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SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREMD. KINZEBULATOVAbstrat. The approah to the onsideration of the ordinary di�erential equations with dis-tributions in the lassial spae D0 of distributions with ontinuous test funtions has ertaininsuÆienies: the notations are inorret from the point of view of distribution theory, theright-hand side has to satisfy the restritive onditions of equality type. In the present paperwe onsider an initial value problem for the ordinary di�erential equation with distributions inthe spae of distributions with dynami test funtions T 0 , where the ontinuous operation ofmultipliation of distributions by disontinuous funtions is de�ned [17℄, and show that this ap-proah does not have the aforementioned insuÆienies. We provide the suÆient onditions forviability of solutions of the ordinary di�erential equations with distributions (a generalization ofthe Nagumo Theorem), and show that the onsideration of the distributional (impulse) ontrolsin the problem of avoidane of enounters with the set (the maximal viability time problem)allows us to provide for the existene of solution, whih may not exist for the ordinary ontrols.1. IntrodutionAt the end of the nineteenth entury K. Weierstrass pointed out the existene of ertain problemsin the alulus of variations where the minimum an not be ahieved by any smooth funtion, andthe minimizing sequene onverges to a disontinuous funtion (e.g. the Goldshmidt solution ofthe surfae of revolution area minimization problem [1℄). As it was further observed, the existeneof the disontinuous solutions is not a speial, but a general situation, for a large lass of problemsof optimal ontrol theory (viewed as generalizations of the problems of alulus of variations [12℄)with one-sided phase onstraints on ontrol [26, 32℄. The neessity of extension of these problems inorder to provide the existene of solutions, leads to ordinary di�erential equations with distributionsor, equivalently, ordinary di�erential equations with measures [2, 3, 27, 29, 31℄.Example 1 ([20℄). The ordinary di�erential equation with distributions arises in the followingoptimal ontrol theory problem_x = x+ v; x(0�) = 0; x(1�) = 1; v � 0; (1)J(v) = Z(0;1) v(t)dt!v min; (2)where x is the oordinate of the spae shuttle, v is the urrent harge of fuel, J determines thetotal harge of fuel. Problem (1)(2) does not have a solution among the pairs (v; x) of loallysummable ontrols v 2 Llo and loally absolutely-ontinuous x 2 A C lo, and the minimizingsequenes onverge to the elementsv� = 12Æ0; x�(t) = � 0; t < 0;et�1; t > 0; (3)where Æ0 is the delta-funtion onentrated at point t = 0.Let us onsider the following ordinary di�erential equation_x = f(t; x) + g(t; x)v; (4)where v is a distribution, whih was studied, in partiular, in [2, 3, 11, 20, 27, 29, 31℄, in the lassialspae D0 of distributions with ontinuous test funtions [30℄. Sine v 2 D0 an be represented as2000 Mathematis Subjet Classi�ation. 49N25, 34H05.Key words and phrases. Di�erential equations with distributions, produts of distributions, impulse optimalontrol, viability, Nagumo Theorem. 1



2 D. KINZEBULATOVthe limit of a sequene of ordinary funtions fvkg1k=1 � Llo, a solution of (4) an be viewed as thelimit x := limk!1xk in D0; (5)where xk 2 A C lo is the solution of the ordinary di�erential equation_xk = f(t; xk) + g(t; xk)vk(t): (6)So any solution of (4) is a funtion of loally bounded variation, in general ase disontinuous[2, 3, 11, 20, 27, 29, 31℄.However, the onsideration of the equation (4) in the spae D0 leads to ertain problems.Namely, the notations in (4) are inorret from the point of view of distribution theory, sine(4) ontains the produt of a disontinuous funtion g��; x(�)� and a distribution v 2 D0, whih isunde�ned in D0.Further, let n be the dimension of the system (4). If n � 2, then the solution (5) is independentof the hoie of fvkg1k=1 if and only if the ondition of equality type (Frobenius ondition) forthe right-hand side of (4) is satis�ed [27℄. However, this ondition an not be satis�ed for a largelass of problems of optimal ontrol theory, e.g., see [11, 27℄. The approah to onsideration ofthe sequene fvkg1k=1 as the part of the system (4) is not new (e.g., see [11, 27℄), however, it wasnot studied from the point of view of distribution theory, sine the hoie of a partiular sequenefvkg1k=1 is not motivated by any properties of the spae D0.Let us note that sine D0 is isomorphi to the spae of Borel measures [30℄ on R, the problemsdesribed above an be reformulated for the ordinary di�erential equations with measures.The insuÆienies desribed above are due to the absene in D0 of the ontinuous operation ofmultipliation of distributions by disontinuous funtions. In the present paper we overome theaforementioned insuÆienies by onsideration of the ordinary di�erential equation with distribu-tions (4) in the spae T 0 of distributions with dynami test funtions [17℄, where the ontinuousoperation of multipliation by disontinuous funtions is de�ned (see the disussion on the problemof multipliation of distributions by disontinuous funtions in the lassial spae D0 and in otherapproahed, in partiular, in the Colombeau generalized funtions algebra [13, 14, 24℄ therein).Also, we study the property of viability of solutions of the ordinary di�erential equations withdistributions in T 0. The notion of a viable solution was introdued by J.-P. Aubin [5, 7℄ for thefollowing ordinary di�erential equation _x = f(t; x); (7)where f is ontinuous in t 2 I and loally Lipshitz in x 2 Rn. Let M � Rn be a losed subset,t0 2 I, 
 = (t0; T ) � I is an open interval, in general ase unbounded. Following [7℄, we give thenext de�nition.D e f i n i t i o n 1. A solution of (7) suh that x(t0) 2M andx(t) 2M (8)for all t 2 
 is said to be viable in M (on 
). The set M is said to have the property of viability(on 
) for (7), if any solution of (7) suh that x(t0) 2M is viable in M (on 
).The property of viability is losely related to the problems of existene of the equilibrium points,onstrution of non-smooth Liapunov funtionals, and the problems of optimal ontrol theory [4℄,in partiular, the problem of onstrution of the admissible ontrol v� 2 V for a ontrolled system_x = f(t; x; v); x(t0) = x0; v 2 V; (9)suh that for v = v� the solution of (9) is viable in M on 
 = (t0; T�), where T� = maxv2V T (theproblem of avoidane of enounters with the set Rn nM , or the maximal viability time problem[21℄).For ordinary di�erential equations the suÆient ondition for the set M to have the viabilityproperty (the neessary and suÆient ondition in the autonomous ase) was given in [28℄.



