REGULARITY THEORY OF KOLMOGOROV OPERATOR REVISITED

D. KINZEBULATOV

Abstract

We consider the Kolmorogov operator $-\Delta+b \cdot \nabla$ with drift b in the class of formbounded vector fields (containing vector fields having critical-order singularities). We characterize quantitative dependence of the Sobolev and Hölder regularity of solutions to the corresponding elliptic equation on the value of the form-bound of b.

1. Introduction and results

The goal of this paper is to refine some aspects of the regularity theory of the operator

$$
\begin{equation*}
-\Delta+b \cdot \nabla, \quad b \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right), \quad d \geq 3 \tag{1}
\end{equation*}
$$

required to construct a weak solution to the stochastic differential equation (SDE)

$$
\begin{equation*}
X_{t}-x=-\int_{0}^{t} b\left(X_{s}\right) d s+\sqrt{2} W_{t}, \quad \text { where } W_{t} \text { is a } d \text {-dimensional Brownian motion, } \quad x \in \mathbb{R}^{d} . \tag{2}
\end{equation*}
$$

Recall that a weak solution to (2) is a process X_{t} defined on some probability space having continuous trajectories, such that (a) $\int_{0}^{t}\left|b\left(X_{s}\right)\right| d s<\infty$ for every $t>0$ a.s., and (b) there exists a Brownian motion W_{t} on this probability space such that $\left(X_{t}, W_{t}\right)$ satisfy (2) for every $t>0$ a.s.

The process X_{t}, called a Brownian motion with drift b, plays fundamental role in the theory of diffusion processes and in the theory of elliptic and parabolic equations. The case when the drift b is singular (i.e. locally unbounded) is of special interest due to, in particular, physical applications; the problem of describing singular b such that for every $x \in \mathbb{R}^{d}$ there exists a (unique) weak solution to (2) is classical and has been thoroughly studied, see $[\mathrm{BC}, \mathrm{KrR}, \mathrm{P}, \mathrm{Z}]$ and references therein. The conventional scale of singularity of b used in the literature is the scale of $L^{r}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ spaces. The value $r=d$ is known to be optimal: regarding positive results on weak existence and uniqueness in law for SDE (2) with $|b| \in L^{r}$, see [P] for $r>d$, and see [Kr1, Kr2, XXZZ] for $r=d$; on the other hand, it is not difficult to find a vector field b with $|b| \in L^{r}, r<d$ such that a weak solution to (2) does not exist.

Nevertheless, the L^{r} scale is a rather rough measure of singularity of b, and the class $|b| \in L^{d}$ is far from being the maximal admissible. For instance, consider SDE (2) with Hardy drift $b(x)=$ $\sqrt{\delta} \frac{d-2}{2}|x|^{-2} x$ (which clearly fails to be in L^{d}) and the initial state $x=0$. If $\sqrt{\delta} \geq \frac{2 d}{d-2}$, then this SDE does not have a weak solution (see [KiS2, Example 1]). However, if $\sqrt{\delta}<\min \left\{1, \frac{2}{d-2}\right\}$, then by [KiS2, Theorem 1] a weak solution exists.

Let us note that, generally speaking, to construct a weak solution to (2), one needs a well developed regularity theory of (1) - the operator behind SDE (2), cf. the papers cited above, see

[^0]details below. In this paper we develop regularity theory of (1), with b in a large class of vector fields containing vector fields with entries in L^{d} as well as vector fields having critical-order singularities (such as the Hardy drift), that allows to construct a weak solution to SDE (2).

Definition 1. A vector field $b \in L_{\text {loc }}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is said to be form-bounded if there exists a constant $\delta>0$ such that

$$
\left\||b|(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2} \leq \sqrt{\delta} \quad \text { for some } \lambda=\lambda_{\delta}>0
$$

$\left(\|\cdot\|_{p \rightarrow q}\right.$ denotes the $\|\cdot\|_{L^{p} \rightarrow L^{q}}$ operator norm). The class of such vector fields is denoted by \mathbf{F}_{δ}.
The latter condition can be re-stated as a quadratic form inequality

$$
\|b \varphi\|_{2}^{2} \leq \delta\|\nabla \varphi\|_{2}^{2}+c_{\delta}\|\varphi\|_{2}^{2}, \quad \varphi \in W^{1,2}
$$

with constant $c_{\delta}=\lambda \delta$. The constant δ is called the form-bound of b.
Note that, given a constant $k \neq 0$, if $b \in \mathbf{F}_{\delta}$, then $k b \in \mathbf{F}_{|k|^{2} \delta}$. Clearly, if $b_{1} \in \mathbf{F}_{\delta_{1}}, b_{2} \in \mathbf{F}_{\delta_{2}}$, then

$$
b_{1}+b_{2} \in \mathbf{F}_{\delta}, \quad \sqrt{\delta}=\sqrt{\delta_{1}}+\sqrt{\delta_{2}} .
$$

Condition $b \in \mathbf{F}_{\delta}$ with $\delta<1$ appears in the literature as a condition ensuring that the quadratic form corresponding to the formal operator $-\Delta+b \cdot \nabla$ determines the generator of a quasi contraction C_{0} semigroup in L^{2}, see [Ka, Ch.VI].

Let us list some sub-classes of $\mathbf{F}_{\boldsymbol{\delta}}$ defined in elementary terms.

1. A vector field $b=b_{1}+b_{2} \in L^{d}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is in \mathbf{F}_{δ} with δ that can be chosen arbitrarily small.

Indeed, representing $b=\mathrm{f}+v$, where $\|\mathfrak{f}\|_{d}<\varepsilon, v \in L^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, one can estimate, using the Hölder inequality and the Sobolev Embedding Theorem,

$$
\begin{aligned}
\left\||b|(\lambda-\Delta)^{-\frac{1}{2}} g\right\|_{2} & \leq\|\mathfrak{f}\|_{d}\left\|(\lambda-\Delta)^{-\frac{1}{2}} g\right\|_{\frac{2 d}{d-2}}+\|v\|_{\infty} \lambda^{-\frac{1}{2}}\|g\|_{2} \quad\left(g \in L^{2}\right) \\
& \leq\left(c_{S}\|f\|_{d}+\|v\|_{\infty} \lambda^{-\frac{1}{2}}\right)\|g\|_{2} \\
& \leq\left(c_{S}+1\right) \varepsilon\|g\|_{2} \quad \text { for } \lambda=\varepsilon^{-2}\|v\|_{\infty}^{-2}
\end{aligned}
$$

2. The class \mathbf{F}_{δ} also contains vector fields having critical-order singularities, such as $b(x):=$ $\pm \sqrt{\delta} \frac{d-2}{2}|x|^{-2} x$, as follows from the Hardy inequality $\left\||x|^{-1} \varphi\right\|_{2}^{2} \leq \frac{4}{(d-2)^{2}}\|\nabla \varphi\|_{2}^{2}, \varphi \in W^{1,2}$. (And, of course, $b \notin \mathbf{F}_{\delta_{2}}$ if $\delta_{2}<\delta$.) The last example shows that \mathbf{F}_{δ} contains $L^{d}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)+L^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ as a proper sub-class.

