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Abstract. We consider the Kolmorogov operator −∆ + b · ∇ with drift b in the class of form-

bounded vector fields (containing vector fields having critical-order singularities). We characterize

quantitative dependence of the Sobolev and Hölder regularity of solutions to the corresponding

elliptic equation on the value of the form-bound of b.

1. Introduction and results

The goal of this paper is to refine some aspects of the regularity theory of the operator

−∆+ b · ∇, b ∈ L1
loc(Rd,Rd), d ≥ 3, (1)

required to construct a weak solution to the stochastic differential equation (SDE)

Xt − x = −
∫ t

0
b(Xs)ds+

√
2Wt, where Wt is a d-dimensional Brownian motion, x ∈ Rd. (2)

Recall that a weak solution to (2) is a processXt defined on some probability space having continuous

trajectories, such that (a)
∫ t
0 |b(Xs)|ds < ∞ for every t > 0 a.s., and (b) there exists a Brownian

motion Wt on this probability space such that (Xt,Wt) satisfy (2) for every t > 0 a.s.

The process Xt, called a Brownian motion with drift b, plays fundamental role in the theory of

diffusion processes and in the theory of elliptic and parabolic equations. The case when the drift b

is singular (i.e. locally unbounded) is of special interest due to, in particular, physical applications;

the problem of describing singular b such that for every x ∈ Rd there exists a (unique) weak solution

to (2) is classical and has been thoroughly studied, see [BC, KrR, P, Z] and references therein. The

conventional scale of singularity of b used in the literature is the scale of Lr(Rd,Rd) spaces. The

value r = d is known to be optimal: regarding positive results on weak existence and uniqueness in

law for SDE (2) with |b| ∈ Lr, see [P] for r > d, and see [Kr1, Kr2, XXZZ] for r = d; on the other

hand, it is not difficult to find a vector field b with |b| ∈ Lr, r < d such that a weak solution to (2)

does not exist.

Nevertheless, the Lr scale is a rather rough measure of singularity of b, and the class |b| ∈ Ld

is far from being the maximal admissible. For instance, consider SDE (2) with Hardy drift b(x) =√
δ d−2

2 |x|−2x (which clearly fails to be in Ld) and the initial state x = 0. If
√
δ ≥ 2d

d−2 , then this

SDE does not have a weak solution (see [KiS2, Example 1]). However, if
√
δ < min{1, 2

d−2}, then
by [KiS2, Theorem 1] a weak solution exists.

Let us note that, generally speaking, to construct a weak solution to (2), one needs a well

developed regularity theory of (1) – the operator behind SDE (2), cf. the papers cited above, see
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details below. In this paper we develop regularity theory of (1), with b in a large class of vector fields

containing vector fields with entries in Ld as well as vector fields having critical-order singularities

(such as the Hardy drift), that allows to construct a weak solution to SDE (2).

Definition 1. A vector field b ∈ L2
loc(Rd,Rd) is said to be form-bounded if there exists a constant

δ > 0 such that

∥|b|(λ−∆)−
1
2 ∥2→2 ≤

√
δ for some λ = λδ > 0.

(∥ · ∥p→q denotes the ∥ · ∥Lp→Lq operator norm). The class of such vector fields is denoted by Fδ.

The latter condition can be re-stated as a quadratic form inequality

∥bφ∥22 ≤ δ∥∇φ∥22 + cδ∥φ∥22, φ ∈ W 1,2,

with constant cδ = λδ. The constant δ is called the form-bound of b.

Note that, given a constant k ̸= 0, if b ∈ Fδ, then kb ∈ F|k|2δ. Clearly, if b1 ∈ Fδ1 , b2 ∈ Fδ2 , then

b1 + b2 ∈ Fδ,
√
δ =

√
δ1 +

√
δ2.

Condition b ∈ Fδ with δ < 1 appears in the literature as a condition ensuring that the quadratic

form corresponding to the formal operator −∆+b·∇ determines the generator of a quasi contraction

C0 semigroup in L2, see [Ka, Ch.VI].

Let us list some sub-classes of Fδ defined in elementary terms.