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 3De f i n i t i o n 2 ([7℄). Let �M : Rn ! R be the distane funtion, �M (x) := inf2Mfjx� jg. Theset KM (x) = fy 2 Rn : lim inf"!0+ ��M �x+ "y�="� = 0g (10)is alled the ontingent one to the set M at the point x 2 Rn.Theorem 1 (Nagumo Theorem). Let M � Rn be losed, M 6= ?. Iff(t; x) 2 KM (x) (11)for all t 2 
, x 2 �M , where �M is the boundary of M , then M has the property of viability for(7) on 
.If the system (7) is autonomous, then (11) is a neessary and suÆient ondition for M to havethe property of viability for (7) (on 
).After the ordinary di�erential equations, the onditions for viability were obtained for the di�er-ential inlusions [6, 7℄, stohasti di�erential equations [8, 9℄, di�erential equations and di�erentialinlusions with aftere�et [10, 23℄. In the present paper we onsider the property of viability forthe systems with distributions _x = f(t; x) + g(t; x)v; v 2 T 0; (12)and provide the suÆient ondition for a losed set M whih is given by the analyti onstraintsM = fx 2 Rn : �i(x) � 0; 1 � i � mg; (13)where �i : Rn ! R are ontinuously di�erentiable funtions (1 � i � m), to have the property ofviability for the system (12) (a generalization of Nagumo's Theorem). As an appliation of theresults obtained, we provide the suÆient ondition for the uniform stability of the equilibriumpoints of the systems with distributions of the form_x = f(x) + g(x)v; v 2 T 0:The onsideration of the property of viability for the system (12) is also motivated by theproblem of avoidane of enounters with the set Rn nM . Namely, the problem of avoidane ofenounters may have no solution for a system with the ordinary ontrols_x = f(t; x) + g(t; x)v; v 2 L; (14)whih might be viewed as the restrition of the system (12) to the set of regular ontrols v, and havea solution for the extended system (12), i.e., when ontrol is allowed to be distributional (impulse).Furthermore, the optimal solution of (12) has a natural interpretation as the limit of a sequeneof solutions of (14). Also, let us mention that the onsideration of the property of viability for thesystem (12) in the spae T 0 allows us to onsider the trajetory at the moment of disontinuity(i.e., at the moment of the onentration of the delta-funtion at v), whih is important for thede�nition of the property of viability.1.1. Notations. Let I = (a; b) � R be an open interval, �1 6 a < b 6 1. We denote by Rnand Rn�n the spaes of the vetors and the square matries of order n 2 N, respetively, with theelements fromR, endowed with the max-norms j � j. Further (�; �) stands for the inner produt, h�; �istands for the omponentwise produt in Rn. For any p, q 2 Rn we have jhp; qij � jpjjqj. In whatfollows, we denote by ,! the embedding, i.e., the map preserving the linear and the topologialstruture.Let Ĝ be the algebra of bounded funtions g : I ! R possessing the one-sided limitsg(a+); g(b�); g(t+); g(t�) (15)for all t 2 I. We identify the elements of Ĝ having the same one-sided limits, and denote theobtained algebra of funtions (i.e., the equivalene lasses of suh funtions) by G = G(I). Wede�ne a norm kgkG := supt2I maxfjg(t+)j; jg(t�)jg; (16)so G is a Banah algebra [16℄. Following [18℄, we all the elements of G the regulated funtions.Let T (g) := ft 2 I : �� (g) := g(�+) � g(��) 6= 0g be set of points of disontinuity of a regulatedfuntion g 2 G .



4 D. KINZEBULATOVLemma 1 ([16℄). Let g 2 G . Then T (g) is at most ountable.Given g 2 G let us onsider a partition d = f�igni=1, a < �1 < � � � < �n < b. We de�nevarI(g) := supd n�1Xk=1 jg(�k+1�)� g(�k+)j (17)(the total variation). If varI(g) <1, then we all g the funtion of bounded variation. We denotethe algebra of funtions of bounded variation by BV= BV(I). We de�nekgkBV:= jg(a+)j+ varI(g); (18)so BV is the Banah algebra.Let C = C (I) be the subalgebra of the ontinuous elements of G . Clearly, C onsists of thebounded ontinuous funtions on I.Let CBV be the subalgebra of ontinuous elements of BV. If g 2 BV, then we denote byg 2 CBV the ontinuous part of g [16℄.We denote by L = L(I) the Banah algebra of funtions whih are Lebesgue summable on I.Let us denote by A C = A C (I) the Banah algebra of funtions whih are absolutely ontinuous onI. By A C lo and Llo we denote the algebras of loally absolutely ontinuous funtions and loallysummable funtions, respetively [19℄. We denote by BVlo and CBVlo the algebras of funtionsof loally bounded variation.Let us denote by F = F(I) the algebra of funtions I ! R. We all the elements of F theordinary funtions.The de�nitions given above an be transferred without signi�ant hanges to the ase of a �nitelosed interval. 2. DistributionsLet us reall the onstrution of the spae of distributions with dynami test funtions [17℄.2.1. Dynami funtions. Let J = ��12 ; 12�.D e f i n i t i o n 3 ([17℄). A map f : I ! F(J) is alled the dynami funtion.We denote the set of dynami funtions by dF = dF(I), and de�ne in dF the pointwise operationsof addition, multipliation by the element of R and multipliation, so dF forms an algebra.For a given f 2 dF we all f(t)(�) a dynami value of f at t. If f(t)(�) is identially equal to aonstant, then we all f(t)(�) an ordinary value, and denote it by f(t).We de�ne the embedding F ,! dF as follows. For a given f̂ 2 F we assoiate f 2 dF suh thatf(t)(�) � f̂ (t) for all t 2 I.Let us denoteU (f) = ft 2 I : f(t)(�) is an ordinary valueg; D(f) = I n U (f):For a given dynami funtion f 2 dF and an ordinary funtion g 2 F we de�ne the ompositiong Æ f 2 dF by the formula �g Æ f�(t)(�) := g�f(t)(�)� (19)for all t 2 I. Aordingly, de�ne an absolute value jf j 2 dF of f 2 dF byjf j(t)(�) := jf(t)(�)jfor all t 2 I. Let us de�ne the support of a dynami funtion f 2 dF bysupp(f) := lft 2 I : t 2 D(f) or f(t) 6= 0g � I :Let K � I. We de�nesupK (f) := supt2K sups2J�f(t)(s)�; infK (f) := inft2K infs2J�f(t)(s)�:A dynami funtion f 2 dF is said to be bounded on K � I, if supK jf j < 1. A dynamifuntion f 2 dF is said to be non-negative on K (denote f � 0 on K), if infK f � 0 (analogouslyde�ne a non-positive dynami funtion). A onstant  2 R is alled the right-sided limit of f at



