REGULARITY THEORY OF KOLMOGOROV OPERATOR REVISITED

D.KINZEBULATOV

ABSTRACT. We consider the Kolmorogov operator —A + b - V with drift b in the class of form-
bounded vector fields (containing vector fields having critical-order singularities). We characterize
quantitative dependence of the Sobolev and Holder regularity of solutions to the corresponding
elliptic equation on the value of the form-bound of b.

1. INTRODUCTION AND RESULTS

The goal of this paper is to refine some aspects of the regularity theory of the operator
~A+b-V, beLi (RLRY, d>3, (1)

required to construct a weak solution to the stochastic differential equation (SDE)
t
X —x = —/ b(Xs)ds + V2W,,  where W, is a d-dimensional Brownian motion, z € R%. (2)
0

Recall that a weak solution to (2) is a process X; defined on some probability space having continuous
trajectories, such that (a) fot |b(Xs)|ds < oo for every t > 0 a.s., and (b) there exists a Brownian
motion W; on this probability space such that (X, W;) satisfy (2) for every ¢ > 0 a.s.

The process X;, called a Brownian motion with drift b, plays fundamental role in the theory of
diffusion processes and in the theory of elliptic and parabolic equations. The case when the drift b
is singular (i.e.locally unbounded) is of special interest due to, in particular, physical applications;
the problem of describing singular b such that for every 2 € R there exists a (unique) weak solution
to (2) is classical and has been thoroughly studied, see [BC, KrR, P, Z] and references therein. The
conventional scale of singularity of b used in the literature is the scale of L"(R? R?) spaces. The
value r = d is known to be optimal: regarding positive results on weak existence and uniqueness in
law for SDE (2) with |b] € L", see [P] for r > d, and see [Krl, Kr2, XXZZ] for r = d; on the other
hand, it is not difficult to find a vector field b with |b| € L, r < d such that a weak solution to (2)
does not exist.

Nevertheless, the L" scale is a rather rough measure of singularity of b, and the class |b| € L¢
is far from being the maximal admissible. For instance, consider SDE (2) with Hardy drift b(x) =
V3452|2| =2z (which clearly fails to be in L?) and the initial state = 0. If v/§ > 2% then this
SDE does not have a weak solution (see [KiS2, Example 1]). However, if v/§ < min{1, 725}, then
by [KiS2, Theorem 1] a weak solution exists.

Let us note that, generally speaking, to construct a weak solution to (2), one needs a well
developed regularity theory of (1) — the operator behind SDE (2), cf.the papers cited above, see
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details below. In this paper we develop regularity theory of (1), with b in a large class of vector fields
containing vector fields with entries in L as well as vector fields having critical-order singularities
(such as the Hardy drift), that allows to construct a weak solution to SDE (2).

DEFINITION 1. A vector field b € L (R% R?) is said to be form-bounded if there exists a constant
0 > 0 such that

l1bl(A — A)*%Hg_g <V for some A = \; > 0.
(Il - ||p—q denotes the || - ||Lr—ra operator norm). The class of such vector fields is denoted by Fs.

The latter condition can be re-stated as a quadratic form inequality
bel3 < 0lIVel3 +esllell, ¢ e W2,

with constant ¢s = Ad. The constant ¢ is called the form-bound of b.
Note that, given a constant k # 0, if b € Fy, then kb € F|;25. Clearly, if b1 € Fs,, by € Fy,, then

bi+by €Fs, V=014,

Condition b € Fs with § < 1 appears in the literature as a condition ensuring that the quadratic
form corresponding to the formal operator —A-+b-V determines the generator of a quasi contraction
Cp semigroup in L2, see [Ka, Ch.VI].

Let us list some sub-classes of Fg defined in elementary terms.

1. A vector field b = by + by € L4RY R?) + L>®°(R? RY) is in Fs with § that can be chosen
arbitrarily small.

Indeed, representing b = f + v, where ||f|lq < &, v € L®(R% R%), one can estimate, using the
Holder inequality and the Sobolev Embedding Theorem,

_1 _1 _1
oIN = A)"2gll2 < [Ifllall(A = 2)72g]| 20+ [lvecA"2lgllz (9 € L*)

_1
< (esllflla+ lvllecA™2) g2
< (cs+1)ellglla for A =e7?|ol| 2.

