω be an open set in Rd (d � 3), Xp := L
p

loc(Ω,dx) (p � 1), Hm,p(Ω) the standard

Sobolev space and � := ∑d
k=1

∂2

∂x2
k

the Laplace operator. Let D′(Ω) be the space of distributions

over C∞
0 (Ω) and L2,1

loc (Ω) := {f ∈ X1: �f ∈ D′(Ω) ∩ X1}.
Let now Ω be connected. For YV ⊂ L2,1

loc (Ω) a space of functions depending on V ∈ X1 we
say that the differential inequality

∣∣�u(x)
∣∣ �

∣∣V (x)
∣∣∣∣u(x)

∣∣ a.e. in Ω (1)
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has the property of weak unique continuation (WUC) in YV (=: Y weak
V ) provided that whenever u

in YV satisfies inequality (1) and vanishes in an open subset of Ω it follows that u ≡ 0 in Ω . We
also say that (1) has the property of strong unique continuation (SUC) in YV (=: Y str

V ) if whenever
u in YV satisfies (1) and vanishes to an infinite order at a point x0 ∈ Ω , i.e.,

lim
ρ→0

1

ρk

∫
|x−x0|<ρ

∣∣u(x)
∣∣2

dx = 0, for all k ∈ N,

it follows that u ≡ 0 in Ω .
The first result on unique continuation was obtained by T. Carleman [2]. He proved that (1)

has the WUC property in the case d = 2, V ∈ L∞
loc(Ω). Since then, the properties of unique

continuation were extensively studied by many authors (primarily following the original Carle-
man’s approach), with the best possible for L

p

loc-potentials SUC result obtained by D. Jerison and

C. Kenig (p = d
2 , Y str

V = H
2,p̄

loc , p̄ := 2d
d+2 ) [6], and its extension for L

d/2,∞
loc -potentials obtained by

E.M. Stein [21]. Further improvements of Stein’s result were obtained in [3,17,23] where unique
continuation is proved for potentials V locally in Campanato–Morrey class (see Section 3 for
details), with Y str

V = H
2,2
loc or H

2,p̄

loc . Before that, in 1984, E.T. Sawyer proved the SUC property
in the case d = 3 for potentials from Kato class (see Section 3). Historically, the most important
reason for establishing the WUC property is its application, discovered in 1959 by T. Kato [8],
to the problem of absence of positive eigenvalues of self-adjoint Schrödinger operators. In what
follows, we exploit this link. Our setting involves a ‘local analogue’ (for d = 3 and a subclass
for d � 4) of the class of potentials for which the self-adjoint Schrödinger operator is defined in
the sense of quadratic forms, as described below, and for each potential V a class of solutions
YV containing all eigenfunctions of the corresponding Schrödinger operator. The latter allows
us to use our WUC result to prove the absence of positive eigenvalues. Precisely, we prove that
differential inequality (1) has WUC property in the space of solutions

Y weak
V := {

u ∈ L2,1
loc : |V | 1

2 u ∈ X2
}

and, respectively, SUC property in

Y str
V := Y weak

V ∩ H
1,p̄

loc (Ω).

Previously WUC and SUC properties were derived only for YV = H
2,p̄

loc (Ω) (dependence of YV

on V , i.e., u ∈ YV implies |V | 1
2 u ∈ X2, is implicit in the papers cited above, see Section 3).

Our ‘abstract’ form of the class of solutions leads to a substantially shorter and more transpar-
ent proof. (We note that the ‘abstract’ classes of potentials were previously considered, e.g.,
in [5,18,19].)

Following Carleman, most proofs of unique continuation rely on Carleman type estimates on
the norms of the appropriate operators acting from Lp to Lq , for certain p and q (e.g., Theo-
rem 2.1 in [6], Theorem 1 in [21]). Our method uses the L2 
→ L2 estimate of Proposition 1. The
latter reduces an estimate of the ‘singular’ term I1 in Carleman’s expansion,

1B(ρ)V
1
2 ϕN+C(d)u = I1 + · · · (V � 1),

I1 := 1B(ρ)V
1
2 ϕN+C(d)

[
(−�)−1]

N
ϕ−1

N+C(d)V
1
2 1B(ρ)ϕN+C(d)

−�u
1 ,
V 2
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to the definition of the class of potentials (see the proof of Theorem 1 for details). Here u

is assumed to be identically equal to 0 in the ball B(a) := {x ∈ Rd : |x| < a}, 0 < a < ρ,
ϕt (x) := |x|−t , the kernel [(−�)−1]N(x, y) is the kernel [(−�)−1](x, y) (see the definition be-
low) modified by subtracting its Taylor polynomial of order N −1, and 1B(ρ) is the characteristic
function of the ball B(ρ). In the case d = 3 we derive Proposition 1 using the classical point-
wise estimate due to E.T. Sawyer [18] on the absolute value of [(−�)−1]N(x, y) in terms of
[(−�)−1](x, y) and of the ratio of the polynomial weights ϕN(x)/ϕN(y) (our Lemma 1). This
estimate allows one to interchange polynomial weights with the corresponding integral operators
and thus to derive Proposition 1 which henceforth yields

∥∥∥∥1B(ρ)

ϕN+C(d)(x)

ϕN+C(d)(ρ)
u

∥∥∥∥
2
� C′ for all N

with C′ being independent of N ; the latter inequality leads to a contradiction as N → ∞, unless
u ≡ 0 in B(ρ) (� B(a)). We reduce the case of d � 4 to the case of d = 3 at the cost of a more
restrictive class of potentials: the proof uses Stein’s interpolation theorem for analytic families of
operators [22], and relies on Lemma 2 of [6] and our extension of the pointwise inequality of [18]
mentioned above and of inequality from [21] (our Lemma 3, cf. Lemma 1 in [18], Lemma 5
in [21]).