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 5� 2 I (denote f(�+) = ), if for any " > 0 there exists � > 0 suh that supt2(�;�+�) jf � j � "(analogously de�ne the left-sided limit at � 2 I = (a; b), and the one-sided limits at points a; b). Adynami funtion f 2 dF is said to be ontinuous at � 2 I, if � 2 U (f) and f(� ) = f(�+) = f(��)(otherwise we say that f is disontinuous at � 2 I, denote the set of points of disontinuity of fby T (f) � I; notie, that D(f) � T (f) for any f 2 dF).Notie that if the dynami funtions in the de�nitions given above are the ordinary ones, thenthese de�nitions oinide with the ordinary de�nitions.For the purpose of onstrution of the spae of distributions, we are mainly interested in thefollowing algebras of dynami funtions. Suppose that g 2 dF is suh that g(t)(�) 2 G(J) (t 2 I), gpossesses one-sided limits g(a+), g(b�), g(t+), g(t�) for any t 2 I. The algebra of suh dynamifuntions (the regulated dynami funtions) is denoted by dG , and endowed with the normkgkdG := supI jgj; (20)so dG is the Banah algebra.Lemma 2 ([17℄). Let g 2 dG . Then T (g) is at most ountable.Sine D(g) � T (g), we have that any g 2 dG possesses the ordinary values everywhere on Iexept for ertain at most ountable set. For a given g 2 dG , we de�ne an ordinary funtion ĝ byĝ(t) := g(t) (t 2 U (g)). We all ĝ the ordinary part of g 2 dG , and denote ord(g) := ĝ.Lemma 3 ([17℄). Let g 2 dG . Then ĝ = ord(g) is de�ned everywhere on I for exept for at mosta ountable set, is an element of G , andg(t+) = ĝ(t+); g(t�) = ĝ(t�)for all t 2 I.Let g 2 dG be suh that g(t)(�) 2 A C (J), g(t)(�1=2) = g(t�), g(t)(1=2) = g(t+) (t 2 I). Wedenote the algebra of suh dynami funtions by sG . Then C ,! sG ,! dG . Let us note that forany g 2 sG we have D(g) = T (g).Let g 2 sG be suh that ord(g) 2 BV andXt2D(g) vars2J�g(t)(s)� <1:We denote the Banah algebra of suh dynami funtions (the dynami funtions of boundedvariation) by sBV, and endow it with the normkgksBV:= jg(a+)j+ kgkCBV+ Xt2D(g) vars2J�g(t)(s)�;where g 2 CBV is the ontinuous part of ord(g) 2 BV. We have that CBV ,! sBV. We de�neanalogously the algebra sBVlo of dynami funtions of loally bounded variation.Example 2. The Heaviside funtion ��� 2 sBV is de�ned by��� (t) = � 1; t > �;0; t < �; ��� (� )(�) = �(�);where � 2 A C (J) is suh that �(�1=2) = 0, �(1=2) = 1.Let Gn , A C n, BVn, Ln and sGn , sBVn be the spaes of vetor-valued funtions and dynamifuntions, respetively, with the operations de�ned omponentwise, and the norms agreeing withthe norm in Rn.2.2. Distributions. We denote by D the spae of the ontinuous test funtions, i.e., the spaeof the elements of C having ompat support in I, and endowed with the standard loally-onvextopology [30℄. We denote by T the spae of the elements ' 2 dG having ompat support supp(') �I. The spae T is alled the spae of dynami test funtions [17℄. The sequene f'g1k=1 is saidto be onvergent to ' in T , if 'k ! ' in dG and there exists a ompat set K � I suh thatsupp('k) � K for all k 2 N. Clearly, we have the embedding D ,! T .



6 D. KINZEBULATOVWe use the notation D0 for the spae of lassial distributions, i.e., the spae of ontinuous linearfuntionals D ! R [30℄. We denote by T the spae of distributions with dynami test funtions,i.e., the spae of ontinuous linear funtionals T ! R [17℄. The value of a distribution f 2 T 0 on atest funtion ' 2 T is denoted by (f; ') 2 R. The linear operations in T 0 are de�ned in a standardway, the spae T 0 is endowed with the weak topology, so fk ! f in T 0 if and only if for any ' 2 T(fk; ')! (f; ').Theorem 2 ([17℄). Any distribution in D0 admits an extension from D to T .Example 3. Given f 2 Llo, let us de�ne a regular distribution by the formula(f; ') := ZI f(t)'̂(t)dt;where ' 2 T , '̂ = ord('). Sine D ,! T , and the linear manifold of regular distributions inD0 is isomorphi to Llo [30℄, we may identify the elements of Llo and the orresponding regulardistributions in T 0.Example 4. The delta-funtion Æ�� 2 T 0 is de�ned by the formula(Æ�� ; ') := ZJ �(s)'(� )(s)ds; (21)where ' 2 T , � 2 I, and the parameter � 2 L(J) suh thatZJ �(s)ds = 1; (22)is alled the shape of the delta-funtion. Notie, that for any ' 2 D we have(Æ�� ; ') = ZJ �(s)'(� )ds = '(� );so Æ�� is an extension of the lassial delta-funtion Æ� 2 D0 from D to T .For a given � satisfying (22) we de�ne a sequene f!�ng1n=1,!�n(t) := � n�(n(t� � )); t 2 �� � 12n ; � + 12n�;0; otherwise; (23)whih is alled the delta-sequene having the shape �.We de�ne the produt of f 2 T 0 and g 2 dG by the formula(gf; ') := (f; g'); (24)where g' 2 T . The operation of multipliation de�ned by (24) is ontinuous, ommutative andassoiative in the sense that (hg)f = h(gf) in T 0 for any h, g 2 dG , f 2 T 0 [17℄.Example 5. As follows from (24), the produt of the Heaviside funtion ��� 2 sG and the delta-funtion Æ�� 2 T 0 is de�ned by the formula��� Æ�� = �ZJ �(s)�(s)ds�Æ� ;where (s) = �(s)�(s)= RJ �(s)�(s)ds (s 2 J) satis�es (22), if RJ �(s)�(s)ds 6= 0.Let f 2 T 0. Let us de�ne the support supp(f) � I to be the minimal losed set suh that forany ' 2 T with supp(') \ supp(f) = ? we have (f; ') = 0.A distribution f 2 T 0 is alled non-negative (non-positive) if for any ' 2 T suh that ' � 0 wehave (f; ') � 0 (or (f; ') � 0, respetively).For a given distribution f 2 T 0 let us de�ne the value of the integral over (t0; t1) ([t0; t1℄ � I)by the formula Z(t0;t1) fdt := (f; 't0;t1); (25)where 't0;t1(t) = 1 if t0 < t < t1, and 't0;t1 = 0 otherwise, so 't0;t1 2 T . The operator ofintegration in T 0 whih is given by (25) is linear and ontinuous [17℄.