2. The class Fs also contains vector fields having critical-order singularities, such as b(z) :=
+£V6%2|z| "2z, as follows from the Hardy inequality |||z|~1¢p||3 < ﬁ\\Vng%, o € WhH2. (And, of
course, b € Fg, if 62 < 0.) The last example shows that Fs contains L¢(RY, R?) + L>(R? RY) as a
proper sub-class.

More generally, Fs contains, as a proper sub-class, vector fields b with |b| in L& (the weak L
class). Recall that a measurable function h : R? — R is in L& if ||h|g00 = sSupysqs|{z € RY:

|h(x)] > s}|V/4 < oo. If |b] in L%, then
beFs, with /61 = ||[Bj(A — A)"2[|asn
_1
< [1Blla0082 Nl T = A) 72 s

L%

r(e

~—

2
d—2

=

_1 _
< ”bHd,oon a1 = HbHd,oon

~—
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where Qg = wgf(g + 1) is the volume of the unit ball in RY, see [KPS, Prop. 2.5, 2.6, Cor. 2.9].
3. The class Fs contains the vector fields b with |b|? in the Campanato-Morrey class (s > 1)

{v €Ly, : (@ /Q |v(:v)|sdx> : < ¢5l(Q) ™2 for all cubes Q} ;

the latter is a proper sub-class of Fs, see [CWW].
4. Let us note that, for every € > 0, there exists a b € Fs such that b & Lﬁf(Rd, RY), e.g.
1p(0,140) = 1B(0,1-0)

b?(z) = C , >1, 0<a<l.
S ‘|$|—1’_1(—1n\|33|—1!)3 g )

In contrast to the other classes of singular vector fields mentioned above, the class Fs is defined,
loosely speaking, in terms of the operators that constitute (1).

Let b € Fs5. By [KS, Theorem 1 and Lemma 5|, if 6 < min{1, (ﬁ)Q}, then for every p €
2,2/V/5[ there exists a realization A,(b) of the formal operator —A +b-V on LP as the (minus)
generator of a positivity preserving, L contraction, quasi contraction Cy semigroup e () guch
that u := (u+ Ap(b)) "1 f, f € LP (& solution to the elliptic equation (1 + A, (b))u = f) satisfies for

all u> 1 = pa(d,p,d) >0

_1
IVullp < Ki(p = pa) "2 fllp-

Concerning the regularity of higher-order derivatives of w, the authors in [KS] establish the next
bound on the following non-linear characteristics of u:

2 1_1
IV|Vul 513 < Ko(p— 1) 2| flp

Here constants K; = K;(d,p,6) < oo (i = 1,2). Then, by the Sobolev Embedding Theorem,
IVullp; < C|lfllps 7 = 7%, and so there exists p > max{2,d — 2} such that u € C%7 with the
Hoélder continuity exponent v =1 — %.

The results in [KS] capture quantitative dependence of Sobolev and Holder regularity of u on the
value of form-bound 6. The latter serves as a measure of the “size” of singularity of b. Note that,
from this point of view, the class b € L¢(R%,R%) does not contain vector fields having critical-order

singularities, for by Example 1 such b is in Fy with arbitrarily small 4.

In our main result (Theorem 1) we establish regularity of higher-order derivatives of solution
to the elliptic equation v under the same assumption on the form-bound § as in [KS] (and thus
without losing the size of singularity of b). This will allow us, in particular, to considerably simplify,
in comparison with [KS], the construction of the corresponding Feller semigroup (and thus of the
corresponding diffusion process), see Remark 1 below.