Finally, we formulate the definition of the class of potentials for which we prove the unique-
ness of continuation. Let 1S denote the characteristic function of a set S ⊂ Rd , B(x0, ρ) :=
{x ∈ Rd : |x − x0| < ρ}, BS(x0, ρ) := B(x0, ρ) ∩ S (also set BS(ρ) := BS(0, ρ)), ‖A‖p 
→q is the
norm of operator A :Lp(Rd) 
→ Lq(Rd), (−�)− z

2 , 0 < Re(z) < d , stands for the Riesz operator
whose action on a function f ∈ C∞

0 (Rd) is determined by the formula

(−�)−
z
2 f (x) = cz

∫
Rd

(−�)−
z
2 (x, y)f (y) dy,

where

(−�)−
z
2 (x, y) := |x − y|z−d , cz := �

(
d − z

2

)(
πd/22z�

(
z

2

))−1

(see, e.g., [20]).
Our class of potentials is

F d
β,loc :=

{
W ∈ Xd−1

2
: sup

x0∈K

lim
ρ→0

∥∥1BK(x0,ρ)|W | d−1
4 (−�)−

d−1
2 |W | d−1

4 1BK(x0,ρ)

∥∥
2
→2 � β

}

for all compacts K ⊂ Ω . In 1959 T. Kato proved that if V has a compact support, then all eigen-
functions corresponding to positive eigenvalues must vanish outside of a ball of finite radius,
hence by WUC must be identically equal to zero. We use our WUC result for (1) to prove the ab-
sence of positive eigenvalues of the self-adjoint Schrödinger operator H ⊃ −� + V in complex
Hilbert space H := L2(Rd) defined in the sense of quadratic forms (see [9,16]), namely:

H := H+ � (−V−), (2)
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where H+ := H0 �V+, H0 = (−�|C∞(Rd ))
∗, D(H0) = H 2,2(Rd), V = V+ −V−, V± � 0, V± ∈

L1(Rd) and

inf
λ>0

∥∥V
1
2− (λ + H+)−1V

1
2−
∥∥

2
→2 � β < 1. (3)

The latter inequality guarantees the existence of the form sum (2) (see [9, Ch. VI]), and the
inclusion D(H) ⊂ Y weak

V (see Section 2). The local nature of the problem of unique continuation
and the form of differential inequality (1) lead to the definition of the following ‘local analogue’
of potentials satisfying (3):

Fβ,loc :=
{
W ∈ X1: sup

x0∈K

lim
ρ→0

∥∥1BK(x0,ρ)|W | 1
2 (−�)−1|W | 1

2 1BK(x0,ρ)

∥∥
2
→2 � β

}
(4)

for all compacts K ⊂ Ω . This class coincides with F d
β,loc if d = 3, and contains F d

β,loc as a proper
subclass if d � 4 (the latter easily follows from Heinz–Kato inequality, see, e.g., [7]). We believe
that the results of this article can be extended to the larger class of potentials Fβ,loc for d � 4.

Class F d
β,loc contains potentials considered in [3,6,18,21,23] as proper subclasses.

The results of this article have been announced in [11].

2. Main results

Our main results state that (1) has the WUC and SUC properties with potentials from F d
β,loc.

The difference between the results is in the classes YV within which we look for solutions to (1).

Theorem 1. There exists a sufficiently small constant β < 1 such that if V ∈ F d
β,loc then (1) has

the WUC property in Y weak
V .

Theorem 2. There exists a sufficiently small constant β < 1 such that if V ∈ F d
β,loc, then (1) has

the SUC property in Y str
V .

The proofs of Theorems 1 and 2 are given in Section 4. Concerning the eigenvalue problem,
we have the following result.

Theorem 3. Suppose that H is defined by (2) in assumption that (3) holds. Let us also assume that
V ∈ Fd

β,loc for β < 1 sufficiently small, and supp(V ) is compact in Rd . Then the only solution to
the eigenvalue problem

Hu = λu, u ∈ D(H), λ > 0, (5)

is zero.

Proof. The following inclusions are immediate from the definition of operator H :

D(H) ⊂ H 1,2(Rd
) ∩ D

(
V

1
2+
) ∩ D

(
V

1
2−
)
,

D(H) ⊂ D(Hmax),
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where

D(Hmax) := {
f ∈ H: �f ∈ D′(Rd

) ∩ L1
loc

(
Rd

)
, Vf ∈ L1

loc

(
Rd

)
, −�f + Vf ∈ H

}
.

Therefore, D(H) ⊂ Y weak
V and if u ∈ D(H) is a solution to (5), then

|�u| = ∣∣(V − λ)u
∣∣ a.e. in Rd .

By Kato’s theorem [8] u has compact support. Now Theorem 3 follows from Theorem 1. �
3. Historical context

1) D. Jerison and C. Keing [6] and E.M. Stein [21] proved the validity of the SUC property

for potentials from classes L
d
2
loc(Ω) and L

d
2 ,∞
loc (Ω) (weak type d/2 Lorentz space), respectively.

Below ‖ · ‖p,∞ denotes weak type p Lorentz norm. One has

L
d
2
loc(Ω) �

⋂
β>0

F d
β,loc, (6)

L
d
2 ,∞
loc (Ω) �

⋃
β>0

F d
β,loc. (7)

The first inclusion follows straightforwardly from the Sobolev embedding theorem. For the fol-
lowing proof of the second inclusion let us note first that

∥∥1B(x0,ρ)|W | d−1
4 (−�)−

d−1
2 |W | d−1

4 1B(x0,ρ)

∥∥
2
→2 = ∥∥1B(x0,ρ)|V | d−1

4 (−�)−
d−1

4
∥∥2

2
→2.

Next, if V ∈ Ld/2,∞, then

∥∥1B(x0,ρ)|V | d−1
4 (−�)−

d−1
4

∥∥
2
→2 �

(2d−1π
d
2 c 1

2

�(d
2 )c d

2

)
‖1B(x0,ρ)V ‖

d−1
4

d
2 ,∞, (8)

which is a special case of Strichartz inequality with sharp constants, proved in [13]. Inclusion (7)
follows.