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 7Let g 2 sBVlo, we de�ne the derivative _g 2 T 0 by the formula( _g; ') := ZI '̂(t)dg(t) + X�2T (g) ZJ '(� )(s)(g(� )(s))�sds: (26)where ' 2 T , g 2 CBVlo, and the set of points of disontinuity T (g) is at most ountable byLemma 2. If for any � 2 T (g) �� (g) = g(�+) � g(��) 6= 0, then_g = _g + X�2T (g) �� (g)Æ��� (27)in T 0, where the shape of a delta-funtion �� (s) = (g(� )(s))�s=�� (g) (s 2 J).Example 6. The derivative of the Heaviside funtion ��� is the delta-funtion Æ�� ,_��� = Æ�� ;where � = _�.In what follows the notations D0n and T 0n stand for the spaes of the vetor-valued distributionswith the onvergene and the operations de�ned omponentwise.3. Systems with distributionsLet D � I �Rn be open. Consider in T 0n = T 0n(I) an initial value problem_x = f(t; x) + g(t; x)v; x(t0�) = x0; (28)where (t0; x0) 2 D,1) The funtion f : D ! Rn is Caratheodory in (t; x) 2 D and Lipshitz in x with the onstantKf > 0 in D.2) The funtion g : D ! Rn�n belongs to sGn in t (in partiular, g is ontinuous in t) andLipshitz in x with the onstant Kg > 0 in D.3) The distribution v 2 T 0n is de�ned by v = _u;where u 2 sBVlon , we assume that for any � 2 T (u) �� (u) 6= 0, so aording to the de�nition ofthe derivative in T 0n v = _u + X�2T (u)
�� (u); Æ��� �; (29)where Æ��� 2 T 0n is the vetor-valued delta-funtion, (Æ��� ; ') := �(Æ�i�� ; ')�ni=1, where ' 2 T ,�� = (�i� )ni=1 2 Ln(J), h; i is the omponentwise produt in Rn.Let us note that g may be disontinuous in t. This is important, sine in the problems of optimalontrol g may also depend on the (disontinuous) ordinary ontrol (in t), whih is not onsideredhere.A solution of the initial value problem (28) on 
 � I is the dynami funtion x 2 sBVlon (
)suh that x(t)(s) 2 D (t 2 
, s 2 J) and (28) is satis�ed in T 0n(
). An ordinary part x̂ 2 BVlon (
)of the solution x is alled the ordinary solution of (28). Let us note that in ontrast to theapproah based on the spae of distributions D0 the operations of multipliation, di�erentiationand omposition arising in (28) are orretly de�ned in the sense of the distribution theory inT 0n(
) (see the Introdution).In the formulation of the next theorem we put 
 = I.Theorem 3. Let x 2 sBVlon be the solution of (28), x̂ 2 BVlon be the ordinary solution of (28).Thenx̂(t) = x0 + Z tt0 f�r; x̂(r)�dr + Z tt0 ĝ�r; x̂(r)�du(r)+X�<t�� (1=2)� x̂(��)� � X�<t0(� (1=2)� x̂(��)); (30)



8 D. KINZEBULATOVand the dynami value � (�) := x(� )(�) satis�es_� (s) = g��; � (s)�(s)
�� (u); �� (s)�; � (�1=2) = x(��); (31)where T (u) = f�g is at most ountable by Lemma 2, g�t; x�(s) is a dynami value of g at (t; x),x(�+) = x̂(�+) = � (1=2).Conversely, any x 2 sBVlon satisfying (30),(31) is a solution of (28).Proof. Observe that by our assumptions a solution of the problem (31) exists and is unique. Letus show that the seond statement holds. Suppose that there exists a solution x̂ 2 BVlon of theintegral equation (30). Then we may de�ne x 2 sBVlo as in the formulation of the theorem. First,show that x 2 sBVlon satis�es the initial ondition in (28). We have that x(t0�) = x̂(t0�), thelimit x̂(t0�) exists sine x̂ 2 BVlon . Sine all the integrals in (30) are ontinuous in t, we havelimt!t0� Z tt0 f(r; x̂(r))dr = 0; limt!t0� Z tt0 ĝ(r; x̂(r))du(r) = 0;so the limit of the step part in (30) islimt!t0�X�<t�� (1=2)� x̂(��)� = X�<t0(� (1=2)� x̂(��));i.e., x(t0�) = x0. Seond, we show that x 2 sBVlon satis�es the di�erential equation in (28) in T 0n.Aording to the de�nition of the derivative, we have( _x; ') = ZI '̂(t)dx(t) + X�2T (u) ZJ '(� )(s)(x(� )(s))�sds; (32)where x(� )(s) = � (s), so di�erential equation (28) is equivalent toZI '̂(t)dx(t) + X�2T (u) ZJ '(� )(s)(x(� )(s))�sds == ZI f(t; x̂(t))'̂(t)dt+ ZI ĝ(t; x̂(t))du(t) + X�2T (u) ZJ '(� )(s)g��; x(� )(s)�(s)h�� (u); �� (s)ids:Let us show that the equalityZJ '(� )(s)(x(� )(s))�sds = ZJ '(� )(s)g��; x(� )(s)�(s)h�� (u); �� (s)ids (33)holds for any ' 2 T , � 2 T (u), and _x = f(t; x) + g(t; x) _u: (34)Indeed, the equality (33) follows from (31), where x(� )(s) = � (s) (� 2 T (u)). Further, by thede�nition of the regular distribution in T 0n, the equality (34) is equivalent to the equalityZI '̂(t)dx(t) = ZI '̂(t)f(t; x̂(t))dt+ ZI '̂(t)ĝ(t; x̂(t))du(t)for any ' 2 Tn. Then the last equality is equivalent tox(t) = x(t0) + Z tt0 f(r; x̂(r))dr + Z tt0 ĝ(r; x̂(r))du(r) (35)for all t 2 I. As follows from the onstrution of x 2 sBVlo in the statement of the theorem, thevalue of the jump of the solution x(�+) � x(��) an be found from the dynami value x(� )(�) =� (�). Consequently, the equality of the ontinuous parts (35) implies (30). Sine the equalitiesobtained are equivalent to the equalities (33),(34) in T 0n, the dynami funtion x 2 sBVlon is asolution of the initial value problem (28).We now show that the �rst statement holds. Let x 2 sBVlon be the solution of the problem(28). Then (33) and (34) are true. Further, the equality (34) is equivalent toZI '̂(t)dx(t) = ZI '̂(t)f(t; x̂(t))dt+ ZI '̂(t)ĝ(t; x̂(t))du(t)