1. A vector field b = b1 + b2 ∈ Ld(Rd,Rd) + L∞(Rd,Rd) is in Fδ with δ that can be chosen

arbitrarily small.

Indeed, representing b = f + v, where ∥f∥d < ε, v ∈ L∞(Rd,Rd), one can estimate, using the

Hölder inequality and the Sobolev Embedding Theorem,

∥|b|(λ−∆)−
1
2 g∥2 ≤ ∥f∥d∥(λ−∆)−

1
2 g∥ 2d

d−2
+ ∥v∥∞λ− 1

2 ∥g∥2 (g ∈ L2)

≤
(
cS∥f∥d + ∥v∥∞λ− 1

2
)
∥g∥2

≤ (cS + 1)ε∥g∥2 for λ = ε−2∥v∥−2
∞ .

2. The class Fδ also contains vector fields having critical-order singularities, such as b(x) :=

±
√
δ d−2

2 |x|−2x, as follows from the Hardy inequality ∥|x|−1φ∥22 ≤ 4
(d−2)2

∥∇φ∥22, φ ∈ W 1,2. (And, of

course, b ̸∈ Fδ2 if δ2 < δ.) The last example shows that Fδ contains Ld(Rd,Rd) + L∞(Rd,Rd) as a

proper sub-class.

More generally, Fδ contains, as a proper sub-class, vector fields b with |b| in Ld,∞ (the weak Ld

class). Recall that a measurable function h : Rd → R is in Ld,∞ if ∥h∥d,∞ := sups>0 s|{x ∈ Rd :

|h(x)| > s}|1/d < ∞. If |b| in Ld,∞, then

b ∈ Fδ1 with
√

δ1 = ∥|b|(λ−∆)−
1
2 ∥2→2

≤ ∥b∥d,∞Ω
− 1

d
d ∥|x|−1(λ−∆)−

1
2 ∥2→2

≤ ∥b∥d,∞Ω
− 1

d
d 2−1Γ

(
d−2
4

)
Γ
(
d+2
4

) = ∥b∥d,∞Ω
− 1

d
d

2

d− 2
.
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where Ωd = π
d
2Γ(d2 + 1) is the volume of the unit ball in Rd, see [KPS, Prop. 2.5, 2.6, Cor. 2.9].

3. The class Fδ contains the vector fields b with |b|2 in the Campanato-Morrey class (s > 1){
v ∈ Ls

loc :

(
1

|Q|

∫
Q
|v(x)|sdx

) 1
s

≤ csl(Q)−2 for all cubes Q

}
;

the latter is a proper sub-class of Fδ, see [CWW].

4. Let us note that, for every ε > 0, there exists a b ∈ Fδ such that b ̸∈ L2+ε
loc (Rd,Rd), e.g.

|b|2(x) = C
1B(0,1+α) − 1B(0,1−α)∣∣|x| − 1

∣∣−1
(− ln

∣∣|x| − 1
∣∣)β , β > 1, 0 < α < 1.

In contrast to the other classes of singular vector fields mentioned above, the class Fδ is defined,

loosely speaking, in terms of the operators that constitute (1).

Let b ∈ Fδ. By [KS, Theorem 1 and Lemma 5], if δ < min{1,
(

2
d−2

)2}, then for every p ∈[
2, 2/

√
δ
[
there exists a realization Λp(b) of the formal operator −∆ + b · ∇ on Lp as the (minus)

generator of a positivity preserving, L∞ contraction, quasi contraction C0 semigroup e−tΛp(b) such

that u := (µ+Λp(b))
−1f , f ∈ Lp (⇔ solution to the elliptic equation (µ+Λp(b))u = f) satisfies for

all µ > µ1 ≡ µ1(d, p, δ) > 0

∥∇u∥p ≤ K1(µ− µ1)
− 1

2 ∥f∥p.