To see that the latter inclusion is strict we introduce a family of potentials

V (x) := C(1B(1+δ)(x) − 1B(1−δ)(x))

(|x| − 1)
2

d−1 (− ln ||x| − 1|)b
, where b >

2

d − 1
, 0 < δ < 1. (9)

A straightforward computation shows that V ∈ F d
β,loc, as well as V ∈ L

d−1
2

loc (Ω) \ L
d−1

2 +ε

loc (Ω) for

any ε > 0, so that V /∈ L
d
2 ,∞

(Ω).
loc
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The result in [21] can be formulated as follows. Suppose that d � 3 and V ∈ L
d
2 ,∞
loc (Ω). There

exists a sufficiently small constant β such that if

sup
x0∈Ω

lim
ρ→0

‖1B(x0,ρ)V ‖ d
2 ,∞ � β,

then (1) has the SUC property in YV := H
2,p̄

loc (Ω), where p̄ := 2d
d+2 . (It is known that the assump-

tion of β being sufficiently small cannot be omitted, see [12].)
In view of (6), (7), the results in [21] and in [6] follow from Theorem 2 provided that we

show |V | 1
2 u ∈ X2. Indeed, let Lq,p be the (q,p) Lorentz space (see [22]). By Sobolev em-

bedding theorem for Lorentz spaces H
2,p̄

loc (Ω) ↪→ L
q̄,p̄

loc (Ω) with q̄ := 2d
d−2 [22]. Hence, by

Hölder inequality in Lorentz spaces |V | 1
2 u ∈ X2 whenever u ∈ L

q̄,p̄

loc (Ω) and V ∈ L
d/2,∞
loc . Also,

H
2,p̄

loc (Ω) ↪→ H
1,p̄

loc (Ω), so H
2,p̄

loc (Ω) ⊂ Y str
V , as required.

2) E.T. Sawyer [18] proved uniqueness of continuation for the case d = 3 and potential V

from the local Kato-class

Kβ,loc :=
{
W ∈ L1

loc(Ω): sup
K

lim
ρ→0

sup
x0∈K

∥∥(−�)−11BK(x0,ρ)|W |∥∥∞ � β
}
,

where K is a compact subset of Ω . It is easy to see that

Kβ,loc � Fβ,loc.

To see that the latter inclusion is strict consider, for instance, potential

Vβ(x) := βv0, v0 :=
(

d − 2

2

)2

|x|−2.

By Hardy’s inequality, Vβ ∈ Fβ,loc. At the same time, ‖(−�)−1v01B(ρ)‖∞ = ∞ for all ρ > 0,
hence Vβ /∈ Kβ,loc for all β = 0.

The next statement is essentially due to E.T. Sawyer [18].

Theorem 4. Let d = 3. There exists a constant β < 1 such that if V ∈ Kβ,loc then (1) has the
WUC property in Y K

V := {f ∈ X1: �f ∈ X1, Vf ∈ X1}.

The proof of Theorem 4 is provided in Section 5.
Despite the embedding Kβ,loc ↪→ Fβ,loc, Theorem 1 does not imply Theorem 4. The reason is

simple: Y K
V ⊂ Y weak

V .
3) S. Chanillo and E.T. Sawyer showed in [3] the validity of the SUC property for (1) in YV =

H
2,2
loc (Ω) (d � 3) for potentials V locally small in Campanato–Morrey class Mp (p > d−1

2 ),

Mp :=
{
W ∈ Lp: ‖W‖Mp := sup r

2− d
p ‖1B(x,r)W‖p < ∞

}
.

x∈Ω, r>0



2668 D. Kinzebulatov, L. Shartser / Journal of Functional Analysis 258 (2010) 2662–2681
Note that for p > d−1
2

M
p

loc �
⋃
β>0

F d
β,loc

(see [3,4,10]). To see that the above inclusion is strict one may consider, for instance, potential
defined in (9).

It is easy to see, using Hölder inequality, that if u ∈ H
2,2
loc (Ω) and V ∈ M

p

loc (p > d−1
2 ), then

|V | 1
2 u ∈ X2, i.e., u ∈ Y weak

V . However, the assumption ‘u ∈ H
2,2
loc ’ is in general too restrictive for

application of this result to the problem of absence of positive eigenvalues (see Remark 1).

Remark 1. Below we make several comments about H 2,q -properties of the eigenfunctions of
the self-adjoint Schrödinger operator H = (−� � V+) � (−V−), V = V+ − V−, defined by (2)
in the assumption that condition

V− � β(H0 � V+) + cβ, β < 1, cβ < ∞, (10)

is satisfied. (Note that (10) implies condition (3). We say that (10) is satisfied with β = 0 if (10)
holds for any β > 0 arbitrarily close to 0, for an appropriate cβ < ∞.)

Let u ∈ D(H) and Hu = μu. Then

e−tH u = e−tμu, t > 0.

As is shown in [14], for every 2 � r < 2d
d−2

1
1−√

1−β
there exists a constant c = c(r,β) > 0 such

that

∥∥e−tH f
∥∥

r
� ct−

d
2 ( 1

2 − 1
r
)‖f ‖2, (11)

where f ∈ L2 = L2(Rd). Let us now consider several possible Lp and Lp,∞ (as well as L
p

loc and
L

p,∞
loc ) conditions on potential V .

(A) Suppose in addition to (10) that V ∈ L
p

loc for some 1 � p < d
2 . Then by Hölder inequality

and (11) V u ∈ L
q

loc and, due to inclusion D(H) ⊂ D(Hmax), �u ∈ L
q

loc for any q such that

1

q
>

1

p
+ d − 2

d

1 − √
1 − β

2
.

The latter implies that q < p̄ in general, i.e., when β in (10) is close to 1. Hence, in general
the assumption ‘u ∈ H

2,p̄

loc ’ (and, moreover, ‘u ∈ H
2,2
loc ’) is too restrictive for applications to the

problem of absence of positive eigenvalues even under additional hypothesis of the type V ∈
L

p
com, d−1

2 � p < d
2 or V ∈ M

p
com, d−1

2 � p < d
2 (cf. [3,17]).

(B1) If V = V1 + V2 ∈ Lp + L∞, p > d
2 , then (10) holds with β = 0 and u ∈ L∞, therefore,

|V | 1
2 u ∈ L2 (cf. D(H) and Y weak

V ).

It follows that u ∈ C0,α for any α ∈ (0,1 − 2
d
]. Therefore, u ∈ H

2,p

loc and, in particular, for
d � 4, u ∈ H 2,2.
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(B2) Assume in addition to (10) that V ∈ L
p

loc, p > d
2 , and β = 0. Then u ∈ H

2,p

loc , p > d
2 .

Using Hölder inequality, one immediately obtains |V | 1
2 u ∈ X2.

If d = 3, and p > d
2 is close to d

2 , then u /∈ H
2,2
loc , but of course u ∈ H

2,p̄

loc , p̄ = 2d
d+2 (< p, cf.

remark in [1, p. 166]).

(B3) If V = V1 + V2 ∈ L
d
2 + L∞, then (10) is satisfied with β = 0 and u ∈ ⋂

2�r<∞ Lr .