The method. Our starting object is an B(LP)-valued function ©,(u,b), u > po, a “candidate for
the resolvent of —A + b -V in LP”. We prove that, for smooth approximations b,, of b, ©,(u, by,)
indeed coincides with the resolvent (u— A +b, - V)~ € B(LP) (which exists by the classical theory)
for p > 0 sufficiently large. Armed with this fact, we show that, for a general b € Fs with § smaller
than a certain explicit constant, the operator-valued function ©(u,b) is the resolvent of a closed
densely defined operator —A,(b) generating a Cy semigroup on LP. This operator is the sought
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operator realization of —A + b -V in LP. The regularity properties of the resolvent (u + A,(b)~L,
and thus of the solution u to the equation (p + Ap(b))u = f (cf. Corollary 1 below), then follow
immediately from the definition of ©,(u,b). Concerning the relationship between A,(b) and the
formal operator —A + b -V, we can show, arguing as in the proof of Theorem 1.3 in [Ki], that

(Ap(b)u,v) = (u, —Av) + (b- Vu,v), ue D(Ayb)), veCr.

Here and below,

(hy = /R h@dLt, () = (hg).

Notations. Let WP, a > 0 denote the Bessel potential space endowed with norm || f{/p,a := [|g|lp,

f=0- A)_%g, geLP. Let Wb pf = p%p be the anti-dual of W*P,

Let B(X,Y) be the space of bounded linear operators between Banach spaces X — Y. Set
B(X):=B(X,X).

Denote by | the restriction of an operator to a subspace.

For p > 2, put

1

Cop = <§5+pg2\/5>p<p—1—(p_1)p;2\/g_p(p4— 2)5>‘§

and
bri=plp M, E:i= e MIn,
e>0

Theorem 1 (Main result). Let d > 3. Assume that b € Fg, 6 < 1. Then for every p € [2, %[ the
formal operator —A+b-V has a realization A, (b) in LP as the generator of a positivity preserving,
L contraction, quasi contraction Cy semigroup e () gych that:

(i) The resolvent of —A,(b) admits the representation

-1
(N + Ap(b)) = Op(n,b)
for all p > po = po(d, p,6) > 0, where
Op(,b) = (1= A) ' = Qp(1+T;) Gy
for operators Q,, Gp, T, € B(LP) defined as follows:
Gp = bv - V(p—2)",
and Qp, T, are the extensions by continuity of densely defined operators
Qo1 E:=(u—D)"0|" 7, T, 1&:=br-V(u—A)"p' 5.
We have

1,1 11
1Gpllp—p < Crp 2Ty, 1Qpllp—p < Cop 277, | Tpllpsp < c5p < 1,

(it) For each2 <r < p < q < oo and > o, define operators
Gy(r) == b - V(= A)"277 € B(LP),  Qpla) = (u—2) a5 on&.
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Then Qp(q) € B(LP)!, and the resolvent admits the representation
(4 8(0) ™ = (= A)7 = (= A)72TIQu(0) (14 T) Gyl — A)”
for all > po.
(i)

+

=
3=

e thp(bn) _y o—tAp(b) 4y 1P locally uniformly in t > 0,

where by, == e (1,b), 1, is the indicator of {x € RY| |z| < n,|b(z)| < n}, €, L 0, n > 1, and
Ap(bp) i= —A + by, - V, D(Ay(by)) = W2P.

Theorem 1(7),(é) immediately yields
Corollary 1. In the assumptions of Theorem 1, for every2 <r <p < g < oo and p > o,
(1 + Bpl0) € B(WIHEP, WEEr), (%)
In particular,
D(A,(b) C WP g > p.
The previous corollary and the Sobolev Embedding Theorem give

Corollary 2. Ford >4, if § < (ﬁ)2 then there exists p > d — 2 such that u := (pu + A, (b)) 7L f,
f € LP satisfiesu € CO7, vy < 1— %. (For d = 3 the corresponding inclusion can be improved, see
remarks below.)

Denote
Coo :={f € C(RY) : li_>m f(z) =0} (endowed with the sup-norm).

The resolvent representation of Theorem 1(4i) yields rather easily (following the arguments in the
proof of Theorem 1.5 in [Ki], see also the proof of Theorem 5.6 in [KiS])

Theorem 2. Let d > 3. Assume that b € Fs, 6 < min{1, (ﬁ)Q} Fiz p > max{2,d — 2}. Then

_ 1
(14 Ao ()7 = (01, b) 1 LP N Co)™ (o 1> o

determines the resolvent of the generator of a positivity preserving contraction Cy semigroup on Co
(“Feller semigroup”), such that

e o) — 5 0 - lim e 0o (bn) locally uniformly in t > 0,
where by, ’s were defined in Theorem 1(iii), Ao, (bp) := —A + b, -V, D(Ac (b)) = (1 — A)~1C.