Concerning the regularity of higher-order derivatives of u, the authors in [KS] establish the next

bound on the following non-linear characteristics of u:

∥∇|∇u|
p
2 ∥

2
p

2 ≤ K2(µ− µ1)
1
p
− 1

2 ∥f∥p

Here constants Ki = Ki(d, p, δ) < ∞ (i = 1, 2). Then, by the Sobolev Embedding Theorem,

∥∇u∥pj ≤ C∥f∥p, j = d
d−2 , and so there exists p > max{2, d − 2} such that u ∈ C0,γ with the

Hölder continuity exponent γ = 1− d−2
p .

The results in [KS] capture quantitative dependence of Sobolev and Hölder regularity of u on the

value of form-bound δ. The latter serves as a measure of the “size” of singularity of b. Note that,

from this point of view, the class b ∈ Ld(Rd,Rd) does not contain vector fields having critical-order

singularities, for by Example 1 such b is in Fδ with arbitrarily small δ.

In our main result (Theorem 1) we establish regularity of higher-order derivatives of solution

to the elliptic equation u under the same assumption on the form-bound δ as in [KS] (and thus

without losing the size of singularity of b). This will allow us, in particular, to considerably simplify,

in comparison with [KS], the construction of the corresponding Feller semigroup (and thus of the

corresponding diffusion process), see Remark 1 below.

The method. Our starting object is an B(Lp)-valued function Θp(µ, b), µ > µ0, a “candidate for

the resolvent of −∆ + b · ∇ in Lp”. We prove that, for smooth approximations bn of b, Θp(µ, bn)

indeed coincides with the resolvent (µ−∆+ bn ·∇)−1 ∈ B(Lp) (which exists by the classical theory)

for µ > 0 sufficiently large. Armed with this fact, we show that, for a general b ∈ Fδ with δ smaller

than a certain explicit constant, the operator-valued function Θ(µ, b) is the resolvent of a closed

densely defined operator −Λp(b) generating a C0 semigroup on Lp. This operator is the sought
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operator realization of −∆ + b · ∇ in Lp. The regularity properties of the resolvent (µ + Λp(b)
−1,

and thus of the solution u to the equation (µ + Λp(b))u = f (cf. Corollary 1 below), then follow

immediately from the definition of Θp(µ, b). Concerning the relationship between Λp(b) and the

formal operator −∆+ b · ∇, we can show, arguing as in the proof of Theorem 1.3 in [Ki], that

⟨Λp(b)u, v⟩ = ⟨u,−∆v⟩+ ⟨b · ∇u, v⟩, u ∈ D(Λp(b)), v ∈ C∞
c .

Here and below,

⟨h⟩ :=
∫
Rd

h(x)dLd, ⟨h, g⟩ := ⟨hḡ⟩.

Notations. Let Wα,p, α > 0 denote the Bessel potential space endowed with norm ∥f∥p,α := ∥g∥p,
f = (1−∆)−

α
2 g, g ∈ Lp. Let W−α,p′ , p′ = p

p−1 , be the anti-dual of Wα,p.

Let B(X,Y ) be the space of bounded linear operators between Banach spaces X → Y . Set

B(X) := B(X,X).

Denote by � the restriction of an operator to a subspace.

For p ≥ 2, put

cδ,p :=

(
p

2
δ +

p− 2

2

√
δ

) 1
p
(
p− 1− (p− 1)

p− 2

2

√
δ − p(p− 2)

4
δ

)− 1
p

and

b
2
p := |b|

2
p
−1

b, E :=
∪
ε>0

e−ε|b|Lp.

Theorem 1 (Main result). Let d ≥ 3. Assume that b ∈ Fδ, δ < 1. Then for every p ∈
[
2, 2√

δ
[ the

formal operator −∆+ b · ∇ has a realization Λp(b) in Lp as the generator of a positivity preserving,

L∞ contraction, quasi contraction C0 semigroup e−tΛp(b) such that:

(i) The resolvent of −Λp(b) admits the representation(
µ+ Λp(b)

)−1
= Θp(µ, b)

for all µ > µ0 ≡ µ0(d, p, δ) > 0, where

Θp(µ, b) := (µ−∆)−1 −Qp(1 + Tp)
−1Gp

for operators Qp, Gp, Tp ∈ B(Lp) defined as follows:

Gp := b
2
p · ∇(µ−∆)−1,

and Qp, Tp are the extensions by continuity of densely defined operators

Qp � E := (µ−∆)−1|b|1−
2
p , Tp � E := b

2
p · ∇(µ−∆)−1|b|1−

2
p .