Therefore u ∈ H
2,q

loc , q < d
2 . In particular, u ∈ H

2,p̄

loc (cf. [6]). By Hölder inequality, |V | 1
2 u ∈ L2.

(B4) Finally, suppose that V = V1 + V2 ∈ L
d
2 ,∞ + L∞ is such that

β :=
(

d−1π
d
2 �(d

4 − 1
2 )

�(d
2 )�(d

4 + 1
2 )

)
‖V1‖ d

2 ,∞ < 1.

Then we have

|V | � βH0 + cβ, cβ < ∞ (12)

and, at the same time,

∥∥V (λ + H0,p̄)−1
∥∥

p̄ 
→p̄
� β, λ � cβ

β

(see [13]), where H0,p̄ stands for the extension of −� in Lp̄ with D(H0,p̄) = H 2,p̄ . The
first inequality implies condition (10) and, hence, allows us to conclude that the form sum
H := H0 � V is well defined. In turn, the second inequality implies that the algebraic sum
Ĥp̄ := H0,p̄ + V defined in Lp̄ with D(Ĥp̄) = H 2,p̄ coincides with H on the intersection of
domains D(H) ∩ H 2,p̄ and is a generator of a semigroup. By making use of the representa-
tion

(λ + Ĥp̄)−1 = (λ + H0,p̄)−1(1 + V (λ + H0,p̄)−1)−1
, λ >

cβ

β
,

one immediately obtains that (λ + Ĥp̄)−1 :Lp̄ 
→ L2, i.e., any eigenfunction of operator Ĥp̄

belongs to L2. Furthermore, an analogous representation for (λ + H)−1 yields the iden-
tity

(λ + H)−1f = (λ + Ĥp̄)−1f, f ∈ L2 ∩ Lp̄.

Therefore, any eigenfunction of Ĥp̄ is an eigenfunction of H (cf. [21]). The converse statement
is valid, e.g., for eigenfunctions having compact support.

If V ∈ L
d
2 ,∞
loc and (12) holds, then u ∈ H

2,q0
loc for some q0 > p̄. Indeed, we have V ∈ Lr

loc for
any r < d

2 , and so by (11) u ∈ Lp for some p > 2d
d−2 . Thus, V u ∈ L

q0
loc for a certain q0 > p̄,

hence u ∈ H
2,q0
loc and, therefore, |V | 1

2 u ∈ X2. The latter confirms that the result in [21] applies to
the problem of absence of positive eigenvalues (cf. D(H)).
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4. Proofs of Theorems 1 and 2

Let us introduce some notations. In what follows, we omit index K in BK(x0, ρ), and write
simply B(x0, ρ).

Let W ∈ Xd−1
2

, x0 ∈ Ω , ρ > 0, d � 3, define

τ(W,x0, ρ) := ∥∥1B(x0,ρ)|W | d−1
4 (−�)−

d−1
2 |W | d−1

4 1B(x0,ρ)

∥∥
2
→2. (13)

Note that if V is a potential from F d
β,loc, and V1 := |V | + 1, then

τ(V1, x0, ρ) � τ (V, x0, ρ) + ε(ρ), (14)

where ε(ρ) → 0 as ρ → 0.
Let 1B(ρ\a) be the characteristic function of set B(0, ρ)\B(0, a), where 0 < a < ρ. We define

integral operator

[
(−�)−

z
2
]
N

f (x) :=
∫
Rd

[
(−�)−

z
2
]
N

(x, y)f (y) dy, 0 � Re(z) � d − 1

whose kernel [(−�)− z
2 ]N(x, y) is defined by subtracting Taylor polynomial of degree N − 1 at

x = 0 of function x 
→ |x − y|z−d ,

[
(−�)−

z
2
]
N

(x, y) := cz

(
|x − y|z−d −

N−1∑
k=0

(x · ∇)k

k! |0 − y|z−d

)
,

where (x · ∇)k := ∑
|α|=k

k!
α1!...αd !x

α ∂k

∂x
α1
1 ...∂x

αn
n

is the multinomial expansion of (x · ∇)k . Define,

further,

[
(−�)−

z
2
]
N,t

:= ϕt

[
(−�)−

z
2
]
N

ϕ−1
t ,

where ϕt (x) := |x|−t .

4.1. Proof of Theorem 1

Our proof is based on the inequalities of Proposition 1 and Lemma 1.

Proposition 1. If τ (V,0, ρ) < ∞, then there exists a constant C = C(ρ, δ, d) > 0 such that

∥∥1B(ρ\a)|V | 1
2
[
(−�)−1]

N,Nδ
d
|V | 1

2 1B(ρ\a)

∥∥
2
→2 � Cτ(V,0, ρ)

2
d−1 ,

for all positive integers N , where 0 < δ < 1/2 and

Nδ
d := N +

(
d

2
− δ

)
d − 3

d − 1
.
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Lemma 1. There exists a constant C = C(d) such that

∣∣[(−�)−1]
N

(x, y)
∣∣ � CNd−3

( |x|
|y|

)N

(−�)−1(x, y)

for all x, y ∈ Rd and all positive integers N .

Lemma 1 is a simple consequence of Lemma 3 below for γ = 0. Lemmas 2 and 3 are required
for analytic interpolation procedure used in the proof of Proposition 1 when d � 4.

Lemma 2. (See [6].) There exist constants C2 = C2(ρ1, ρ2, δ, d) and c2 = c2(ρ1, ρ2, δ, d) > 0
such that ∥∥1B(ρ1\a)

[
(−�)−iγ

]
N,N+ d

2 −δ
1B(ρ2\a)

∥∥
2
→2 � C2e

c2|γ |,

where 0 < δ < 1/2, for all γ ∈ R and all positive integers N .

Lemma 3. There exist constants C1 = C1(d) and c1 = c1(d) > 0 such that

∣∣[(−�)−
d−1

2 (1+iγ )
]
N

(x, y)
∣∣ � C1e

c1γ
2
( |x|

|y|
)N

(−�)−
d−1

2 (x, y)

for all x, y ∈ Rd , all γ ∈ R and all positive integers N .

We prove Lemma 3 at the end of this section.