Recall that, by a standard result [BG, Ch.1.9], given a Feller semigroup 7" on C,, there exist
probability measures {P,},cga on the space of right-continuous functions X : [0, co[— R? having
left limits (R? is the one-point compactification of R?) such that

Ep, [f(X)] = (T'f)(z), [€Cu, zeR™ (3)

Lthe extension of Qp(q) by continuity will be denoted again by Q,(q)
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Let {P,},cre be the probability measures determined by T* := e #A¢~(®). Theorems 1 and 2

thco () sufficient to repeat the argument in

provide an information about the Feller semigroup e~
[KiS2], which then yields that for every z € R? the probability measure P, is concentrated on finite

continuous trajectories and determines a (unique in appropriate sense) weak solution to SDE (2).

Remarks. 1. In Theorem 2, we obtain the assertion of [KS, Theorem 2] in a simpler way, i.e. without
appealing to rather sophisticated LP — L Moser-type iteration procedure of the cited paper.

2. There is an analogue of Theorem 1 for vector fields b in the class of weakly form-bounded
vector fields that contains Fs as a proper sub-class, see [Ki, Theorem 1.3], see also [KiS, Theorem
4.3]. However, there one obtains a different regularity result,

(n+ 8p(0) 7 € BOV R ),

with strictly smaller values of § (and so these two results should be viewed as essentially incom-
parable). Moreover, the proof of the cited result appeals to abstract LP inequalities for symmetric
Markov generators, while the proof of Theorem 1 is elementary.

3.1fb € Fs, § < 1, then one can show that D(Aa(b)) C W22, In particular, if d = 3, (u+Aa(b))~?
maps L% to W6, and so D(As(b)) C C%7 with v = 3.

4. For a general b € Fs, for p large the WP estimates on solution u to the corresponding elliptic
equation do not exist, see detailed discussion in [KiS, sect. 4].

5. In Theorems 1 and 2 we obtain the same condition § < min{1, (525)?} as in [KS, Theorem 1].

2

One can thus ask whether this condition is sharp. Incidentally, the constant (5= 2) coincides with

the constant in Hardy’s inequality.

Acknowledgements. I would like to express my gratitude to Yu. A. Semenov for fruitful discus-
sions. I would also like to thank the anonymous referee for a number of comments that helped to
improve the presentation.

2. PROOF OF THEOREM 1

Proposition 1. (j) Set G, = br - V(u— A", Q= (u— A) =o' "7, T, = br - V(u— A)~1 o .
Qp, Tp are densely defined (on &) operators. Then there exists po = po(d, p,6) > 0 such that

_1

1

41 1
1Gpllp—p < Crp B vy ||Qpllpsp < Cop 2

where ¢ p = (123 pT > < —1—(p 1)73;2\/573(‘”;2)5) ’

() Set Gyl(r) = bv - V(= 8)7377, Qpla) = (= A) 2 a]pf" >, where 2 < v < p < q < ox.
Qp(q) is a densely defined (on &) operator. Then for p > o

HGP(T)HP—UJ < K, HQp(q)Hp—w < Kog.

The extension of Qp(q) by continuity we denote again by Qp(q).

1
7, ||TpHpHp <csp <1, w > Lo,

=

Proof. It suffices to consider the case p > 2.
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() (a) Set w:= (u— A)"Yp|"" 7 f,0 < f € LP. Then
2
1T f 115 = (b7 Vullb = ([b*|Vul?)
= IBl(A = A)"2(A = A)2|VulE]3 (A=)
_1 1 P
< [IIBI(A = A) 7230l (A — A)2 [ Vul2 |13
1 D D
= 3[[(A = A)2[Vul2 |5 = S(N[Vullp + [[V[Vul2|3).
It remains to prove the principal inequality

SVl + V[Vul2[3) < &,

Flip (%)
and conclude that || Tp|[p—p < csp-

First, we prove an a priori variant of (x), i.e.for u := (u — A)*l\b\l_%f with b = b,. Since our
assumptions on ¢ involve only strict inequalities, we may assume, upon selecting appropriate &, | 0,
that b,, € Fs with the same X\ = A5 for all n.