We have

∥Gp∥p→p ≤ C1µ
− 1

2
+ 1

p , ∥Qp∥p→p ≤ C2µ
− 1

2
− 1

p , ∥Tp∥p→p ≤ cδ,p < 1,

(ii) For each 2 ≤ r < p < q < ∞ and µ > µ0, define operators

Gp(r) := b
2
p · ∇(µ−∆)−

1
2
− 1

r ∈ B(Lp), Qp(q) := (µ−∆)
− 1

2
+ 1

q |b|1−
2
p on E .
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Then Qp(q) ∈ B(Lp)1, and the resolvent admits the representation(
µ+ Λp(b)

)−1
= (µ−∆)−1 − (µ−∆)

− 1
2
− 1

qQp(q)(1 + Tp)
−1Gp(r)(µ−∆)−

1
2
+ 1

r

for all µ > µ0.

(iii)

e−tΛp(bn) → e−tΛp(b) in Lp locally uniformly in t ≥ 0,

where bn := eϵn∆(1nb), 1n is the indicator of {x ∈ Rd | |x| ≤ n, |b(x)| ≤ n}, ϵn ↓ 0, n ≥ 1, and

Λp(bn) := −∆+ bn · ∇, D(Λp(bn)) = W2,p.

Theorem 1(i),(ii) immediately yields

Corollary 1. In the assumptions of Theorem 1, for every 2 ≤ r < p < q < ∞ and µ > µ0,(
µ+ Λp(b)

)−1 ∈ B
(
W−1+ 2

r
,p, W1+ 2

q
,p )

. (⋆)

In particular,

D
(
Λp(b)

)
⊂ W1+ 2

q
,p
, q > p.

The previous corollary and the Sobolev Embedding Theorem give

Corollary 2. For d ≥ 4, if δ <
(

2
d−2

)2
then there exists p > d− 2 such that u := (µ+ Λp(b))

−1f ,

f ∈ Lp satisfies u ∈ C0,γ, γ < 1− d−2
p . (For d = 3 the corresponding inclusion can be improved, see

remarks below.)

Denote

C∞ := {f ∈ C(Rd) : lim
x→∞

f(x) = 0} (endowed with the sup-norm).

The resolvent representation of Theorem 1(ii) yields rather easily (following the arguments in the

proof of Theorem 1.5 in [Ki], see also the proof of Theorem 5.6 in [KiS])

Theorem 2. Let d ≥ 3. Assume that b ∈ Fδ, δ < min{1,
(

2
d−2

)2}. Fix p > max{2, d− 2}. Then

(µ+ ΛC∞(b))−1 :=
(
Θp(µ, b) � Lp ∩ C∞

)clos
C∞→C∞

, µ > µ0,

determines the resolvent of the generator of a positivity preserving contraction C0 semigroup on C∞
(“Feller semigroup”), such that

e−tΛC∞ (b) = s-C∞- lim
n

e−tΛC∞ (bn) locally uniformly in t ≥ 0,

where bn’s were defined in Theorem 1(iii), ΛC∞(bn) := −∆+ bn · ∇, D(ΛC∞(bn)) = (1−∆)−1C∞.

Recall that, by a standard result [BG, Ch. I.9], given a Feller semigroup T t on C∞, there exist

probability measures {Px}x∈Rd on the space of right-continuous functions X : [0,∞[→ R̄d having

left limits (R̄d is the one-point compactification of Rd) such that

EPx [f(Xt)] = (T tf)(x), f ∈ C∞, x ∈ Rd. (3)

1the extension of Qp(q) by continuity will be denoted again by Qp(q)
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Let {Px}x∈Rd be the probability measures determined by T t := e−tΛC∞ (b). Theorems 1 and 2

provide an information about the Feller semigroup e−tΛC∞ (b) sufficient to repeat the argument in

[KiS2], which then yields that for every x ∈ Rd the probability measure Px is concentrated on finite

continuous trajectories and determines a (unique in appropriate sense) weak solution to SDE (2).