More generally, \mathbf{F}_{δ} contains, as a proper sub-class, vector fields b with $|b|$ in $L^{d, \infty}$ (the weak L^{d} class). Recall that a measurable function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is in $L^{d, \infty}$ if $\|h\|_{d, \infty}:=\sup _{s>0} s \mid\left\{x \in \mathbb{R}^{d}\right.$: $|h(x)|>s\}\left.\right|^{1 / d}<\infty$. If $|b|$ in $L^{d, \infty}$, then

$$
\begin{aligned}
b \in \mathbf{F}_{\delta_{1}} \quad \text { with } \sqrt{\delta_{1}} & =\left\||b|(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2} \\
& \leq\|b\|_{d, \infty} \Omega_{d}^{-\frac{1}{d}}\left\||x|^{-1}(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2} \\
& \leq\|b\|_{d, \infty} \Omega_{d}^{-\frac{1}{d}} 2^{-1} \frac{\Gamma\left(\frac{d-2}{4}\right)}{\Gamma\left(\frac{d+2}{4}\right)}=\|b\|_{d, \infty} \Omega_{d}^{-\frac{1}{d}} \frac{2}{d-2} .
\end{aligned}
$$

where $\Omega_{d}=\pi^{\frac{d}{2}} \Gamma\left(\frac{d}{2}+1\right)$ is the volume of the unit ball in \mathbb{R}^{d}, see [KPS, Prop. 2.5, 2.6, Cor. 2.9].
3. The class \mathbf{F}_{δ} contains the vector fields b with $|b|^{2}$ in the Campanato-Morrey class $(s>1)$

$$
\left\{v \in L_{\mathrm{loc}}^{s}:\left(\frac{1}{|Q|} \int_{Q}|v(x)|^{s} d x\right)^{\frac{1}{s}} \leq c_{s} l(Q)^{-2} \text { for all cubes } Q\right\}
$$

the latter is a proper sub-class of \mathbf{F}_{δ}, see [CWW].
4. Let us note that, for every $\varepsilon>0$, there exists a $b \in \mathbf{F}_{\delta}$ such that $b \notin L_{\text {loc }}^{2+\varepsilon}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, e.g.

$$
|b|^{2}(x)=C \frac{\mathbf{1}_{B(0,1+\alpha)}-\mathbf{1}_{B(0,1-\alpha)}}{| | x|-1|^{-1}(-\ln | | x|-1|)^{\beta}}, \quad \beta>1, \quad 0<\alpha<1 .
$$

In contrast to the other classes of singular vector fields mentioned above, the class \mathbf{F}_{δ} is defined, loosely speaking, in terms of the operators that constitute (1).

Let $b \in \mathbf{F}_{\delta}$. By [KS, Theorem 1 and Lemma 5], if $\delta<\min \left\{1,\left(\frac{2}{d-2}\right)^{2}\right\}$, then for every $p \in$ $\left[2,2 / \sqrt{\delta}\right.$ [there exists a realization $\Lambda_{p}(b)$ of the formal operator $-\Delta+b \cdot \nabla$ on L^{p} as the (minus) generator of a positivity preserving, L^{∞} contraction, quasi contraction C_{0} semigroup $e^{-t \Lambda_{p}(b)}$ such that $u:=\left(\mu+\Lambda_{p}(b)\right)^{-1} f, f \in L^{p}\left(\Leftrightarrow\right.$ solution to the elliptic equation $\left.\left(\mu+\Lambda_{p}(b)\right) u=f\right)$ satisfies for all $\mu>\mu_{1} \equiv \mu_{1}(d, p, \delta)>0$

$$
\|\nabla u\|_{p} \leq K_{1}\left(\mu-\mu_{1}\right)^{-\frac{1}{2}}\|f\|_{p}
$$

Concerning the regularity of higher-order derivatives of u, the authors in [KS] establish the next bound on the following non-linear characteristics of u :

$$
\left\|\nabla|\nabla u|^{\frac{p}{2}}\right\|_{2}^{\frac{2}{p}} \leq K_{2}\left(\mu-\mu_{1}\right)^{\frac{1}{p}-\frac{1}{2}}\|f\|_{p}
$$

Here constants $K_{i}=K_{i}(d, p, \delta)<\infty(i=1,2)$. Then, by the Sobolev Embedding Theorem, $\|\nabla u\|_{p j} \leq C\|f\|_{p}, j=\frac{d}{d-2}$, and so there exists $p>\max \{2, d-2\}$ such that $u \in C^{0, \gamma}$ with the Hölder continuity exponent $\gamma=1-\frac{d-2}{p}$.

The results in $[\mathrm{KS}]$ capture quantitative dependence of Sobolev and Hölder regularity of u on the value of form-bound δ. The latter serves as a measure of the "size" of singularity of b. Note that, from this point of view, the class $b \in L^{d}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ does not contain vector fields having critical-order singularities, for by Example 1 such b is in \mathbf{F}_{δ} with arbitrarily small δ.

In our main result (Theorem 1) we establish regularity of higher-order derivatives of solution to the elliptic equation u under the same assumption on the form-bound δ as in $[\mathrm{KS}]$ (and thus without losing the size of singularity of b). This will allow us, in particular, to considerably simplify, in comparison with $[\mathrm{KS}]$, the construction of the corresponding Feller semigroup (and thus of the corresponding diffusion process), see Remark 1 below.