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 9for all ' 2 Tn. Aording to DuBois-Reymond Lemma [15℄, we havex(t) = x(t0) + Z tt0 f(r; x̂(r))dr + Z tt0 ĝ(r; x̂(r))du(r) (36)for all t 2 I. Analogously, as follows from DuBois-Reymond Lemma, the equality (33) implies that(31) holds for any � 2 T (u). Then (30) is true, as follows from the de�nition of the spae sBVlonand the initial ondition x(t0�) = x0. �Theorem 4. There is a onstant h > 0 suh that there exists a solution x 2 sBVn(t0�h; t0+h) ofthe problem (28) , whih is unique in the sense that it oinides with any other solution of (28) onthe ommon interval of de�nition in (t0 � h; t0 + h), and depends ontinuously on uj(t0�h;t0+h) 2sBVn(t0 � h; t0 + h).Proof. Let us denote Ih := (t0 � h; t0 + h), I+h := (t0; t0 + h), I�h := (t0 � h; t0) � I = (a; b). Letus onsider in BVn(I+h ) the following integral equationx̂(t) = x0 + Z tt0 f�r; x̂(r)�dr+ Z tt0 ĝ�r; x̂(r)�du(r) + Xt0<�<t�� (1=2)� x̂(��)�; (37)_� (s) = g��; � (s)�(s)
�� (u); ��(s)�; � (�1=2) = x̂(��); (38)where � 2 T (u) � I+h , the dynami funtion u is assumed to be restrited to I+h . Clearly, if thesolution x̂ 2 BVn(I+h ) of (37)(38) exists, then x̂(t0+) = x0. Let us show the existene of solutionof (37)(38) in BVn(I+h ) for some h > 0. Let N > 0. We de�neMhg = maxfjg(t; x)(s)j : s 2 J; t 2 [t0; t0 + h℄; jx� x0j � Ng � 0; (39)Q+h = fx̂ 2 BVn(I+h ) : kx̂� x0kBVn(I+h ) � Ng; (40)so that [t0; t0 + h℄� fx 2 Rn : jx� x0j � Ng � D. Obviously, Q+h is a omplete metri subspae.We de�ne a map P on Q+h by the formulaP (x̂)(t) = x0 + Z tt0 f�r; x̂(r)�dr + Z tt0 ĝ�r; x̂(r)�du(r) + Xt0<�<t�� (1=2)� x̂(��)�;where t 2 I+h , x̂ 2 Q+h . ThenkP (x̂) � x0kBVn(I+h ) � ZI+h ��f�r; x̂(r)���dr+Mhg �varI+h (u)�2 +Mhg varI+h (u):Then there exists h > 0 suh that kP (x̂)� x0kBVn(I+h ) 6 N , i.e., P : Q+h ! Q+h . Let us show thatthere exists h > 0 suÆiently small suh that there is � > 0 suh thatkP (x̂)� P (ŷ)kBVn(I+h ) � �kx̂� ŷkBVn(I+h ) (41)for all x̂, ŷ 2 Q+h . Indeed, to have the inequality (41) satis�ed it suÆes to put� = Kfh+KgvarI+h (u)h +KgvarI+h (u)vartt0(u) � 0; (42)so we an �nd h > 0 suÆiently small suh that � < 1. Then aording to the Fixed PointTheorem [25℄ the mapping P has the only �xed point in Q+h , whih is the only solution of theintegral equation (37)(38). Sine the solution � of the problem (31) exists on J for any � 2 T (u),and T (u) = T (x̂) = ft 2 I+h : x̂(t+) 6= x̂(t�)g, we may de�ne x 2 sBVn(Ih) by x(t) = x̂(t) ift 62 T (u), and x(t)(s) = t(s) (s 2 J) if t 2 T (u). Aording to Theorem 3, the dynami funtionx 2 sBVn(I+h ) is the solution of the initial value problem (28) on I+h .



10 D. KINZEBULATOVFurther, by the hange of independent variable in (37) from t to �t we an show that thereexists h > 0 suh that [t0 � h; t0 + h℄� fx 2 Rn : jx � x0j � Ng � D and the following integralequationx̂(t) = x0 + Z tt0 f�r; x̂(r)�dr + Z tt0 ĝ�r; x̂(r)�du(r)+Xt0�h<�<t�� (1=2)� x̂(��)�� X�<t0�� (1=2)� x(��)�; (43)endowed with ondition (38), where � 2 T (u) � Ih, and the dynami funtion u is assumed to berestrited to Ih, has a unique solution inQh = fx̂ 2 BVn(Ih) : kx̂� x0kBVn(Ih) � Ng:Now let us show that the mapping P = Pu depends ontinuously on u 2 sBVn(I+h ). Supposethat we have fukg1k=1 � sBVn(I+h ), u 2 sBVn(I+h ) anduk ! uin sBVn(I+h ). Let us show that for any x̂ 2 Q+h we have Puk(x̂)! Pu(x̂) in Q+h . Indeed, we havekPu(x̂)� Puk(x̂)kBV(I+h ) � Mhg varI+h (u� uk)+Mhg varI+h (u� uk)varI+h (u) +Mhg varI+h (uk)varI+h (u� uk);where fvarI+h (uk)g1k=1 is bounded, sokPu(x̂)� Puk(x̂)kBVn(I+h ) ! 0 as ku� ukksBVn(I+h ) ! 0:As is shown in [25℄, the inequality above implies the onvergene x̂k ! x̂ in Q+h , where x̂k 2 Q+h isa �xed point of the mapping Puk (k 2 N). Consequently, the solution x̂ 2 BVn(I+h ) of the integralequation (30) depends ontinuously on u 2 sBVn(I+h ).Let us show that the solution x 2 sBVn(I+h ) of the problem (28) depends ontinuously onu 2 sBVn(I+h ). Let us denote the dynami values �� (�) = u(� )(�), �k� (�) = uk(� )(�) 2 A C (J)(� 2 T (u)), and denote the solution of the system (31) orresponding to uk by k� 2 A C (J).Employing the known estimations we havevarJ (� � k� ) � Mhg �j�� (u)� �� (uk)jvarJ (�� ) + j�� (uk)jvarJ (�� � �k� )�+Kg j�� (uk)jenpnKghMhg �varI+h (u)j�� (u) � �� (uk)j+ j�� (uk)jvarI+h (uk)varJ (�� � �k� )�;where the sequenes fvarI+h (uk)g, fj�� (uk)jg are bounded. Consequently,kxk � xksBVn(I+h ) ! 0 if kuk ! uksBVn(I+h ) ! 0:The ase of the left-sided neighborhood I�h is treated similarly, so the solution x 2 sBVn(Ih) ofthe initial value problem (28) depends ontinuously on u 2 sBVn(Ih). �The existene of a non-ontinuable in D solution of the initial value problem (28) an be shownin a standard way.Let D = I �N , N � Rn be open. An initial value problem_x = f(t; x) + g(t; x)v; x(t0�) = x0 (44)where v = _u 2 D0n, u 2 BVlon , was onsidered, in partiular, in [2, 3, 20, 27, 29, 31℄. The solutionx 2 BVlon of the initial value problem (44) is de�ned byx := limk!1xk in D0n;