Remarks. 1. In Theorem 2, we obtain the assertion of [KS, Theorem 2] in a simpler way, i.e. without

appealing to rather sophisticated Lp → L∞ Moser-type iteration procedure of the cited paper.

2. There is an analogue of Theorem 1 for vector fields b in the class of weakly form-bounded

vector fields that contains Fδ as a proper sub-class, see [Ki, Theorem 1.3], see also [KiS, Theorem

4.3]. However, there one obtains a different regularity result,(
µ+ Λp(b)

)−1 ∈ B(W−1+ 1
r
,p,W1+ 1

q
,p
),

with strictly smaller values of δ (and so these two results should be viewed as essentially incom-

parable). Moreover, the proof of the cited result appeals to abstract Lp inequalities for symmetric

Markov generators, while the proof of Theorem 1 is elementary.

3. If b ∈ Fδ, δ < 1, then one can show that D(Λ2(b)) ⊂ W 2,2. In particular, if d = 3, (µ+Λ2(b))
−1

maps L2 to W 1,6, and so D(Λ2(b)) ⊂ C0,γ with γ = 1
2 .

4. For a general b ∈ Fδ, for p large the W 2,p estimates on solution u to the corresponding elliptic

equation do not exist, see detailed discussion in [KiS, sect. 4].

5. In Theorems 1 and 2 we obtain the same condition δ < min{1, ( 2
d−2)

2} as in [KS, Theorem 1].

One can thus ask whether this condition is sharp. Incidentally, the constant ( 2
d−2)

2 coincides with

the constant in Hardy’s inequality.

Acknowledgements. I would like to express my gratitude to Yu.A. Semenov for fruitful discus-

sions. I would also like to thank the anonymous referee for a number of comments that helped to

improve the presentation.

2. Proof of Theorem 1

Proposition 1. (j ) Set Gp = b
2
p · ∇(µ−∆)−1, Qp = (µ−∆)−1|b|1−

2
p , Tp = b

2
p · ∇(µ−∆)−1|b|1−

2
p .

Qp, Tp are densely defined (on E) operators. Then there exists µ0 = µ0(d, p, δ) > 0 such that

∥Gp∥p→p ≤ C1µ
− 1

2
+ 1

p , ∥Qp∥p→p ≤ C2µ
− 1

2
− 1

p , ∥Tp∥p→p ≤ cδ,p < 1, µ > µ0,

where cδ,p :=

(
p
2δ +

p−2
2

√
δ

) 1
p
(
p− 1− (p− 1)p−2

2

√
δ − p(p−2)

4 δ

)− 1
p

.

(jj ) Set Gp(r) = b
2
p · ∇(µ − ∆)−

1
2
− 1

r , Qp(q) = (µ − ∆)
− 1

2
+ 1

q |b|1−
2
p , where 2 ≤ r < p < q < ∞.

Qp(q) is a densely defined (on E) operator. Then for µ > µ0

∥Gp(r)∥p→p ≤ K1,r, ∥Qp(q)∥p→p ≤ K2,q.

The extension of Qp(q) by continuity we denote again by Qp(q).

Proof. It suffices to consider the case p > 2.
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(j ) (a) Set u := (µ−∆)−1|b|1−
2
p f , 0 ≤ f ∈ Lp. Then

∥Tpf∥pp = ∥b
2
p∇u∥pp = ⟨|b|2|∇u|p⟩

= ∥|b|(λ−∆)−
1
2 (λ−∆)

1
2 |∇u|

p
2 ∥22 (λ = λδ)

≤ ∥|b|(λ−∆)−
1
2 ∥22→2∥(λ−∆)

1
2 |∇u|

p
2 ∥22

= δ∥(λ−∆)
1
2 |∇u|

p
2 ∥22 = δ

(
λ∥∇u∥pp + ∥∇|∇u|

p
2 ∥22

)
.