Proof of Proposition 1. If d = 3, then Proposition 1 follows immediately from Lemma 1. Sup-
pose that d � 4. Consider the operator-valued function

F(z) := 1B(ρ\a)|V | d−1
4 zϕ

N+( d
2 −δ)(1−z)

[
(−�)−

d−1
2 z

]
N

ϕ−1
N+( d

2 −δ)(1−z)
|V | d−1

4 z1B(ρ\a)

defined on the strip {z ∈ C: 0 � Re(z) � 1} and acting on L2. By Lemma 2,∥∥F(iγ )
∥∥

2
→2 � C2e
c2|γ |, γ ∈ R,

and by Lemma 3,

∥∥F(1 + iγ )
∥∥

2
→2 � τ (V,0, ρ)C1e
c1γ

2
, γ ∈ R.

Together with obvious observations about analyticity of F this implies that F satisfies all con-
ditions of Stein’s interpolation theorem. In particular, F( 2

d−1 ) :L2 
→ L2 is bounded, which
completes the proof. �
Proof of Theorem 1. Let u ∈ Y weak

V . Without loss of generality we may assume u ≡ 0 on
B(0, a) for a > 0 sufficiently small, such that there exists ρ > a with the properties ρ < 1 and
B̄(0,3ρ) ⊂ Ω . In order to prove that u vanishes on Ω it suffices to show that u ≡ 0 on B(0, ρ)

for any such ρ.
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Let η ∈ C∞
0 (Ω) be such that 0 � η � 1, η ≡ 1 on B(0,2ρ), η ≡ 0 on Ω \B(0,3ρ), |∇η| � c

ρ
,

|�η| � c

ρ2 . Let Eη(u) := 2∇η∇u + u�η ∈ X1. Denote uη := uη. Since L2,1
loc (Ω) ⊂ H

1,p

loc (Ω),

p < d
d−1 , we have Eη(u) ∈ L1

com(Ω) and hence

�uη = η�u + Eη(u)

implies �uη ∈ L1
com(Ω). Thus, we can write

uη = (−�)−1(−�uη).

The standard limiting argument (involving consideration of C∞
0 -mollifiers, subtraction of Taylor

polynomial of degree N − 1 at 0 of function uη and interchanging the signs of differentiation
and integration) allows us to conclude further

uη = [
(−�)−1]

N
(−�uη). (15)

Let us denote 1c
B(ρ) := 1 − 1B(ρ), so that �uη = (1B(ρ\a) + 1c

B(ρ))�uη . Observe that

suppη�u ⊂ B̄(0,3ρ) \ B(0, a), suppEη(u) ⊂ B̄(0,3ρ) \ B(0,2ρ)

and, thus, 1c
B(ρ)η�u = 1B(3ρ\ρ)η�u, 1c

B(ρ)Eη(u) = 1B(3ρ\2ρ)Eη(u). Identity (15) implies then

1B(ρ)V
1
2

1 ϕNδ
d
u = 1B(ρ)V

1
2

1

[
(−�)−1]

N,Nδ
d
V

1
2

1 1B(ρ\a)ϕNδ
d

−�u

V
1
2

1

+ 1B(ρ)V
1
2

1

[
(−�)−1]

N,Nδ
d
V

1
2

1 1c
B(ρ)ϕNδ

d

−η�u

V
1
2

1

+ 1B(ρ)V
1
2

1

[
(−�)−1]

N,Nδ
d
1B(3ρ\2ρ)ϕNδ

d

(−Eη(u)
)

(we assume that 0 < δ < 1/2 is fixed throughout the proof) or, letting I to denote the left hand
side and, respectively, I1, I c

1 and I2 the three summands of the right hand side of the last equality,
we rewrite the latter as

I = I1 + I c
1 + I2.

We would like to emphasize that a priori I /∈ L2, but only I ∈ Ls , s < d/(d − 2). Hence, we
must first prove that I1, I c

1 and I2 are in L2, so that I ∈ L2 as well. After this done, we obtain the
estimates ‖I c

1 ‖2 � c1ϕNδ
d
(ρ), ‖I2‖2 � c2ϕNδ

d
(ρ) and ‖I1‖2 � α‖I‖2, α < 1, and conclude that

(1 − α)‖I‖2 � (c1 + c2)ϕNδ
d
(ρ), and therefore that

∥∥∥∥1B(ρ\a)

ϕNδ
d

ϕNδ
d
(ρ)

u

∥∥∥∥
2
� c1 + c2

1 − α
.

Letting N → ∞, we derive identity u ≡ 0 in B(0, ρ).
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1) Proof of I1 ∈ L2 and ‖I1‖2 � α‖I‖2, α < 1. Observe that

1B(ρ\a)

|�u|
V

1/2
1

� 1B(ρ)

|V ||u|
V

1/2
1

� 1B(ρ)|V |1/2|u| ∈ X2
(
since u ∈ Y weak

V

)
,

and hence, according to Proposition 1,

‖I1‖2 �
∥∥1B(ρ\a)V

1
2

1

[
(−�)−1]

N,Nδ
d
V

1
2

1 1B(ρ\a)

∥∥
2
→2

∥∥1B(ρ)ϕNδ
d
|V | 1

2 u
∥∥

2

� β1
∥∥1B(ρ)ϕNδ

d
|V | 1

2 u
∥∥

2.

Here β1 := Cτ(V1,0, ρ)
2

d−1 , where C is the constant in formulation of Proposition 1. We may
assume that β1 < 1 (see (14)).

2) Proof of ‖I c
1 ‖2 � c1ϕNδ

d
(ρ). By Proposition 1,

∥∥I c
1

∥∥
2 �

∥∥1B(ρ\a)V
1
2

1

[
(−�)−1]

N,Nδ
d
V

1
2

1 1B(3ρ\ρ)

∥∥
2
→2

∥∥1B(3ρ\ρ)ϕNδ
d
|V | 1

2 u
∥∥

2

� β2ϕNδ
d
(ρ)

∥∥1B(3ρ)|V |1/2u
∥∥

2,

where β2 := Cτ(V1,0,3ρ)
2

d−1 < ∞.
3) Proof of ‖I2‖2 � c2ϕNδ

d
(ρ). We need to derive an estimate of the form

‖I2‖2 � CϕNδ
d
(ρ)

∥∥Eη(u)
∥∥

1,

where C can depend on d , δ, a, ρ, ‖1B(ρ)V ‖1, but not on N . We have

‖I2‖2 �
∥∥1B(ρ\a)V

1/2
1

[
(−�)−1]

N,Nδ
d
1B(3ρ\2ρ)

∥∥
1
→2

∥∥1B(3ρ\2ρ)ϕNδ
d
Eη(u)

∥∥
1

�
∥∥1B(ρ\a)V

1/2
1

[
(−�)−1]

N,Nδ
d
1B(3ρ\2ρ)

∥∥
1
→22−NϕNδ

d
(ρ)

∥∥Eη(u)
∥∥

1.