The method. Our starting object is an $\mathcal{B}\left(L^{p}\right)$-valued function $\Theta_{p}(\mu, b), \mu>\mu_{0}$, a "candidate for the resolvent of $-\Delta+b \cdot \nabla$ in $L^{p \prime \prime}$. We prove that, for smooth approximations b_{n} of $b, \Theta_{p}\left(\mu, b_{n}\right)$ indeed coincides with the resolvent $\left(\mu-\Delta+b_{n} \cdot \nabla\right)^{-1} \in \mathcal{B}\left(L^{p}\right)$ (which exists by the classical theory) for $\mu>0$ sufficiently large. Armed with this fact, we show that, for a general $b \in \mathbf{F}_{\delta}$ with δ smaller than a certain explicit constant, the operator-valued function $\Theta(\mu, b)$ is the resolvent of a closed densely defined operator $-\Lambda_{p}(b)$ generating a C_{0} semigroup on L^{p}. This operator is the sought
operator realization of $-\Delta+b \cdot \nabla$ in L^{p}. The regularity properties of the resolvent $\left(\mu+\Lambda_{p}(b)^{-1}\right.$, and thus of the solution u to the equation $\left(\mu+\Lambda_{p}(b)\right) u=f$ (cf. Corollary 1 below), then follow immediately from the definition of $\Theta_{p}(\mu, b)$. Concerning the relationship between $\Lambda_{p}(b)$ and the formal operator $-\Delta+b \cdot \nabla$, we can show, arguing as in the proof of Theorem 1.3 in [Ki], that

$$
\left\langle\Lambda_{p}(b) u, v\right\rangle=\langle u,-\Delta v\rangle+\langle b \cdot \nabla u, v\rangle, \quad u \in D\left(\Lambda_{p}(b)\right), \quad v \in C_{c}^{\infty} .
$$

Here and below,

$$
\langle h\rangle:=\int_{\mathbb{R}^{d}} h(x) d \mathcal{L}^{d}, \quad\langle h, g\rangle:=\langle h \bar{g}\rangle .
$$

Notations. Let $\mathcal{W}^{\alpha, p}, \alpha>0$ denote the Bessel potential space endowed with norm $\|f\|_{p, \alpha}:=\|g\|_{p}$, $f=(1-\Delta)^{-\frac{\alpha}{2}} g, g \in L^{p}$. Let $\mathcal{W}^{-\alpha, p^{\prime}}, p^{\prime}=\frac{p}{p-1}$, be the anti-dual of $\mathcal{W}^{\alpha, p}$.

Let $\mathcal{B}(X, Y)$ be the space of bounded linear operators between Banach spaces $X \rightarrow Y$. Set $\mathcal{B}(X):=\mathcal{B}(X, X)$.

Denote by \upharpoonright the restriction of an operator to a subspace.
For $p \geq 2$, put

$$
c_{\delta, p}:=\left(\frac{p}{2} \delta+\frac{p-2}{2} \sqrt{\delta}\right)^{\frac{1}{p}}\left(p-1-(p-1) \frac{p-2}{2} \sqrt{\delta}-\frac{p(p-2)}{4} \delta\right)^{-\frac{1}{p}}
$$

and

$$
b^{\frac{2}{p}}:=|b|^{\frac{2}{p}-1} b, \quad \mathcal{E}:=\bigcup_{\varepsilon>0} e^{-\varepsilon|b|} L^{p} .
$$

Theorem 1 (Main result). Let $d \geq 3$. Assume that $b \in \mathbf{F}_{\delta}, \delta<1$. Then for every $p \in\left[2, \frac{2}{\sqrt{\delta}}[\right.$ the formal operator $-\Delta+b \cdot \nabla$ has a realization $\Lambda_{p}(b)$ in L^{p} as the generator of a positivity preserving, L^{∞} contraction, quasi contraction C_{0} semigroup $e^{-t \Lambda_{p}(b)}$ such that:
(i) The resolvent of $-\Lambda_{p}(b)$ admits the representation

$$
\left(\mu+\Lambda_{p}(b)\right)^{-1}=\Theta_{p}(\mu, b)
$$

for all $\mu>\mu_{0} \equiv \mu_{0}(d, p, \delta)>0$, where

$$
\Theta_{p}(\mu, b):=(\mu-\Delta)^{-1}-Q_{p}\left(1+T_{p}\right)^{-1} G_{p}
$$

for operators $Q_{p}, G_{p}, T_{p} \in \mathcal{B}\left(L^{p}\right)$ defined as follows:

$$
G_{p}:=b^{\frac{2}{p}} \cdot \nabla(\mu-\Delta)^{-1}
$$

and Q_{p}, T_{p} are the extensions by continuity of densely defined operators

$$
Q_{p} \upharpoonright \mathcal{E}:=(\mu-\Delta)^{-1}|b|^{1-\frac{2}{p}}, \quad T_{p} \upharpoonright \mathcal{E}:=b^{\frac{2}{p}} \cdot \nabla(\mu-\Delta)^{-1}|b|^{1-\frac{2}{p}} .
$$

We have

$$
\left\|G_{p}\right\|_{p \rightarrow p} \leq C_{1} \mu^{-\frac{1}{2}+\frac{1}{p}}, \quad\left\|Q_{p}\right\|_{p \rightarrow p} \leq C_{2} \mu^{-\frac{1}{2}-\frac{1}{p}}, \quad\left\|T_{p}\right\|_{p \rightarrow p} \leq c_{\delta, p}<1
$$

(ii) For each $2 \leq r<p<q<\infty$ and $\mu>\mu_{0}$, define operators

$$
G_{p}(r):=b^{\frac{2}{p}} \cdot \nabla(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{r}} \in \mathcal{B}\left(L^{p}\right), \quad Q_{p}(q):=\left.(\mu-\Delta)^{-\frac{1}{2}+\frac{1}{q}}| |\right|^{1-\frac{2}{p}} \quad \text { on } \mathcal{E} .
$$

Then $Q_{p}(q) \in \mathcal{B}\left(L^{p}\right)^{1}$, and the resolvent admits the representation

$$
\left(\mu+\Lambda_{p}(b)\right)^{-1}=(\mu-\Delta)^{-1}-(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{q}} Q_{p}(q)\left(1+T_{p}\right)^{-1} G_{p}(r)(\mu-\Delta)^{-\frac{1}{2}+\frac{1}{r}}
$$

for all $\mu>\mu_{0}$.
(iii)

$$
e^{-t \Lambda_{p}\left(b_{n}\right)} \rightarrow e^{-t \Lambda_{p}(b)} \quad \text { in } L^{p} \quad \text { locally uniformly in } t \geq 0,
$$

where $b_{n}:=e^{\epsilon_{n} \Delta}\left(\mathbf{1}_{n} b\right), \mathbf{1}_{n}$ is the indicator of $\left\{x \in \mathbb{R}^{d}| | x|\leq n,|b(x)| \leq n\}, \epsilon_{n} \downarrow 0, n \geq 1\right.$, and $\Lambda_{p}\left(b_{n}\right):=-\Delta+b_{n} \cdot \nabla, D\left(\Lambda_{p}\left(b_{n}\right)\right)=\mathcal{W}^{2, p}$.