It remains to prove the principal inequality

δ
(
λ∥∇u∥pp + ∥∇|∇u|

p
2 ∥22

)
≤ cpδ,p∥f∥

p
p, (∗)

and conclude that ∥Tp∥p→p ≤ cδ,p.

First, we prove an a priori variant of (∗), i.e. for u := (µ −∆)−1|b|1−
2
p f with b = bn. Since our

assumptions on δ involve only strict inequalities, we may assume, upon selecting appropriate εn ↓ 0,

that bn ∈ Fδ with the same λ = λδ for all n.

Set

w := ∇u, Iq :=

d∑
r=1

⟨(∇rw)
2|w|p−2⟩, Jq := ⟨(∇|w|)2|w|p−2⟩.

We multiply (µ−∆)u = |b|1−
2
p f by ϕ := −∇ · (w|w|p−2) and integrate by parts to obtain

µ∥w∥pp + Ip + (p− 2)Jp = ⟨|b|1−
2
p f,−∇ · (w|w|p−2)⟩, (4)

where

⟨|b|1−
2
p f,−∇ · (w|w|p−2)⟩ = ⟨|b|1−

2
p f, (−∆u)|w|p−2 − (p− 2)|w|p−3w · ∇|w|⟩

(use the equation −∆u = −µu+ |b|1−
2
p f)

= ⟨|b|1−
2
p f,

(
−µu+ |b|1−

2
p f

)
|w|p−2⟩ − (p− 2)⟨|b|1−

2
p f, |w|p−3w · ∇|w|⟩.

Remark 1. We have used the idea of [KS] of working with the test function ϕ = −∇· (w|w|p−2). It

allows to, essentially, differentiate the equation while avoiding differentiating its coefficients/right-

hand side.

It is interesting to note that, similarly to [KS], above we had to use the same equation twice.

One could use it only once, but this would lead to more restrictive assumptions on δ.

We have

1) ⟨|b|1−
2
p f, (−µu)|w|p−2⟩ ≤ 0,

2) |⟨|b|1−
2
p f, |w|p−3w · ∇|w|⟩| ≤ αJp +

1
4αNp (α > 0), where Np := ⟨|b|1−

2
p f, |b|1−

2
p f |w|p−2⟩,

so, the RHS of (4) ≤ (p− 2)αJp +
(
1 + p−2

4α

)
Np, where, in turn,

Np ≤ ⟨|b|2|w|p⟩
p−2
p ⟨fp⟩

2
p

≤ p− 2

p
⟨|b|2|w|p⟩+ 2

p
∥f∥pp (use b ∈ Fδ ⇔ ∥bφ∥22 ≤ δ∥∇φ∥22 + λδ∥φ∥22, φ ∈ W 1,2)

≤ p− 2

p

(
p2

4
δJq + λδ∥w∥pp

)
+

2

p
∥f∥pp.
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Thus, applying Iq ≥ Jq in the LHS of (4), we obtain(
µ−c0

)
∥w∥pp+

[
p−1−(p−2)

(
α+

1

4α

p(p− 2)

4
δ

)
− p(p− 2)

4
δ

]
4

p2
∥∇|∇u|

p
2 ∥22 ≤

(
1 +

p− 2

4α

)
2

p
∥f∥pp,

where c0 =
p−2
p λδ

(
1+ p−2

4α

)
. It is now clear that one can find a sufficiently large µ0 = µ0(d, p, δ) > 0

so that, for all µ > µ0, (∗) (with b = bn) holds with

cpδ,p = δ
p2

4

(
1 + p−2

4α

)
2
p

p− 1− (p− 2)
(
α+ 1

4α
p(p−2)

4 δ
)
− p(p−2)

4 δ

(
we select α =

p

4

√
δ
)

=
p
2δ +

p−2
2

√
δ

p− 1− (p− 1)p−2
2

√
δ − p(p−2)

4 δ
,

as claimed. Finally, we pass to the limit n → ∞ using Fatou’s Lemma. The proof of (∗) is completed.