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 11where xk 2 A C lo is the solution of the initial value problem for the di�erential equation with theordinary right-hand side, _xk = f(t; xk) + g(t; xk)vk(t); xk(t0) = x0;where vk = _uk 2 Llon , uk 2 A C lon , and vk ! v in D0n [27, 29℄. If the funtion g is ontinuouslydi�erentiable in (t; x) 2 D, then the neessary and suÆient ondition for the uniqueness of thesolution of (28), i.e., its independene on the hoie of the approximating sequene fvkg1k=1, is theFrobenius ondition �gm; gl�x(t; x) = 0; (t; x) 2 D; 1 � l;m � n; (45)where gm is an m-th olumn of g, and [�; �℄x is the Lie braket in the variable x, e.g., see [27, 29℄. Ifthe ondition (45) is satis�ed, then the solution x 2 BVlon of the initial value problem (44) satis�esx(t) = x0 + Z tt0 f�r; x(r)�dr + Z tt0 g�r; x(r)�du(r)+X�<t�� (1=2)� x(��)�� X�<t0�� (1=2)� x(��)�; (46)_� (s) = g��; � (s)��� (u); � (�1=2) = x(��); (47)where T (u) = f�g, x(�+) = (1=2) [29℄.As is well known, the ondition (45) is a neessary and suÆient ondition for the invariane ofthe value (1=2) 2 Rn with respet to the hoie of the funtion � 2 Ln(J) satisfying (22), where is a solution of the problem_(s) = g��; (s)��(s); (�1=2) = 0; (48)where � 2 I, 0 2 N [22℄. Consequently, (45) is equivalent to the ondition of the independene ofthe ordinary solution of problem (28) on the hoie of the shapes of delta-funtions �� (� 2 T (u))(see the Introdution).Let us note that if the ondition (45) is satis�ed, then (47) oinides with (31) for �k �(1; : : : ; 1)>.Example 7. Let I = (�1; 1), D = I �R. Let us onsider in T 0 the initial value problem,_x = Æ�0 x; x(�1=2�) = x0; (49)where x0 2 R. Aording to Theorem 3 the solution x 2 sBV of the problem (49) is given byx(t) = � x0; t < 0;x0e; t > 0; x(0)(s) = x0eR s�1=2 �(�)d� (s 2 J);where J = [�1=2; 1=2℄.Note that the same value of the jump of the solution at t = 0 an be obtained if the delta-funtion Æ�0 in (49) is replaed by the terms of the delta-sequene (23) having the shape �. Alsonote that the value of the jump of the solution at t = 0 is independent of the hoie of the shape� sine for n = 1 the Frobenius ondition (45) is always satis�ed.4. Viability Theorem and stability analysisLet 
 = (t0; T ) � I, let M � Rn be a losed subset, D = I � N , where N is an open subset,M � N . The following extends De�nition 1.D e f i n i t i o n 4. A solution of the system (28) suh that x(t0�) 2M andx(t)(s) 2Mfor all t 2 
[ft0g, s 2 J , where t0 2 I, is said to be viable in M on 
. The set M is said to havethe property of viability for (28) on 
, if any solution of (28) suh that x(t0�) 2M is viable in M(on 
).



12 D. KINZEBULATOVSuppose that the set M � Rn is given byM = fx 2 Rn : �i(x) � 0; 1 � i � mg; (50)where �i : Rn ! R are ontinuously di�erentiable on Rn (1 � i � m), so M is losed in Rn.Clearly, for eah 1 � i � m if x 2 Rn is suh that �i(x) = 0, _�i(x) 6= 0, thenKfp : �i(p)�0g(x) = fy : ( _�i(x); y) � 0g:Then aording to [7, p.224℄ for any x 2 �M suh that _�i(x) 2 Rn (i 2 Lx = fi : �i(x) = 0g) arelinearly independent, the ontingent one KM (x) is given byKM (x) = fy 2 Rn : � _�i(x); y� � 0; i 2 Lxg: (51)The following theorem follows immediately from the Nagumo Theorem.Theorem 5. Let _�i(x) 2 Rn (i 2 Lx) be linearly independent for any x 2 �M . If� _�i(x); f(t; x)� � 0 (i 2 Lx)for all t 2 
, x 2 �M , then M has the the property of viability for (7) (on 
).Let us onsider in T 0n the following di�erential equation with distributions of the form (28),_x = f(t; x) + g(t; x)v; v = w + 1Xk=1hk; Æ�k�k i 2 T 0n; (52)where the funtion w : I ! Rn is ontinuous, f�kg1k=1 � I, Æ�k�k 2 T 0n, the oeÆients k 2 Rnare suh that the primitive of v in T 0n is in sBVlon , �k 2 Cn (J), the funtions f , g satisfy 1), 2)and f is also ontinuous in t 2 
. We suppose that for any x0 2 D there exists a non-ontinuablesolution of the initial value problem for (52) in D with the initial value x(t0�) = x0.The following statement generalizes Theorem 5.Theorem 6. Let _�i(x) 2 Rn (i 2 Lx) be linearly independent for any x 2 �M . If� _�i(x); f(t; x) + g(t; x)v� � 0 (i 2 Lx) (53)in T 0(
) for all x 2 �M , then M has the property of viability for (52) (on 
).The de�nition of a non-positive distribution in T 0 was given in Setion 2. As follows from(53) and the examples below, the property of viability depends on the hoie of the shapes of thedelta-funtion in v, inluding the ase where the Frobenius ondition (45) is satis�ed.Proof. 1) Let x 2 �M , i 2 Lx. Let us show that if the inequality (53) holds, then� _�i(x); f(t; x) + ĝ(t; x)w(t)� � 0 (54)for all t 2 
, and � _�i(x); g(�k; x)(s)hk; �k(s)i� � 0 (55)for all s 2 J , k 2 N. Aording to the de�nition of a non-positive distribution in T 0, the inequality(53) implies thatZI( _�i(x); f(t; x) + ĝ(t; x)w(t))'̂(t)dt + 1Xk=1( _�i; g(�k; x)(s)hk; (Æ�k�k ; ')i) � 0for any ' 2 T , ' � 0, where '̂ = ord('), i.e., by the de�nition of the delta-funtionZI( _�i(x); f(t; x) + ĝ(t; x)w(t))'̂(t)dt+ 1Xk=1� _�i; ZJ g(�k; x)(s) hk; �k(s)'(�k)(s)i ds� � 0 (56)for any ' 2 T , ' � 0. Let k0 2 N be �xed. Let ' 2 T be suh that '̂ � 0, '(�k)(�) � 0 (k 6= k0),'(�k0)(�) � 0. Then (56) implies that� _�i(x); ZJ g(�k0 ; x)(s) hk0 ; �k0(s)'(�k0 )(s)i ds� � 0: (57)