Theorem $1(i),(i i)$ immediately yields
Corollary 1. In the assumptions of Theorem 1, for every $2 \leq r<p<q<\infty$ and $\mu>\mu_{0}$,

$$
\left(\mu+\Lambda_{p}(b)\right)^{-1} \in \mathcal{B}\left(\mathcal{W}^{-1+\frac{2}{r}, p}, \mathcal{W}^{1+\frac{2}{q}, p}\right)
$$

In particular,

$$
D\left(\Lambda_{p}(b)\right) \subset \mathcal{W}^{1+\frac{2}{q}, p}, \quad q>p
$$

The previous corollary and the Sobolev Embedding Theorem give
Corollary 2. For $d \geq 4$, if $\delta<\left(\frac{2}{d-2}\right)^{2}$ then there exists $p>d-2$ such that $u:=\left(\mu+\Lambda_{p}(b)\right)^{-1} f$, $f \in L^{p}$ satisfies $u \in C^{0, \gamma}, \gamma<1-\frac{d-2}{p}$. (For $d=3$ the corresponding inclusion can be improved, see remarks below.)

Denote

$$
C_{\infty}:=\left\{f \in C\left(\mathbb{R}^{d}\right): \lim _{x \rightarrow \infty} f(x)=0\right\} \quad \text { (endowed with the sup-norm). }
$$

The resolvent representation of Theorem 1(ii) yields rather easily (following the arguments in the proof of Theorem 1.5 in [Ki], see also the proof of Theorem 5.6 in [KiS])
Theorem 2. Let $d \geq 3$. Assume that $b \in \mathbf{F}_{\delta}, \delta<\min \left\{1,\left(\frac{2}{d-2}\right)^{2}\right\}$. Fix $p>\max \{2, d-2\}$. Then

$$
\left(\mu+\Lambda_{C_{\infty}}(b)\right)^{-1}:=\left(\Theta_{p}(\mu, b) \upharpoonright L^{p} \cap C_{\infty}\right)_{C_{\infty} \rightarrow C_{\infty}}^{\text {clos }}, \quad \mu>\mu_{0}
$$

determines the resolvent of the generator of a positivity preserving contraction C_{0} semigroup on C_{∞} ("Feller semigroup"), such that

$$
e^{-t \Lambda_{C_{\infty}}(b)}=s-C_{\infty}-\lim _{n} e^{-t \Lambda_{C_{\infty}}\left(b_{n}\right)} \quad \text { locally uniformly in } t \geq 0,
$$

where b_{n} 's were defined in Theorem 1(iii), $\Lambda_{C_{\infty}}\left(b_{n}\right):=-\Delta+b_{n} \cdot \nabla, D\left(\Lambda_{C_{\infty}}\left(b_{n}\right)\right)=(1-\Delta)^{-1} C_{\infty}$.
Recall that, by a standard result [BG, Ch.I.9], given a Feller semigroup T^{t} on C_{∞}, there exist probability measures $\left\{\mathbb{P}_{x}\right\}_{x \in \mathbb{R}^{d}}$ on the space of right-continuous functions $X:\left[0, \infty\left[\rightarrow \overline{\mathbb{R}}^{d}\right.\right.$ having left limits ($\overline{\mathbb{R}}^{d}$ is the one-point compactification of \mathbb{R}^{d}) such that

$$
\begin{equation*}
\mathbb{E}_{\mathbb{P}_{x}}\left[f\left(X_{t}\right)\right]=\left(T^{t} f\right)(x), \quad f \in C_{\infty}, \quad x \in \mathbb{R}^{d} . \tag{3}
\end{equation*}
$$

[^1]Let $\left\{\mathbb{P}_{x}\right\}_{x \in \mathbb{R}^{d}}$ be the probability measures determined by $T^{t}:=e^{-t \Lambda_{C_{\infty}}(b)}$. Theorems 1 and 2 provide an information about the Feller semigroup $e^{-t \Lambda_{C_{\infty}}(b)}$ sufficient to repeat the argument in [KiS2], which then yields that for every $x \in \mathbb{R}^{d}$ the probability measure \mathbb{P}_{x} is concentrated on finite continuous trajectories and determines a (unique in appropriate sense) weak solution to SDE (2).

Remarks. 1. In Theorem 2, we obtain the assertion of [KS, Theorem 2] in a simpler way, i.e. without appealing to rather sophisticated $L^{p} \rightarrow L^{\infty}$ Moser-type iteration procedure of the cited paper.
2. There is an analogue of Theorem 1 for vector fields b in the class of weakly form-bounded vector fields that contains \mathbf{F}_{δ} as a proper sub-class, see [Ki, Theorem 1.3], see also [KiS, Theorem 4.3]. However, there one obtains a different regularity result,

$$
\left(\mu+\Lambda_{p}(b)\right)^{-1} \in \mathcal{B}\left(\mathcal{W}^{-1+\frac{1}{r}, p}, \mathcal{W}^{1+\frac{1}{q}, p}\right),
$$

with strictly smaller values of δ (and so these two results should be viewed as essentially incomparable). Moreover, the proof of the cited result appeals to abstract L^{p} inequalities for symmetric Markov generators, while the proof of Theorem 1 is elementary.
3. If $b \in \mathbf{F}_{\delta}, \delta<1$, then one can show that $D\left(\Lambda_{2}(b)\right) \subset W^{2,2}$. In particular, if $d=3,\left(\mu+\Lambda_{2}(b)\right)^{-1}$ maps L^{2} to $W^{1,6}$, and so $D\left(\Lambda_{2}(b)\right) \subset C^{0, \gamma}$ with $\gamma=\frac{1}{2}$.
4. For a general $b \in \mathbf{F}_{\delta}$, for p large the $W^{2, p}$ estimates on solution u to the corresponding elliptic equation do not exist, see detailed discussion in [KiS, sect. 4].
5. In Theorems 1 and 2 we obtain the same condition $\delta<\min \left\{1,\left(\frac{2}{d-2}\right)^{2}\right\}$ as in $[\mathrm{KS}$, Theorem 1]. One can thus ask whether this condition is sharp. Incidentally, the constant $\left(\frac{2}{d-2}\right)^{2}$ coincides with the constant in Hardy's inequality.