Remark 2. It is seen that
√
δ < 2

p ⇒ cδ,p < 1. We also note that the above choice of α is the best

possible.

(b) Set u = (µ−∆)−1f , 0 ≤ f ∈ Lp. Then

∥Gpf∥pp = ∥b
2
p · ∇u∥pp

(we argue as in (a))

≤ δ
(
λ∥∇u∥pp + ∥∇|∇u|

p
2 ∥22

)
,

where, clearly, ∥∇u∥pp ≤ µ− p
2 ∥f∥pp. In turn, arguing as in (a), we arrive at µ∥w∥pp + Ip +(p− 2)Jp =

⟨f,−∇ · (w|w|p−2) (w = ∇u),

µ∥w∥pp + (p− 1)Jp ≤ ⟨f2, |w|p−2⟩+ (p− 2)⟨f, |w|p−3w · ∇|w|⟩),

µ∥w∥pp + (p− 1)Jp ≤ ⟨f2, |w|p−2⟩+ (p− 2)
(
εJp +

1

4ε
⟨f2, |w|p−2⟩

)
, ε > 0.

Selecting ε sufficiently small, we obtain

Jp ≤ C0∥w∥p−2
p ∥f∥2p.

Now, applying ∥w∥p ≤ µ− 1
2 ∥f∥p, we arrive at ∥∇|∇u|

p
2 ∥22 ≤ Cµ− p

2
+1∥f∥pp. Hence, ∥Gpf∥p ≤

C1µ
− 1

2
+ 1

p ∥f∥p for all µ > µ0.

(c) Set u = (µ −∆)−1|b|1−
2
p f (= Qpf), 0 ≤ f ∈ Lp. Then, multiplying (µ −∆)u = |b|1−

2
p f by

up−1, we obtain

µ∥u∥pp +
4(p− 1)

p2
∥∇u

p
2 ∥22 = ⟨|b|1−

2
p f, up−1⟩,

where we estimate the RHS using Young’s inequality:

⟨|b|1−
2
pu

p
2
−1, fu

p
2 ⟩ ≤ ε

2p
p−2

p− 2

2p
⟨|b|2up⟩+ ε

− 2p
p+2

p+ 2

2p
⟨f

2p
p+2u

p2

p+2 ⟩ ε > 0.
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Using b ∈ Fδ and selecting ε > 0 sufficiently small, we obtain that for any µ1 > 0 there exists C > 0

such that

(µ− µ1)∥u∥pp ≤ C⟨f
2p
p+2u

p2

p+2 ⟩, µ > µ1.

Therefore, (µ−µ1)∥u∥pp ≤ C⟨fp⟩
2

p+2 ⟨up⟩
p

p+2 , so ∥u∥p ≤ C2µ
− 1

2
− 1

p ∥f∥p. The proof of (j ) is completed.

(jj ) Below we use the following formula: For every 0 < α < 1, µ > 0,

(µ−∆)−α =
sinπα

π

∫ ∞

0
t−α(t+ µ−∆)−1dt.

We have

∥Qp(q)f∥p ≤ ∥(µ−∆)
− 1

2
+ 1

q |b|1−
2
p |f |∥p

≤ kq

∫ ∞

0
t
− 1

2
+ 1

q ∥(t+ µ−∆)−1|b|1−
2
p |f |∥pdt

(we use (c))

≤ kqC2

∫ ∞

0
t
− 1

2
+ 1

q (t+ µ)
− 1

2
− 1

pdt ∥f∥p = K2,q∥f∥p, f ∈ E ,

where, clearly, K2,q < ∞ due to q > p.

It suffices to consider the case r > 2. We have

∥Gp(r)f∥p ≤ kr

∫ ∞

0
t−

1
2
− 1

r ∥b
2
p · ∇(t+ µ−∆)−1f∥pdt

(we use (b))

≤ krC1

∫ ∞

0
t−

1
2
− 1

r (t+ µ)
− 1

2
+ 1

pdt ∥f∥p = K1,r∥f∥p, f ∈ E ,

where, clearly, K1,r < ∞ due to r < p.