Set

d
wi=Vu, Igi=Y (Vew)lwf?),  Jg = ((V]w])*|w~?).
r=1

We multiply (@ — A)u = \b\lf%f by ¢ := —V - (w|w|P~?) and integrate by parts to obtain
_2 _
plwl + I, + (0 = 2) T, = (ol 77 f, =V - (w]w]’?)), (4)
where
(o' > £, =V - (wlwP=2)) = (bl "> £, (D) w2 ~ (p — 2) ]~ - V]uo])
(use the equation — Au = —pu + \b\lf%f)
1-2 1-2 p—2 1-2 p—3
= (b7 £, (= [P £) [w]P72) = (p = 2){b1 7 f, [wlP ™ w - Vwl).

Remark 1. We have used the idea of [KS] of working with the test function ¢ = —V - (w|w|P~2). It
allows to, essentially, differentiate the equation while avoiding differentiating its coefficients/right-
hand side.

It is interesting to note that, similarly to [KS], above we had to use the same equation twice.
One could use it only once, but this would lead to more restrictive assumptions on §.

We hauve2
1) (bl f, (—pu) w]?=2) <0, o
2) [(|p]' 77 £, [wP=Pw - VIw])| < @y + 5N, (> 0), where Ny, = (b7 f, [b|' "7 flw[P~2),
so, the RHS of (4) < (p —2)aJ, + (1 + %)Np, where, in turn,
p=2 2
Ny < ([p?|w]?) 7 (fP)
p—2 2
< T<|b|2|w|?’) + ];Hfl!g (use b € F5 < [|boll3 < 6[|Vel3 + Adllell3, ¢ € W)

p—2(p 2
< P22 (Tsa, 0l + 2171,
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Thus, applying I, > J, in the LHS of (4), we obtain
Lpp—2)\ plp—2).]4 22
(=co) g |p-1--2) (a+ =22 225 ) 20 225] Lot < (14 222) 21,

where ¢y = 1’2.%2)\6(1 + %). It is now clear that one can find a sufficiently large po = po(d,p,0) >0
so that, for all g > g, (%) (with b = b,,) holds with

2 1—|—p—2> 2
» ( )
= 5= we select o = =3
o.p 4 p—1—(p—2) (a + 4ap(P 2)5) (P4—2)5 ( 4 )
5o+ 52V

p—1—(p— 1225 -ty
as claimed. Finally, we pass to the limit n — oo using Fatou’s Lemma. The proof of (x) is completed.

Remark 2. It is seen that v/ < % = c5p < 1. We also note that the above choice of a is the best
possible.

(b) Set u = (n—A)"'f,0< f € LP. Then
2

1Gp Il = b7 - Vulp

(we argue as in (a))

< SAIVully + [ VIVul23),
where, clearly, | Vulb < p~% || f]|5. In turn, arguing as in (a), we arrive at ul|w|5 + I, + (p — 2).J, =
<f’ -V (w|w|p_2) (U) = VU),

pllwllp + (p = 1)Jp < (f2, [wP™2) + (0 = 2)(f, [l w - V]w]),

_ 1 -
pllwllh + (p = 1)y < (% [wlP~2) + (p = 2) (e, + Zg(fz, wP=?)), &> 0.
Selecting e sufficiently small, we obtain
Jp < Colwl2II £115-

Now, 1applymg lwlly < 72| fllp, we arrive at [|V|Vul2]3 < Cp=2*Y|f|[5. Hence, ||Gpfll, <
Crp™ 27| || for all > po.

(c) Set u = (u— A" b7 f (= Quf), 0 < f € LP. Then, multiplying (4 — A)u = |b|' "7 f by

-1

uP~", we obtain

4(17 —1) D 1-2 _
el + SVt [ = (o' ),

where we estimate the RHS using Young’s inequality:

p+2 2 p?

(5t~ by < 522 o) e LI ) e
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Using b € F5 and selecting € > 0 sufficiently small, we obtain that for any pu; > 0 there exists C' > 0
such that

2p  p?
(= p)l[ullp < C(fr2urt2),  p>p.