Acknowledgements. I would like to express my gratitude to Yu. A. Semenov for fruitful discussions. I would also like to thank the anonymous referee for a number of comments that helped to improve the presentation.

2. Proof of Theorem 1

Proposition 1. (j) Set $G_{p}=b^{\frac{2}{p}} \cdot \nabla(\mu-\Delta)^{-1}, Q_{p}=(\mu-\Delta)^{-1}|b|^{1-\frac{2}{p}}, T_{p}=b^{\frac{2}{p}} \cdot \nabla(\mu-\Delta)^{-1}|b|^{1-\frac{2}{p}}$. Q_{p}, T_{p} are densely defined (on $\left.\mathcal{E}\right)$ operators. Then there exists $\mu_{0}=\mu_{0}(d, p, \delta)>0$ such that

$$
\left\|G_{p}\right\|_{p \rightarrow p} \leq C_{1} \mu^{-\frac{1}{2}+\frac{1}{p}}, \quad\left\|Q_{p}\right\|_{p \rightarrow p} \leq C_{2} \mu^{-\frac{1}{2}-\frac{1}{p}}, \quad\left\|T_{p}\right\|_{p \rightarrow p} \leq c_{\delta, p}<1, \quad \mu>\mu_{0}
$$

where $c_{\delta, p}:=\left(\frac{p}{2} \delta+\frac{p-2}{2} \sqrt{\delta}\right)^{\frac{1}{p}}\left(p-1-(p-1) \frac{p-2}{2} \sqrt{\delta}-\frac{p(p-2)}{4} \delta\right)^{-\frac{1}{p}}$.
(jj) Set $G_{p}(r)=b^{\frac{2}{p}} \cdot \nabla(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{r}}, Q_{p}(q)=(\mu-\Delta)^{-\frac{1}{2}+\frac{1}{q}}|b|^{1-\frac{2}{p}}$, where $2 \leq r<p<q<\infty$. $Q_{p}(q)$ is a densely defined (on $\left.\mathcal{E}\right)$ operator. Then for $\mu>\mu_{0}$

$$
\left\|G_{p}(r)\right\|_{p \rightarrow p} \leq K_{1, r}, \quad\left\|Q_{p}(q)\right\|_{p \rightarrow p} \leq K_{2, q}
$$

The extension of $Q_{p}(q)$ by continuity we denote again by $Q_{p}(q)$.
Proof. It suffices to consider the case $p>2$.
(j) (a) Set $u:=(\mu-\Delta)^{-1}|b|^{1-\frac{2}{p}} f, 0 \leq f \in L^{p}$. Then

It remains to prove the principal inequality

$$
\begin{equation*}
\delta\left(\lambda\|\nabla u\|_{p}^{p}+\left\|\nabla|\nabla u|^{\frac{p}{2}}\right\|_{2}^{2}\right) \leq c_{\delta, p}^{p}\|f\|_{p}^{p}, \tag{*}
\end{equation*}
$$

and conclude that $\left\|T_{p}\right\|_{p \rightarrow p} \leq c_{\delta, p}$.
First, we prove an a priori variant of $(*)$, i.e. for $u:=(\mu-\Delta)^{-1}|b|^{1-\frac{2}{p}} f$ with $b=b_{n}$. Since our assumptions on δ involve only strict inequalities, we may assume, upon selecting appropriate $\varepsilon_{n} \downarrow 0$, that $b_{n} \in \mathbf{F}_{\delta}$ with the same $\lambda=\lambda_{\delta}$ for all n.

Set

$$
\left.\left.w:=\nabla u, \quad I_{q}:=\left.\sum_{r=1}^{d}\left\langle\left(\nabla_{r} w\right)^{2}\right| w\right|^{p-2}\right\rangle, \quad J_{q}:=\left.\left\langle(\nabla|w|)^{2}\right| w\right|^{p-2}\right\rangle .
$$

We multiply $(\mu-\Delta) u=|b|^{1-\frac{2}{p}} f$ by $\phi:=-\nabla \cdot\left(w|w|^{p-2}\right)$ and integrate by parts to obtain

$$
\begin{equation*}
\left.\mu\|w\|_{p}^{p}+I_{p}+(p-2) J_{p}=\left.\langle | b\right|^{1-\frac{2}{p}} f,-\nabla \cdot\left(w|w|^{p-2}\right)\right\rangle, \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \left.\left.\left.\langle | b\right|^{1-\frac{2}{p}} f,-\nabla \cdot\left(w|w|^{p-2}\right)\right\rangle=\left.\langle | b\right|^{1-\frac{2}{p}} f,(-\Delta u)|w|^{p-2}-(p-2)|w|^{p-3} w \cdot \nabla|w|\right\rangle \\
& \text { (use the equation } \left.-\Delta u=-\mu u+|b|^{1-\frac{2}{p}} f\right) \\
& \left.\left.=\left.\langle | b\right|^{1-\frac{2}{p}} f,\left(-\mu u+|b|^{1-\frac{2}{p}} f\right)|w|^{p-2}\right\rangle-\left.(p-2)\langle | b\right|^{1-\frac{2}{p}} f,|w|^{p-3} w \cdot \nabla|w|\right\rangle
\end{aligned}
$$

Remark 1. We have used the idea of [KS] of working with the test function $\phi=-\nabla \cdot\left(w|w|^{p-2}\right)$. It allows to, essentially, differentiate the equation while avoiding differentiating its coefficients/righthand side.

It is interesting to note that, similarly to $[\mathrm{KS}]$, above we had to use the same equation twice. One could use it only once, but this would lead to more restrictive assumptions on δ.