The proof of (jj ) is completed. �

Remark 3. Proposition 1 is valid for bn, n = 1, 2, . . . , with the same constants.

Proposition 2. The operator-valued function Θp(µ, bn) is a pseudo-resolvent on µ > µ0, i.e.

Θp(µ, bn)−Θp(ν, bn) = (ν − µ)Θp(µ, bn)Θp(ν, bn), µ, ν > µ0.

Proof. The proof proceeds by direct calculation, cf. [Ki, proof of Prop. 2.4]. �

Proposition 3. For every n = 1, 2, . . . ,

µΘp(µ, bn) → 1 strongly in Lp as µ ↑ ∞ (uniformly in n).

Proof. The proof repeats [Ki, proof of Prop. 2.5(ii)]. Since µ(µ−∆)−1 → 1 strongly in Lp, it suffices

to show that µΘp − µ(µ − ∆)−1 → 0 strongly in Lp. By Proposition 1, µΘp is uniformly (in µ)

bounded in B(Lp), so it suffices to prove the convergence on C∞
c . We have (h ∈ C∞

c )

Θph− (µ+Ap)
−1h = −Qp

(
1 + Tp

)−1
Gph
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where, by Proposition 1(j ), ∥Qp∥p→p ≤ C2µ
− 1

2
− 1

p , ∥(1 + Tp

)−1∥p→p < 1, and

∥Gph∥p = ∥b
2
p
n · ∇(ν −∆)−1(µ−∆)−1(ν −∆)h∥p (ν > µ0 is fixed)

6 ∥b
2
p
n · ∇(ν −∆)−1∥p→p∥(µ−∆)−1(ν −∆)h∥p 6 Cµ−1∥(ν −∆)h∥p,

and so

∥Θph− (µ−∆)−1h∥p ≤ C0µ
− 3

2
− 1

p ∥(ν −∆)h∥p → 0 as µ → ∞, C0 ̸= C0(n).

�

Proposition 4. We have {µ : µ > µ0} ⊂ ρ(−Λp(bn)), the resolvent set of −Λp(bn). The operator-

valued function Θp(µ, bn) is the resolvent of −Λp(bn):

Θp(µ, bn) = (µ+ Λp(bn))
−1, µ > µ0.

Proof. By the Hille Perturbation Theorem, Θp(µn, bn) = (µn + Λp(bn))
−1 for all sufficiently large

µn (= µ(∥bn∥∞)). Now, by a theorem of T.Kato [Ka2], in reflexive space Lp the pseudo-resolvent

Θp(µ, bn) (Proposition 2) satisfying µΘp(µ, bn)
s→ 1 in Lp as µ ↑ ∞ (Proposition 3) is the resolvent

of a densely defined closed operator on Lp. This operator coincides with −Λp(bn). �

Proposition 5. We have, for all n = 1, 2, . . . ,

∥(µ+ Λp(bn))∥p→p ≤ (µ− µ0)
−1, µ > µ0

(replacing, if necessary, µ0 by max{µ0,
λδ

2(p−1)}).

Proof. See [KS, Theorem 1]. �

Proposition 6. For every µ > µ0,

Θp(µ, bn) → Θp(µ, b) strongly in Lp.

Proof. The proof proceeds by applying carefully the Dominated Convergence Theorem to operators

Qp(bn), Tp(bn), Gp(bn) in the definition of Θp(µ, bn), cf. [Ki, proof of Prop. 2.8]. �

Now, by the Trotter Approximation Theorem [Ka, IX.2.5], Θp(µ, b) = (µ + Λp(b))
−1, µ > µ0,

where Λp(b) is the generator of a quasi contraction C0 semigroup in Lp. (i) follows. (ii) follows

from Proposition 1(jj ). (iii) is Proposition 6. The proof of Theorem 1 is completed.
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[KiS] D.Kinzebulatov and Yu.A. Semënov, On the theory of the Kolmogorov operator in the spaces Lp and C∞. Ann.

Sc. Norm. Sup. Pisa (5), to appear.



REGULARITY THEORY OF KOLMOGOROV OPERATOR REVISITED 11
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