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 13Due to the linearity of the integral, the inequality (57) is equivalent toZJ� _�i(x); g(�k0 ; x)(s)hk0 ; �k0(s)i�'(�k0 )(s)ds � 0 (58)for any '(�k0)(�) � 0. Then due to the ontinuity of the funtions in (58) we have� _�i(x); g(�k0 ; x)(s)hk0 ; �k0(s)i� � 0for all s 2 J . Sine k0 2 N was hosen arbitrarily, we obtain (55).Let ' 2 T , ' � 0. Sine the hange of the dynami values of ' in �nitely many points �k doesnot hange '̂ = ord('), and the series in the right-hand side of (56) onverges, we obtain thatZI� _�i(x); f(t; x) + ĝ(t; x)w(t)�'̂(t)dt � 0for all ' 2 T , ' � 0, whih implies (54).Sine x 2 �M , i 2 Lx were hosen arbitrarily, aording to Theorem 5 we obtain that theonditions (54) and (55) imply that M has the property of viability for_x = f(t; x) + ĝ(t; x)w(t); (59)and for the system (31) (for any k 2 N), respetively.2) Consider �rst the partiular ase where there exists l > 0 suh that �k+1 � �k � l for allk 2 N. Let 
 = (0;1).Let �1 > 0. Then x(0) = x0 and by Theorem 3 sine �k+1� �k � l > 0 for all k 2 N there exists� > 0 suh that x has the ordinary values x(t) and_x(t) = f�t; x(t)�+ ĝ�t; x(t)�w(t); (60)for all t 2 [0; �). As is mentioned above,M has the property of viability (60) on (0; �), so x(t) 2Mfor all t 2 [0; �).Now suppose that �1 = 0. Then by Theorem 3 the jump of the solution x at �1 = 0 an befound from (31) at point �1. Due to the remark above we have thatM has the property of viabilityfor (31) at the point �1, so sine 1(�1=2) = x(0�) 2 M we have that 1(s) 2 M for all s 2 J .Consequently, x(0+) = (1=2) 2 M . Analogously to the �rst ase we obtain that there exists� > 0 suh that x(t)(s) 2M for all t 2 [0; �), s 2 J .We show that x(t)(s) 2M for all t � 0, s 2 J . By the hange of the independent variable t weobtain that the inlusion x(t0�) 2M implies that there exists � = �(t0; x(t0�)) > t0 suh thatx(t)(s) 2M (61)for all t 2 [t0; �), s 2 J . Thus, we obtain a strongly monotonially inreasing sequene ftkg1k=1suh that M has the property of viability on (0; tk) Suppose that the sequene ftkg1k=1 is boundedfrom above. Consequently, tk ! t� from the left, where 0 < t� < 1. By our assumption thesolution x is de�ned for all t � 0. Sine M is losed, the limit x(t��) 2M . Thus, we may hangethe independent variable t, and apply the same arguments for t0 = t�. As a result, we obtain aontradition with the assumption that t� is the maximal possible, so (61) holds for all t 2 (0;1),s 2 J .The ase of bounded 
 is treated similarly.3) Consider the general ase. Without loss of generality we give a proof for the ase 
 = (0;1).Let [; d℄ � 
, u 2 sBVn(; d), v = _u 2 T 0n(; d),u = q + 1Xk=1hk; ��k�k i:where q : I ! Rn is ontinuously di�erentiable, w = _q, �k 2 A C n(J), �k = _�k (k 2 N), andwithout loss of generality �k 2 (; d) (k 2 N). Let us de�neul = q + Xjkj�1=lhk; ��k�k i;



14 D. KINZEBULATOVwhere vl = _ul 2 T 0n(; d) ontains the linear ombination of delta-funtions. Sineku� ulksBVn(;d) =  Xjkj�1=lhk; ��k�k isBVn(;d) ! 0(l !1), by Theorem 4 we have the onvergene xl ! x in sBVn(; d) of the sequene of solutionsxl 2 sBVn(; d) of the initial value problems (52) for vl = _ul. We apply the results obtained aboveto the initial value problems (52) orresponding to vl 2 T 0n, so, any solution xl is viable in M on(; d), i.e., xl(t)(s) 2M for all t 2 (; d), s 2 J . Convergene xl ! x in sBVn(; d) implies thatxl(t)(s)! x(t)(s) �t 2 (; d); s 2 J�:Sine M is losed, we have x(t)(s) 2 M for all t 2 (; d), s 2 J . Sine [; d℄ � 
 was hosenarbitrarily, we obtain that x(t)(s) 2M for all t � t0, s 2 J . �Corollary 1. Let _�i(x) 2 Rn (i 2 Lx) be linearly independent for any x 2 �M . If� _�i(x); f(t; x) + ĝ(t; x)w(t)� � 0 (62)for all t 2 
, x 2 �M , � _�i(x); g(�k; x)(s)
k; �k(s)�� � 0 (63)for all s 2 J , k 2 N, x 2 �M , then M has the property of viability for (52) (on 
).Proof. The proof follows from the proof of Theorem 6. �Example 8. Let I = (�1;1), D = I � (�1; 2). Let 
 = (0;1) � I, f�kg1k=1 � 
, �k !1. Letus onsider in T 0 the following ordinary di�erential equation with distributions of the form (52),_x = �x+ �12 � x� 1Xk=1 Æ�k�k ; �k � 0; �k 2 C (J): (64)Let �(x) = (x� 1=2)2 � 1=4, so M = fx 2 R : �(x) � 0g = [0; 1℄:Notie, that _�(x) 2 f�1; 1g if x 2 �M = f0; 1g. Sine the system (64) has form (44) for f(x) = �x,g(x) = 1=2� x, and v =P1k=1 Æ�k�k , we may apply Corollary 1. We have_�(1)f(1) � 0; _�(0)f(0) � 0;and _�(1)g(1)�k(s) � 0; _�(0)g(0)�k(s) � 0for all s 2 J , k 2 N, where _�(1) = 1, g(1) = �1=2, _�(0) = �1, g(1) = �1=2, f(1) = �1, f(0) = 0and �k � 0 (s 2 J , k 2 N). Aording to Corollary 1 the set M has the property of viability forthe system (64) on 
.Let us onsider the appliations of Theorem 6 to stability analysis.Let I = (a;1). Consider the ordinary di�erential equation with distributions of the form (28),_x = f(x) + g(x)v; (65)where f : D ! Rn, g : D ! Rn�n are Lipshitz in D. The solution of (65) whih is identiallyequal to a onstant x� 2 D is alled the equilibrium point (learly, x� is an equilibrium point of(65) if and only if f(x�) = g(x�) = 0).Following the standard terminology, we note that the equilibrium point x� 2 D is uniformlystable, if there exists a sequene of the losed subsets Mn+1 � Mk � D (k 2 N), where Mkontains an open neighbourhood of x� 2 D and is also ontained in another open neighbourhoodof x� 2 D, suh that for any l 2 N there exists k > l having the property: any solution x of (65)with x(t0�) 2Mk is viable in Ml on 
 = (t0;1) � I.Theorem 7. Suppose that x� 2 D is an equilibrium point of (65), and�x� x�; f(x) + g(x)v� 6 0 (66)in T 0n(
) for any x 2 D suh that jx� x�j2 = 1=l, where j � j2 is a Eulidean norm in Rn, l 2 N.Then x� is uniformly stable.