We have

1) $\left.\left.\langle | b\right|^{1-\frac{2}{p}} f,(-\mu u)|w|^{p-2}\right\rangle \leq 0$,
2) $\left.|\langle | b|^{1-\frac{2}{p}} f,|w|^{p-3} w \cdot \nabla|w|\right\rangle \left\lvert\, \leq \alpha J_{p}+\frac{1}{4 \alpha} N_{p}(\alpha>0)\right.$, where $\left.N_{p}:=\left.\langle | b\right|^{1-\frac{2}{p}} f,|b|^{1-\frac{2}{p}} f|w|^{p-2}\right\rangle$, so, the RHS of $(4) \leq(p-2) \alpha J_{p}+\left(1+\frac{p-2}{4 \alpha}\right) N_{p}$, where, in turn,

$$
\begin{aligned}
N_{p} & \left.\leq\left.\langle | b\right|^{2}|w|^{p}\right\rangle^{\frac{p-2}{p}}\left\langle f^{p}\right\rangle^{\frac{2}{p}} \\
& \left.\leq\left.\frac{p-2}{p}\langle | b\right|^{2}|w|^{p}\right\rangle+\frac{2}{p}\|f\|_{p}^{p} \quad\left(\text { use } b \in \mathbf{F}_{\delta} \Leftrightarrow\|b \varphi\|_{2}^{2} \leq \delta\|\nabla \varphi\|_{2}^{2}+\lambda \delta\|\varphi\|_{2}^{2}, \varphi \in W^{1,2}\right) \\
& \leq \frac{p-2}{p}\left(\frac{p^{2}}{4} \delta J_{q}+\lambda \delta\|w\|_{p}^{p}\right)+\frac{2}{p}\|f\|_{p}^{p} .
\end{aligned}
$$

Thus, applying $I_{q} \geq J_{q}$ in the LHS of (4), we obtain
$\left(\mu-c_{0}\right)\|w\|_{p}^{p}+\left[p-1-(p-2)\left(\alpha+\frac{1}{4 \alpha} \frac{p(p-2)}{4} \delta\right)-\frac{p(p-2)}{4} \delta\right] \frac{4}{p^{2}}\left\|\nabla|\nabla u|^{\frac{p}{2}}\right\|_{2}^{2} \leq\left(1+\frac{p-2}{4 \alpha}\right) \frac{2}{p}\|f\|_{p}^{p}$, where $c_{0}=\frac{p-2}{p} \lambda \delta\left(1+\frac{p-2}{4 \alpha}\right)$. It is now clear that one can find a sufficiently large $\mu_{0}=\mu_{0}(d, p, \delta)>0$ so that, for all $\mu>\mu_{0},(*)$ (with $b=b_{n}$) holds with

$$
\begin{aligned}
c_{\delta, p}^{p} & =\delta \frac{p^{2}}{4} \frac{\left(1+\frac{p-2}{4 \alpha}\right) \frac{2}{p}}{p-1-(p-2)\left(\alpha+\frac{1}{4 \alpha} \frac{p(p-2)}{4} \delta\right)-\frac{p(p-2)}{4} \delta} \quad\left(\text { we select } \alpha=\frac{p}{4} \sqrt{\delta}\right) \\
& =\frac{\frac{p}{2} \delta+\frac{p-2}{2} \sqrt{\delta}}{p-1-(p-1) \frac{p-2}{2} \sqrt{\delta}-\frac{p(p-2)}{4} \delta}
\end{aligned}
$$

as claimed. Finally, we pass to the limit $n \rightarrow \infty$ using Fatou's Lemma. The proof of $(*)$ is completed.
Remark 2. It is seen that $\sqrt{\delta}<\frac{2}{p} \Rightarrow c_{\delta, p}<1$. We also note that the above choice of α is the best possible.
(b) Set $u=(\mu-\Delta)^{-1} f, 0 \leq f \in L^{p}$. Then

$$
\left\|G_{p} f\right\|_{p}^{p}=\left\|b^{\frac{2}{p}} \cdot \nabla u\right\|_{p}^{p}
$$

(we argue as in (a))

$$
\leq \delta\left(\lambda\|\nabla u\|_{p}^{p}+\left\|\nabla|\nabla u|^{\frac{p}{2}}\right\|_{2}^{2}\right)
$$

where, clearly, $\|\nabla u\|_{p}^{p} \leq \mu^{-\frac{p}{2}}\|f\|_{p}^{p}$. In turn, arguing as in (a), we arrive at $\mu\|w\|_{p}^{p}+I_{p}+(p-2) J_{p}=$ $\left\langle f,-\nabla \cdot\left(w|w|^{p-2}\right)(w=\nabla u)\right.$,

$$
\begin{gathered}
\left.\left.\left.\mu\|w\|_{p}^{p}+(p-1) J_{p} \leq\left.\left\langle f^{2},\right| w\right|^{p-2}\right\rangle+\left.(p-2)\langle f,| w\right|^{p-3} w \cdot \nabla|w|\right\rangle\right) \\
\left.\left.\mu\|w\|_{p}^{p}+(p-1) J_{p} \leq\left.\left\langle f^{2},\right| w\right|^{p-2}\right\rangle+(p-2)\left(\varepsilon J_{p}+\left.\frac{1}{4 \varepsilon}\left\langle f^{2},\right| w\right|^{p-2}\right\rangle\right), \quad \varepsilon>0
\end{gathered}
$$

Selecting ε sufficiently small, we obtain

$$
J_{p} \leq C_{0}\|w\|_{p}^{p-2}\|f\|_{p}^{2}
$$

Now, applying $\|w\|_{p} \leq \mu^{-\frac{1}{2}}\|f\|_{p}$, we arrive at $\left\|\nabla|\nabla u|^{\frac{p}{2}}\right\|_{2}^{2} \leq C \mu^{-\frac{p}{2}+1}\|f\|_{p}^{p}$. Hence, $\left\|G_{p} f\right\|_{p} \leq$ $C_{1} \mu^{-\frac{1}{2}+\frac{1}{p}}\|f\|_{p}$ for all $\mu>\mu_{0}$.
(c) Set $u=(\mu-\Delta)^{-1}|b|^{1-\frac{2}{p}} f\left(=Q_{p} f\right), 0 \leq f \in L^{p}$. Then, multiplying $(\mu-\Delta) u=|b|^{1-\frac{2}{p}} f$ by u^{p-1}, we obtain

$$
\left.\mu\|u\|_{p}^{p}+\frac{4(p-1)}{p^{2}}\left\|\nabla u^{\frac{p}{2}}\right\|_{2}^{2}=\left.\langle | b\right|^{1-\frac{2}{p}} f, u^{p-1}\right\rangle
$$

where we estimate the RHS using Young's inequality:

$$
\left.\left.\left.\langle | b\right|^{1-\frac{2}{p}} u^{\frac{p}{2}-1}, f u^{\frac{p}{2}}\right\rangle \leq\left.\varepsilon^{\frac{2 p}{p-2}} \frac{p-2}{2 p}\langle | b\right|^{2} u^{p}\right\rangle+\varepsilon^{-\frac{2 p}{p+2}} \frac{p+2}{2 p}\left\langle f^{\frac{2 p}{p+2}} u^{\frac{p^{2}}{p+2}}\right\rangle \quad \varepsilon>0
$$