Now for h ∈ L1(Rd), in virtue of Lemma 1,

∥∥1B(ρ\a)V
1/2
1

[
(−�)−1]

N,Nδ
d
1B(3ρ\2ρ)h

∥∥
2

�
∥∥1B(ρ)V

1/2
1

∥∥
2

∥∥1B(ρ\a)

[
(−�)−1]

N,Nδ
d
1B(3ρ\2ρ)h

∥∥∞

�
∥∥1B(ρ)V

1/2
1

∥∥
2CNd−3ϕ

( d
2 −δ) d−3

d−1
(a)ϕ−1

( d
2 −δ) d−3

d−1
(3ρ)

∥∥1B(ρ)(−�)−11B(3ρ\2ρ)h
∥∥∞

�
(‖1B(ρ)‖1 + ‖1B(ρ)V ‖1

)1/2
CNd−3

(
3ρ

a

)( d
2 −δ) d−3

d−1

Mρ,

where

Mρ := C2 esssupx∈B(0,ρ)

∫
|x − y|2−d

∣∣h(y)
∣∣dy � C2ρ

2−d‖h‖1.
2ρ�|y|�3ρ



2674 D. Kinzebulatov, L. Shartser / Journal of Functional Analysis 258 (2010) 2662–2681
Therefore

∥∥1B(ρ\a)V
1/2
1

[
(−�)−1]

N,Nδ
d
1B(3ρ\2ρ)

∥∥
1
→2

�
(∥∥1B(ρ)

∥∥
1 + ‖1B(ρ)V ‖1

)1/2
CC2N

d−3
(

3ρ

a

)( d
2 −δ) d−3

d−1

ρ2−d .

Hence, there exists a constant Ĉ = Ĉ(d, δ, a,ρ,‖1B(ρ)V ‖1) such that

‖I2‖2 � ĈNd−32−NϕNδ
d
(ρ)

∥∥Eη(u)
∥∥

1,

which implies the required estimate. �
Proof of Lemma 3. The proof essentially follows the argument in [18]. Put

[− 1
2 + iγ

2
k

]
:=

k∏
j=1

(
1 + − 1

2 + iγ
2

j

)
.

Then

∣∣∣∣
[− 1

2 + iγ
2

k

]∣∣∣∣ =
k∏

j=1

(
1 − 1

2j

) k∏
j=1

√
1 + γ 2

(2j − 1)2

�
k∏

j=1

(
1 − 1

2j

)
e
γ 2 ∑k

j=1
1

(2j−1)2 �
k∏

j=1

(
1 − 1

2j

)
eγ 2c, c = π2

48
. (16)

We may assume, after a dilation and rotation, that x = (x1, x2,0, . . . ,0), y = (1,0, . . . ,0). Thus,
passing to polar coordinates (x1, x2) = teiθ , we reduce our inequality to inequality

∣∣∣∣1 − teiθ
∣∣−1−iγ − PN−1(t, θ)

∣∣ � Cecγ 2
tN

∣∣1 − teiθ
∣∣−1

, for all γ ∈ R,

and for appropriate C > 0, c > 0. Here PN−1(t, θ) denotes the Taylor polynomial of degree
N − 1 at point z = 0 of function z = teiθ 
→ |1 − z|−1. Similarly to [18], via summation of
geometric series we obtain a representation

PN−1(t, θ) =
N−1∑
m=0

a
γ
m(θ)tm,

where

a
γ
m(θ) :=

∑ [− 1
2 + iγ

2
l

][− 1
2 + iγ

2
k

]
ei(k−l)θ .
k+l=m
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Note that

a0
m(0) =

∑
k+l=m

[− 1
2

l

][− 1
2

k

]
= 1

since

∞∑
m=0

a0
m(0)tm = (1 − t)−1 =

∞∑
m=0

tm.

Now estimate (16) and identity a0
m(0) = 1 yield

∣∣aγ
m(θ)

∣∣ �
∑

k+l=m

∣∣∣∣
[− 1

2
l

]∣∣∣∣
∣∣∣∣
[− 1

2
k

]∣∣∣∣e2cγ 2 = e2cγ 2
.

We have to distinguish between four cases t � 2, 1 < t < 2, 0 � t � 1
2 and 1

2 < t < 1. Below we
consider only the cases t � 2 and 1 < t < 2 (proofs in two other cases are similar).

If t � 2, then

∣∣PN−1(t, θ)
∣∣ �

N−1∑
m=0

∣∣aγ
m(θ)

∣∣tm � e2cγ 2
tN � 3

2
e2cγ 2

tN
∣∣1 − teiθ

∣∣−1

since 1 � 3
2 t |1 − teiθ |−1. Hence, using ||1 − teiθ |−1−iγ | � tN |1 − teiθ |−1, it follows

∣∣∣∣1 − teiθ
∣∣−1−iγ − PN−1(t, θ)

∣∣ � tN
∣∣1 − teiθ

∣∣−1 + 3

2
e2cγ 2

tN
∣∣1 − teiθ

∣∣−1

� Ce2cγ 2
tN

∣∣1 − teiθ
∣∣−1

for an appropriate C > 0, as required.
If 1 < t < 2, then, after two summations by parts, we derive

PN−1(t, θ) =
N−3∑
l=0

S

[− 1
2 + iγ

2
l

]
Dl(z̄)

N−l−3∑
k=0

S

[− 1
2 + iγ

2
k

]
Dk(z)

+
N−2∑
l=0

S

[− 1
2 + iγ

2
l

][ − 1
2 + iγ

2
N − l − 2

]
Dl(z̄)DN−l−2(z)

+
N−1∑
k=0

[− 1
2 + iγ

2
k

][ − 1
2 + iγ

2
N − k − 1

]
zkDN−1−k(z) = J1 + J2 + J3,

where

S

[
δ

k

]
:=

[
δ

k

]
−

[
δ

k + 1

]
, Dk(z) :=

k∑
zj .
j=0
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We use estimate

∣∣∣∣S
[− 1

2 + iγ
2

k

]∣∣∣∣ =
∣∣∣∣
[− 1

2 + iγ
2

k

](− 1
2 + iγ

2

1 + k

)∣∣∣∣ � C(k + 1)−
1
2 ecγ 2

to obtain, following an argument in [18], that each Ji (i = 1,2,3) is majorized by Cecγ 2
tN |1 −

teiθ |−1 for some C > 0. Since ||1 − teiθ |−1−iγ | � tN |1 − teiθ |−1, Lemma 3 follows. �
4.2. Proof of Theorem 2

Choose Ψj ∈ C∞(Ω) in such a way that 0 � Ψj � 1, Ψj (x) = 1 for |x| > 2
j

, Ψj (x) = 0 for

|x| < 1
j

, |∇Ψj (x)| � c′j , |�Ψj(x)| � c′j2.