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 15Proof. Let us note that in the de�nition of the uniform stability above we may have l = k, thatis, it suÆes to prove that for eah l 2 N the subset Ml has the property of viability for (??) on
 = (t0;1). Let Ml = fx 2 D : �l(x) 6 0g; where �l(x) = jx� x�j22 � 1l2 :Then the sequene fMlg1l=1 satis�es the onditions above. We have_�l(x) = 2(x� x�) 6= 0for any x 2 D suh that jx� x�j2 = 1=l. Aording to Theorem 6 the inequality (66) implies thatMl possesses the property of viability for (65) on 
, so x� is uniformly stable. �Analogously to Theorem 6, we obtain the following orollary of Theorem 7.Corollary 2. Suppose that x� 2 D is an equilibrium point of (65), and�x� x�; f(x) + g(x)w(t)� 6 0 (67)for all t 2 
 = (t01) and all x 2 D suh that jx� x�j2 = 1=l,�x� x�; g(�k; x)(s)
k; �k(s)�� 6 0 (68)for all s 2 J , k 2 N and all x 2 D suh that jx� x�j2 = 1=l, where j � j2 is a Eulidean norm inRn, l 2 N. Then x� is uniformly stable.Proof. The proof follows from the proof of Theorem 6. �Example 9. Let us onsider the ordinary di�erential equation with distributions_x = �12 � x� 1Xk=1 Æ�k�k ; (69)where I = (�1;1), the shape �k > 0 is ontinuous. Clearly, (69) has an equilibrium pointx� = 12 :The equation (69) has the form of (65) for f(x) � 0, g(x) = 12 � x, w(t) � 0. We have to showthat the inequality (68) holds. Indeed, the inequality (68) is equivalent to�12 � x��k(s)�x� 12� = ��12 � x�2�k(s) 6 0for any s 2 J and any x suh that jx�1=2j = 1=l (l 2 N). Aording to Theorem 7 the equilibriumpoint x� = 12 of equation (69) is uniformly stable.5. The statement of the impulse problem of avoidane of enountersLet M � Rn be a losed subset, D = I � N , where N is an open subset, M � N . Let usonsider in Rn the following ontrolled system of the form (9),_x = f(t; x) + g(t; x)v; x(t0) = x0; v 2 V; (70)where f , g satisfy onditions 1), 2), the funtion f is ontinuous in t, and the set of admissibleordinary ontrols V is given byV = �v 2 Ln(I) : vi(�) � 0; Z
 vi(s)ds � V; 1 � i � n� ; (71)where 
 = (t0; T ) � I, V > 0 is given, v = (vi)ni=1.Let VM (T ) � V be the maximal set of admissible ontrols suh thatv 2 VM (T ) implies that x is viable in M on 
 = (t0; T ) � I;where x 2 A C n is the solution of system (70). Aording to [21℄, we all the followingmaximizationproblem T !v max; v 2 VM (T ) (72)



16 D. KINZEBULATOVthe problem of avoidane of enounters with the set Rn nM .Along with the system (70), let us onsider in T 0n the following ontrolled system_x = f(t; x) + g(t; x)v; x(t0�) = x0; v 2 V0; (73)where f , g satisfy 1), 2), the funtion f is ontinuous in t, and the set of admissible distributional(i.e., impulse) ontrols V0 is given byV0 = (v 2 T 0n(I) : vi � 0; Z Tt0 vids � V; 1 � i � n) ; (74)where V > 0 is given, v = (vi)ni=1 (the de�nitions of a non-negative distribution and integral of adistribution were given in Setion 2). Notie that V � V0, where the elements of V are viewed asthe regular distributions in T 0n. Thus, system (73)(74) is an extension of system (70)(71).We de�ne V0M (T ) � V0 to be the maximal set of admissible ontrols suh thatv 2 V0M (T ) implies that x is viable in M on 
 = (t0; T ) � I;where x 2 sBVn is a solution of system (73). Analogously to [21℄, we all the maximization problemT !v max; v 2 V0M (T ) (75)the impulse problem of avoidane of enounters with the set Rn nM .As follows from the next example, the problem of avoidane of enounters may have no solution(T �; v�) for the system (70)(71), but may have a solution for the extended system (73)(74).Example 10. Let I = (�1;1), D = I �R. Let �(x) = x2 � 1, soM = fx 2 R : �(x) � 0g = [�1; 1℄:Let us onsider in T 0 the following ontrolled system_x = x� v; v 2 V; x(0�) = 1; (76)V = �v 2 T 0 : v � 0; Z 10 vdt � 12� :Let us show that the solution of the problem of avoidane of enounters with the set RnM for(76) is given by 
� = (0; T �) � I,T � = ln(2); v� = 12Æ�0 ; � � 0:Suppose that v = 1=2Æ�0 , � � 0. Then aording to Theorem 3 we have x(0)(s) = (s) (s 2 J),x(t) = 1=2et, t 2 �0; ln(2)�, where0 � (s) = 1� 12 Z s�12 �(�)d� � 1for all s 2 J , so x is viable in M on 
 = (0; ln(2)) � I. Along with that, for any regular ontrol vsolution of (76) is given by x(t) = et � et2 Z t0 v(s)e�sdsfor all t > 0. As follows from the obtained representation, there exists � > 0 suh that x(t) �et � et e��2 for all t � 0. Thus, T < ln� 11� e��2 � < ln(2);so T � = ln(2) is the maximal viability time.In the subsequent paper we provide the neessary onditions for optimality in the impulseproblem of avoidane of enounters with the set Rn nM .
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