Using $b \in \mathbf{F}_{\delta}$ and selecting $\varepsilon>0$ sufficiently small, we obtain that for any $\mu_{1}>0$ there exists $C>0$ such that

$$
\left(\mu-\mu_{1}\right)\|u\|_{p}^{p} \leq C\left\langle f^{\frac{2 p}{p+2}} u^{\frac{p^{2}}{p+2}}\right\rangle, \quad \mu>\mu_{1} .
$$

Therefore, $\left(\mu-\mu_{1}\right)\|u\|_{p}^{p} \leq C\left\langle f^{p}\right\rangle^{\frac{2}{p+2}}\left\langle u^{p}\right\rangle^{\frac{p}{p+2}}$, so $\|u\|_{p} \leq C_{2} \mu^{-\frac{1}{2}-\frac{1}{p}}\|f\|_{p}$. The proof of (j) is completed.
(jj) Below we use the following formula: For every $0<\alpha<1, \mu>0$,

$$
(\mu-\Delta)^{-\alpha}=\frac{\sin \pi \alpha}{\pi} \int_{0}^{\infty} t^{-\alpha}(t+\mu-\Delta)^{-1} d t
$$

We have

$$
\begin{aligned}
\left\|Q_{p}(q) f\right\|_{p} & \leq\left\|(\mu-\Delta)^{-\frac{1}{2}+\frac{1}{q}}|b|^{1-\frac{2}{p}}|f|\right\|_{p} \\
& \leq k_{q} \int_{0}^{\infty} t^{-\frac{1}{2}+\frac{1}{q}}\left\|(t+\mu-\Delta)^{-1}|b|^{1-\frac{2}{p}}|f|\right\|_{p} d t \\
& \text { (we use (c)) } \\
& \leq k_{q} C_{2} \int_{0}^{\infty} t^{-\frac{1}{2}+\frac{1}{q}}(t+\mu)^{-\frac{1}{2}-\frac{1}{p}} d t\|f\|_{p}=K_{2, q}\|f\|_{p}, \quad f \in \mathcal{E}
\end{aligned}
$$

where, clearly, $K_{2, q}<\infty$ due to $q>p$.
It suffices to consider the case $r>2$. We have

$$
\begin{aligned}
\left\|G_{p}(r) f\right\|_{p} & \leq k_{r} \int_{0}^{\infty} t^{-\frac{1}{2}-\frac{1}{r}}\left\|b^{\frac{2}{p}} \cdot \nabla(t+\mu-\Delta)^{-1} f\right\|_{p} d t \\
& (\text { we use (b)) } \\
& \leq k_{r} C_{1} \int_{0}^{\infty} t^{-\frac{1}{2}-\frac{1}{r}}(t+\mu)^{-\frac{1}{2}+\frac{1}{p}} d t\|f\|_{p}=K_{1, r}\|f\|_{p}, \quad f \in \mathcal{E}
\end{aligned}
$$

where, clearly, $K_{1, r}<\infty$ due to $r<p$.
The proof of $(j j)$ is completed.
Remark 3. Proposition 1 is valid for $b_{n}, n=1,2, \ldots$, with the same constants.
Proposition 2. The operator-valued function $\Theta_{p}\left(\mu, b_{n}\right)$ is a pseudo-resolvent on $\mu>\mu_{0}$, i.e.

$$
\Theta_{p}\left(\mu, b_{n}\right)-\Theta_{p}\left(\nu, b_{n}\right)=(\nu-\mu) \Theta_{p}\left(\mu, b_{n}\right) \Theta_{p}\left(\nu, b_{n}\right), \quad \mu, \nu>\mu_{0} .
$$

Proof. The proof proceeds by direct calculation, cf. [Ki, proof of Prop. 2.4].
Proposition 3. For every $n=1,2, \ldots$,

$$
\mu \Theta_{p}\left(\mu, b_{n}\right) \rightarrow 1 \text { strongly in } L^{p} \text { as } \mu \uparrow \infty \quad \text { (uniformly in } n \text {). }
$$

Proof. The proof repeats [Ki, proof of Prop. 2.5(ii)]. Since $\mu(\mu-\Delta)^{-1} \rightarrow 1$ strongly in L^{p}, it suffices to show that $\mu \Theta_{p}-\mu(\mu-\Delta)^{-1} \rightarrow 0$ strongly in L^{p}. By Proposition 1, $\mu \Theta_{p}$ is uniformly (in μ) bounded in $\mathcal{B}\left(L^{p}\right)$, so it suffices to prove the convergence on C_{c}^{∞}. We have ($h \in C_{c}^{\infty}$)

$$
\Theta_{p} h-\left(\mu+A_{p}\right)^{-1} h=-Q_{p}\left(1+T_{p}\right)^{-1} G_{p} h
$$

where, by Proposition $1(j),\left\|Q_{p}\right\|_{p \rightarrow p} \leq C_{2} \mu^{-\frac{1}{2}-\frac{1}{p}},\left\|\left(1+T_{p}\right)^{-1}\right\|_{p \rightarrow p}<1$, and

$$
\begin{aligned}
\left\|G_{p} h\right\|_{p} & =\left\|b_{n}^{\frac{2}{p}} \cdot \nabla(\nu-\Delta)^{-1}(\mu-\Delta)^{-1}(\nu-\Delta) h\right\|_{p} \quad\left(\nu>\mu_{0} \text { is fixed }\right) \\
& \leqslant\left\|b_{n}^{\frac{2}{p}} \cdot \nabla(\nu-\Delta)^{-1}\right\|_{p \rightarrow p}\left\|(\mu-\Delta)^{-1}(\nu-\Delta) h\right\|_{p} \leqslant C \mu^{-1}\|(\nu-\Delta) h\|_{p}
\end{aligned}
$$

and so

$$
\left\|\Theta_{p} h-(\mu-\Delta)^{-1} h\right\|_{p} \leq C_{0} \mu^{-\frac{3}{2}-\frac{1}{p}}\|(\nu-\Delta) h\|_{p} \rightarrow 0 \quad \text { as } \mu \rightarrow \infty, \quad C_{0} \neq C_{0}(n) .
$$