1

2 1
Therefore, (u—p1)|lulh < C’(fp)mwpﬁ%, so |lull, < Cop 2 7| f||p- The proof of (j) is completed.

(77) Below we use the following formula: For every 0 < a < 1, > 0,

sin T

(n—A)"@ = /OOO 7t + p— A) 7Lt

™

We have
1y1 g2
1Qp(@) fllp < Il —A)"2"alb] 2| fl[lp
<k [ AV B | £ dt
Skq | [t +p =)0 2| f]llp
(we use (c))

141 11
< kG [ e S = Kaalfll fe€
0

where, clearly, K>, < oo due to ¢ > p.

It suffices to consider the case r > 2. We have

1Go() Flp < For / DS V(4 A)Lf |t
0

(we use (b))
S 1,1

<k [T Rl = Kl S €,
0

where, clearly, K1, < oo due to r < p.
The proof of (jj) is completed. O

Remark 3. Proposition 1 is valid for b,, n = 1,2,..., with the same constants.
Proposition 2. The operator-valued function ©,(f,by,) is a pseudo-resolvent on p > pi, i.e.
Op (1, bn) — Op(v,by) = (v — 1)Op (1, by)Op(V, br), 1, v > pio.
Proof. The proof proceeds by direct calculation, cf. [Ki, proof of Prop.2.4]. O
Proposition 3. For everyn=1,2,...,
1Oy (1, by) — 1 strongly in LP as p1 oo (uniformly in n).

Proof. The proof repeats [Ki, proof of Prop. 2.5(ii)]. Since pu(pu—A)~! — 1 strongly in LP, it suffices
to show that u®, — p(p — A)~! — 0 strongly in LP. By Proposition 1, 40, is uniformly (in ux)
bounded in B(LP), so it suffices to prove the convergence on C°. We have (h € C°)

Oph — (4 Ap) "'h = —Q,(1+T,) ' Gph
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1 1 —
where, by Proposition 1(5), ||@Qplp—p < Cop™ 2 7, |[(1 +T}) al_)p <1, and
2

1Gphlly = b8 - V(v — &) (= 2) (v = A)hll, (v > po s fixed)

2
<o - V(v = D) Hlpopll (= 2)7Hv = Al < CuH|(v = A)hlp,

and so
1

_3_1
1€ = (1 — A) Al < Cop™ ¥ 5[ (v = A)hl, >0 as p— o0, Co # Coln).
O

Proposition 4. We have {p: pn > po} C p(—Ap(by)), the resolvent set of —A,(by). The operator-
valued function ©p(p, by) is the resolvent of —Ap(by):

Op (1, bn) = (1 + Ap(bp)) ™Y, > pao.

Proof. By the Hille Perturbation Theorem, ©(tn,by) = (tn + Ap(by))~! for all sufficiently large
tn (= p(||bnlls)). Now, by a theorem of T.Kato [Ka2], in reflexive space LP the pseudo-resolvent
O, (1, by) (Proposition 2) satisfying 110, (u, b,) > 1in LP as p 1 oo (Proposition 3) is the resolvent
of a densely defined closed operator on LP. This operator coincides with —A,(by,). Il

Proposition 5. We have, for alln=1,2,...,

(s + Ap(Ou))llp—p < (= 10) ™", 12> pao
(replacing, if necessary, po by max{uo, %}).
Proof. See [KS, Theorem 1]. O
Proposition 6. For every p > po,
O©p (1, bn) = ©p(1,b) strongly in LP.

Proof. The proof proceeds by applying carefully the Dominated Convergence Theorem to operators
Qp(by), Tp(by), Gp(by) in the definition of O,(x, by), cf. [Ki, proof of Prop. 2.8]. O

Now, by the Trotter Approximation Theorem [Ka, IX.2.5], ©,(u,b) = (u+ Ap(b))~L, > po,
where A, () is the generator of a quasi contraction Cj semigroup in LP. (i) follows. (iz) follows
from Proposition 1(jj). (7) is Proposition 6. The proof of Theorem 1 is completed.
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