Proposition 2. Let τ (V,0, ρ) < ∞. There exists a constant C = C(ρ, δ, d) > 0 such that for all
positive integers N and j

(E1)
∥∥1B(ρ)Ψj |V | 1

2
[
(−�)−1]

N,Nδ
d
|V | 1

2 Ψj 1B(ρ)

∥∥
2
→2 � Cτ(V,0, ρ)

2
d−1 ,

(E2)
∥∥1B(ρ)Ψj |V | 1

2
[
(−�)−1]

N,Nδ
d
|V | 1

2 1B(3ρ\ρ)

∥∥
2
→2 � Cτ(V,0,3ρ)

2
d−1 ,

(E3)
∥∥1B(ρ)Ψj |V | 1

2
[
(−�)−1]

N,Nδ
d
1
B( 2

j
\ 1

j
)

∥∥
p 
→2 � Cτ(V,0, ρ)

1
d−1 ,

(E4)
∥∥1B(ρ)Ψj |V | 1

2
[
(−�)−1]

N,Nδ
d
1B(3ρ\2ρ)

∥∥
p 
→2 � Cτ(V,0,3ρ)

1
d−1 ,

where p = 2d
d+2 .

We prove Proposition 2 at the end of this section.

Proof of Theorem 2. We use the same notations as in the proof of Theorem 1. Suppose that
u ∈ Y str

V satisfies (1) and vanishes to an infinite order at 0 ∈ Ω . We wish to obtain an estimate of
the form ∥∥∥∥1B(ρ)

ϕNδ
d

ϕNδ
d
(ρ)

u

∥∥∥∥
2
� C. (17)

Then, letting N → ∞, we would derive the required identity: u ≡ 0 in B(0, ρ).
The same argument as in the proof of Theorem 1 leads us to an identity

uηj
= (−�)−1(−�uηj

), ηj = ηΨj ,

which, in turn, implies

1B(ρ)ΨjV
1
2

1 ϕNδ
d
u

= 1B(ρ)ΨjV
1
2

1

[
(−�)−1]

N,Nδ
d
V

1
2

1 ϕNδ
d

−ηj�u

V
1
2

+ 1B(ρ)ΨjV
1
2

1

[
(−�)−1]

N,Nδ
d
ϕNδ

d
Ej (u).
1
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Here 0 < δ < 1/2 is fixed, 2/j � ρ, �uηj
= ηj�u + Ej(u) and

Ej(u) := 2∇ηj∇u + (�ηj )u.

Letting I to denote the left hand side of the previous identity, and, respectively, I1 and I2 the two
summands of the right hand side, we rewrite the latter as

I = I1 + I2.

Note that I ∈ L2, since H
1,p

loc (Ω) ⊂ X2 by Sobolev embedding theorem, and |V | 1
2 u ∈ X2 by the

definition of Y str
V .

Next, we expand I1 as a sum I11 + I c
11, where

I11 := 1B(ρ)ΨjV
1
2

1

[
(−�)−1]

N,Nδ
d
V

1
2

1 1B(ρ)ϕNδ
d

−Ψj�u

V
1
2

1

and

I c
11 := 1B(ρ)ΨjV

1
2

1

[
(−�)−1]

N,Nδ
d
V

1
2

1 1c
B(ρ)ϕNδ

d

−η�u

V
1
2

1

.

Proposition 2 and inequalities (E1) and (E2) imply the required estimates:

‖I11‖2 � Cτ(V1,0, ρ)
2

d−1 ‖I‖2

and ∥∥I c
11

∥∥
2 � CϕNδ

d
(ρ)τ (V1,0,3ρ)

2
d−1

∥∥1B(3ρ)|V | 1
2 u

∥∥
2.

Finally, we represent I2 as a sum I21 + I22, where

I21 := 1B(ρ)ΨjV
1
2

1

[
(−�)−1]

N,Nδ
d
1
B( 2

j
\ 1

j
)
ϕNδ

d
E

(1)
j (u)

and

I22 := 1B(ρ)ΨjV
1
2

1

[
(−�)−1]

N,Nδ
d
1B(3ρ\2ρ)ϕNδ

d
E

(2)
j (u).

Here

E
(1)
j (u) := −2∇Ψj∇u − (�Ψj )u, E(2)(u) := −2∇η∇u − (�η)u.

In order to derive an estimate on ‖I21‖2, we expand

I21 = I ′
21 + I ′′

21,

where
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I ′
21 := 1B(ρ)ΨjV

1
2

1

[
(−�)−1]

N,Nδ
d
1
B( 2

j
\ 1

j
)
ϕNδ

d
(−�Ψj)u,

I ′′
21 := 1B(ρ)ΨjV

1
2

1

[
(−�)−1]

N,Nδ
d
1
B( 2

j
\ 1

j
)
ϕNδ

d
(−2∇η∇u).