Proposition 4. We have $\left\{\mu: \mu>\mu_{0}\right\} \subset \rho\left(-\Lambda_{p}\left(b_{n}\right)\right)$, the resolvent set of $-\Lambda_{p}\left(b_{n}\right)$. The operatorvalued function $\Theta_{p}\left(\mu, b_{n}\right)$ is the resolvent of $-\Lambda_{p}\left(b_{n}\right)$:

$$
\Theta_{p}\left(\mu, b_{n}\right)=\left(\mu+\Lambda_{p}\left(b_{n}\right)\right)^{-1}, \quad \mu>\mu_{0}
$$

Proof. By the Hille Perturbation Theorem, $\Theta_{p}\left(\mu_{n}, b_{n}\right)=\left(\mu_{n}+\Lambda_{p}\left(b_{n}\right)\right)^{-1}$ for all sufficiently large $\mu_{n}\left(=\mu\left(\left\|b_{n}\right\|_{\infty}\right)\right)$. Now, by a theorem of T. Kato [Ka2], in reflexive space L^{p} the pseudo-resolvent $\Theta_{p}\left(\mu, b_{n}\right)$ (Proposition 2) satisfying $\mu \Theta_{p}\left(\mu, b_{n}\right) \xrightarrow{s} 1$ in L^{p} as $\mu \uparrow \infty$ (Proposition 3) is the resolvent of a densely defined closed operator on L^{p}. This operator coincides with $-\Lambda_{p}\left(b_{n}\right)$.

Proposition 5. We have, for all $n=1,2, \ldots$,

$$
\left\|\left(\mu+\Lambda_{p}\left(b_{n}\right)\right)\right\|_{p \rightarrow p} \leq\left(\mu-\mu_{0}\right)^{-1}, \quad \mu>\mu_{0}
$$

(replacing, if necessary, μ_{0} by $\max \left\{\mu_{0}, \frac{\lambda \delta}{2(p-1)}\right\}$).
Proof. See [KS, Theorem 1].
Proposition 6. For every $\mu>\mu_{0}$,

$$
\Theta_{p}\left(\mu, b_{n}\right) \rightarrow \Theta_{p}(\mu, b) \text { strongly in } L^{p} .
$$

Proof. The proof proceeds by applying carefully the Dominated Convergence Theorem to operators $Q_{p}\left(b_{n}\right), T_{p}\left(b_{n}\right), G_{p}\left(b_{n}\right)$ in the definition of $\Theta_{p}\left(\mu, b_{n}\right)$, cf. [Ki, proof of Prop. 2.8].

Now, by the Trotter Approximation Theorem [Ka, IX.2.5], $\Theta_{p}(\mu, b)=\left(\mu+\Lambda_{p}(b)\right)^{-1}, \mu>\mu_{0}$, where $\Lambda_{p}(b)$ is the generator of a quasi contraction C_{0} semigroup in L^{p}. (i) follows. (ii) follows from Proposition 1(jj). (iii) is Proposition 6. The proof of Theorem 1 is completed.

References

[BC] R. Bass and Z.-Q. Chen, Brownian motion with singular drift. Ann. Prob., 31 (2003), p. 791-817.
[BG] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory. Pure and Applied Mathematics 29. Academic Press, New York, 1968.
[CWW] S.Y.A. Chang, J.M. Wilson and T.H. Wolff, Some weighted norm inequalities concerning the Schrödinger operator, Comment. Math. Helvetici, 60 (1985), 217-246.
[Ka] T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag Berlin Heidelberg, 1995.
[Ka2] T. Kato, Remarks on pseudo-resolvents and infinitesimal generators Proc. Japan. Acad., 35 (1959), p. 467-468.
[Ki] D. Kinzebulatov, A new approach to the L^{p}-theory of $-\Delta+b \cdot \nabla$, and its applications to Feller processes with general drifts, Ann. Sc. Norm. Sup. Pisa (5), 17 (2017), 685-711.
[KiS] D. Kinzebulatov and Yu. A. Semënov, On the theory of the Kolmogorov operator in the spaces L^{p} and C_{∞}. Ann. Sc. Norm. Sup. Pisa (5), to appear.
[KiS2] D. Kinzebulatov and Yu.A. Semënov, Brownian motion with general drift, Stoc. Proc. Appl., 130 (2020), p. 27372750.
[KPS] V.F. Kovalenko, M. A.Perelmuter and Yu.A.Semënov, Schrödinger operators with $L_{W}^{1 / 2}\left(R^{l}\right)$-potentials, J. Math. Phys., 22 (1981), p. 1033-1044.
$[\mathrm{KS}]$ V.F. Kovalenko and Yu. A. Semënov, C_{0}-semigroups in $L^{p}\left(\mathbb{R}^{d}\right)$ and $C_{\infty}\left(\mathbb{R}^{d}\right)$ spaces generated by differential expression $\Delta+b \cdot \nabla$. (Russian) Teor. Veroyatnost. i Primenen., 35 (1990), 449-458; translation in Theory Probab. Appl. 35 (1990), p. 443-453.
[Kr1] N. V. Krylov, On diffusion processes with drift in L_{d}, Preprint, arXiv:2001.04950.
[Kr2] N. V. Krylov, On time inhomogeneous stochastic Itô equations with drift in L_{d+1}, Preprint, arXiv:2005.08831.
[KrR] N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields, 131 (2005), p. 154-196.
[P] N. I. Portenko. Generalized Diffusion Processes. AMS, 1990.
[XXZZ] P. Xia, L. Xie, X. Zhang and G. Zhao, $L^{p}\left(L^{q}\right)$-theory of stochastic differential equations. Stoc. Proc. Appl., 130 (2020), p. 5188-5211.
[Z] X. Zhang, Stochastic homeomorphism flows of SDEs with singular drifts and Sobolev diffusion coefficients, Electr. J. Prob., 16 (2011), p. 1096-1116.

Université Laval, Département de mathématiques et de statistique, 1045 av. De la Médecine, Québec, QC, G1V 0A6, Canada

E-mail address: damir.kinzebulatov@mat.ulaval.ca

[^0]: 2010 Mathematics Subject Classification. 47B44, 47D07 (primary), 60H10 (secondary).
 Key words and phrases. Elliptic operators, form-bounded vector fields, regularity of solutions, Feller semigroups. The research is supported by grants from NSERC and FRQNT.

[^1]: ${ }^{1}$ the extension of $Q_{p}(q)$ by continuity will be denoted again by $Q_{p}(q)$