1) Term I ′
21 presents no problem: by (E3),

∥∥I ′
21

∥∥
2 �

∥∥1B(ρ)ΨjV
1
2

1

[
(−�)−1]

N,Nδ
d
1
B( 2

j
\ 1

j
)

∥∥
p 
→2

∥∥1
B( 2

j
\ 1

j
)
ϕNδ

d
(�Ψj )u

∥∥
2

� Cτ(V1,0, ρ)
1

d−1
∥∥1

B( 2
j
\ 1

j
)
ϕNδ

d
(�Ψj )u

∥∥
2,

where ∥∥1
B( 2

j
\ 1

j
)
ϕNδ

d
(�Ψj )u

∥∥
2 � CjNδ

d+2‖1
B( 2

j
)
u‖2 → 0 as j → ∞,

by the definition of the SUC property.
2) In order to derive an estimate on I ′′

21, we once again use inequality (E3):

∥∥I ′′
21

∥∥
2 �

∥∥1B(ρ)ΨjV
1
2

1

[
(−�)−1]

N,Nδ
d
1
B( 2

j
\ 1

j
)

∥∥
p 
→2‖1

B( 2
j
)
ϕNδ

d
∇Ψj∇u‖p

� Cτ(V1,0, ρ)
1

d−1 ‖1
B( 2

j
)
ϕNδ

d
∇Ψj∇u‖p � C̃jNδ

d+1‖1
B( 2

j
)
∇u‖p,

where p := 2d
d+2 . We must estimate ‖1

B( 2
j
)
∇u‖2 by ‖1

B( 4
j
)
u‖2 in order to apply the SUC prop-

erty. For this purpose, we make use of the following well-known interpolation inequality

‖1
B( 2

j
)
∇u‖p � Cj

d
p
(
C′j

d
2 −1‖1

B( 4
j
)
u‖2 + j

d+6
2 ‖1

B( 4
j
)
�u‖r

)
,

where r := 2d
d+4 (see [15]). Using differential inequality (1), we reduce the problem to the prob-

lem of finding an estimate on ‖1
B( 4

j
)
V u‖r in terms of ‖1

B( 4
j
)
u‖μ

2 , μ > 0. By Hölder inequality,

‖1
B( 4

j
)
V u‖r �

∥∥1
B( 4

j
)
|V | 1

2 u
∥∥ 2

d

2 ‖1
B( 4

j
)
V ‖

d−1
d

d−1
2

‖1
B( 4

j
)
u‖1− 2

d

2 ,

as required.
As the last step of the proof, we use inequality (E4) to derive an estimate on term I22:

‖I22‖2 � Cτ(V1,0,3ρ)
1

d−1 ϕNδ
d
(ρ)

∥∥E
(2)
j (u)

∥∥
p
.

This estimate and the estimates obtained above imply (17). �
Proof of Proposition 2. Estimates (E1) and (E2) follow straightforwardly from Proposition 1.
In order to prove estimate (E3), we introduce the following interpolation function:

F1(z) := 1B(ρ)Ψj |V | d−1
4 zϕ

N+( d −δ)(1−z)

[
(−�)−

d−1
2 z

]
N

ϕ−1
d 1

B( 2 \ 1 )
, 0 � Re(z) � 1.
2 N+( 2 −δ)(1−z) j j
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According to Lemma 2, ‖F1(iγ )‖2
→2 � C1e
c1|γ | for appropriate C1, c1 > 0. Further, according

to Lemma 3,

∥∥F1(1 + iγ )
∥∥ 2d

2d−1 
→2 � C2e
c2γ

2∥∥1B(ρ)|V | d−1
4 (−�)−

d−1
2

∥∥ 2d
2d−1 
→2

� C2e
c2γ

2∥∥1B(ρ)|V | d−1
4 (−�)−

d−1
4

∥∥
2
→2

∥∥(−�)−
d−1

4
∥∥ 2d

2d−1 
→2

� C2e
c2γ

2
τ (V, x0, ρ)

1
2
∥∥(−�)−

d−1
4

∥∥ 2d
2d−1 
→2

for appropriate C2, c2 > 0, where, clearly, ‖(−�)− d−1
4 ‖ 2d

2d−1 
→2 < ∞. Therefore, by Stein’s in-

terpolation theorem,

∥∥∥∥F1

(
2

d − 1

)∥∥∥∥
p 
→2

� Cτ(V,x0, ρ)
1

d−1 .

The latter inequality implies (E3).
The proof of estimate (E4) is similar: it suffices to consider interpolation function

F2(z) := 1B(ρ)Ψj |V | d−1
4 zϕ

N+( d
2 −δ)(1−z)

[
(−�)−

d−1
2 z

]
N

ϕ−1
N+( d

2 −δ)(1−z)
1B(3ρ\2ρ)

for 0 � Re(z) � 1. �
5. Proof of Theorem 4

Proof of Theorem 4. Let u ∈ Y K
V . Suppose that u ≡ 0 in some neighborhood of 0. Assume

that ρ > 0 is sufficiently small, so that B̄(0,2ρ) ⊂ Ω , and let η ∈ C∞(Ω) be such that η ≡ 1
on B(0, ρ), η ≡ 0 on Ω \ B(0,2ρ). We may assume, without loss of generality, that V � 1. The
standard limiting argument implies the following identity:

1B(ρ)u = 1B(ρ)

[
(−�)−1]

N
(−�uη).

Therefore, we can write

1B(ρ)ϕNV u

= 1B(ρ)ϕNV
[
(−�)−1]

N
ϕ−1

N 1B(ρ)ϕN(−�u) + 1B(ρ)ϕNV
[
(−�)−1]

N
ϕ−1

N 1c
B(ρ)ϕN(−�uη),

or, letting K to denote the left hand side and, respectively, K1 and K2 the two summands of the
right hand side of the last equality, we rewrite the latter as

K = K1 + K2.

Note that K ∈ L1(Rd), as follows from definition of space Y K
V . Lemma 1 implies that

∥∥1B(ρ)ϕNV
[
(−�)−1] ϕ−1f

∥∥ � C
∥∥1B(ρ)V (−�)−1f

∥∥ � Cβ‖f ‖1,
N N 1 1
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for all f ∈ L1(Ω), which implies an estimate on K1:

‖K1‖1 � Cβ‖K‖1.

In order to estimate K2, we first note that 1c
B(ρ)(−�uη) = 1B(2ρ\ρ)(−�uη). According to

Lemma 1 there exists a constant Ĉ > 0 such that∥∥1B(2ρ)ϕNV
[
(−�)−1]

N
ϕ−1

N

∥∥
1
→1 � Ĉ.

Hence,

‖K2‖1 � Ĉ
∥∥1B(2ρ\ρ)ϕN(−�uη)

∥∥
1 � Ĉρ−N‖�uη‖1.

Let us choose β > 0 such that Cβ < 1. Then the estimates above imply

(1 − Cβ)
∥∥1B(ρ)ρ

NϕNu
∥∥

1 � (1 − Cβ)
∥∥ρNK

∥∥
1 �

∥∥ρNK2
∥∥

1 � Ĉ‖�uη‖1.

Letting N → ∞, we obtain u ≡ 0 in B(0, ρ). �
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