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SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREMD. KINZEBULATOVAbstra
t. The approa
h to the 
onsideration of the ordinary di�erential equations with dis-tributions in the 
lassi
al spa
e D0 of distributions with 
ontinuous test fun
tions has 
ertaininsuÆ
ien
ies: the notations are in
orre
t from the point of view of distribution theory, theright-hand side has to satisfy the restri
tive 
onditions of equality type. In the present paperwe 
onsider an initial value problem for the ordinary di�erential equation with distributions inthe spa
e of distributions with dynami
 test fun
tions T 0 , where the 
ontinuous operation ofmultipli
ation of distributions by dis
ontinuous fun
tions is de�ned [17℄, and show that this ap-proa
h does not have the aforementioned insuÆ
ien
ies. We provide the suÆ
ient 
onditions forviability of solutions of the ordinary di�erential equations with distributions (a generalization ofthe Nagumo Theorem), and show that the 
onsideration of the distributional (impulse) 
ontrolsin the problem of avoidan
e of en
ounters with the set (the maximal viability time problem)allows us to provide for the existen
e of solution, whi
h may not exist for the ordinary 
ontrols.1. Introdu
tionAt the end of the nineteenth 
entury K. Weierstrass pointed out the existen
e of 
ertain problemsin the 
al
ulus of variations where the minimum 
an not be a
hieved by any smooth fun
tion, andthe minimizing sequen
e 
onverges to a dis
ontinuous fun
tion (e.g. the Golds
hmidt solution ofthe surfa
e of revolution area minimization problem [1℄). As it was further observed, the existen
eof the dis
ontinuous solutions is not a spe
ial, but a general situation, for a large 
lass of problemsof optimal 
ontrol theory (viewed as generalizations of the problems of 
al
ulus of variations [12℄)with one-sided phase 
onstraints on 
ontrol [26, 32℄. The ne
essity of extension of these problems inorder to provide the existen
e of solutions, leads to ordinary di�erential equations with distributionsor, equivalently, ordinary di�erential equations with measures [2, 3, 27, 29, 31℄.Example 1 ([20℄). The ordinary di�erential equation with distributions arises in the followingoptimal 
ontrol theory problem_x = x+ v; x(0�) = 0; x(1�) = 1; v � 0; (1)J(v) = Z(0;1) v(t)dt!v min; (2)where x is the 
oordinate of the spa
e shuttle, v is the 
urrent 
harge of fuel, J determines thetotal 
harge of fuel. Problem (1)(2) does not have a solution among the pairs (v; x) of lo
allysummable 
ontrols v 2 Llo
 and lo
ally absolutely-
ontinuous x 2 A C lo
, and the minimizingsequen
es 
onverge to the elementsv� = 12Æ0; x�(t) = � 0; t < 0;et�1; t > 0; (3)where Æ0 is the delta-fun
tion 
on
entrated at point t = 0.Let us 
onsider the following ordinary di�erential equation_x = f(t; x) + g(t; x)v; (4)where v is a distribution, whi
h was studied, in parti
ular, in [2, 3, 11, 20, 27, 29, 31℄, in the 
lassi
alspa
e D0 of distributions with 
ontinuous test fun
tions [30℄. Sin
e v 2 D0 
an be represented as2000 Mathemati
s Subje
t Classi�
ation. 49N25, 34H05.Key words and phrases. Di�erential equations with distributions, produ
ts of distributions, impulse optimal
ontrol, viability, Nagumo Theorem. 1



2 D. KINZEBULATOVthe limit of a sequen
e of ordinary fun
tions fvkg1k=1 � Llo
, a solution of (4) 
an be viewed as thelimit x := limk!1xk in D0; (5)where xk 2 A C lo
 is the solution of the ordinary di�erential equation_xk = f(t; xk) + g(t; xk)vk(t): (6)So any solution of (4) is a fun
tion of lo
ally bounded variation, in general 
ase dis
ontinuous[2, 3, 11, 20, 27, 29, 31℄.However, the 
onsideration of the equation (4) in the spa
e D0 leads to 
ertain problems.Namely, the notations in (4) are in
orre
t from the point of view of distribution theory, sin
e(4) 
ontains the produ
t of a dis
ontinuous fun
tion g��; x(�)� and a distribution v 2 D0, whi
h isunde�ned in D0.Further, let n be the dimension of the system (4). If n � 2, then the solution (5) is independentof the 
hoi
e of fvkg1k=1 if and only if the 
ondition of equality type (Frobenius 
ondition) forthe right-hand side of (4) is satis�ed [27℄. However, this 
ondition 
an not be satis�ed for a large
lass of problems of optimal 
ontrol theory, e.g., see [11, 27℄. The approa
h to 
onsideration ofthe sequen
e fvkg1k=1 as the part of the system (4) is not new (e.g., see [11, 27℄), however, it wasnot studied from the point of view of distribution theory, sin
e the 
hoi
e of a parti
ular sequen
efvkg1k=1 is not motivated by any properties of the spa
e D0.Let us note that sin
e D0 is isomorphi
 to the spa
e of Borel measures [30℄ on R, the problemsdes
ribed above 
an be reformulated for the ordinary di�erential equations with measures.The insuÆ
ien
ies des
ribed above are due to the absen
e in D0 of the 
ontinuous operation ofmultipli
ation of distributions by dis
ontinuous fun
tions. In the present paper we over
ome theaforementioned insuÆ
ien
ies by 
onsideration of the ordinary di�erential equation with distribu-tions (4) in the spa
e T 0 of distributions with dynami
 test fun
tions [17℄, where the 
ontinuousoperation of multipli
ation by dis
ontinuous fun
tions is de�ned (see the dis
ussion on the problemof multipli
ation of distributions by dis
ontinuous fun
tions in the 
lassi
al spa
e D0 and in otherapproa
hed, in parti
ular, in the Colombeau generalized fun
tions algebra [13, 14, 24℄ therein).Also, we study the property of viability of solutions of the ordinary di�erential equations withdistributions in T 0. The notion of a viable solution was introdu
ed by J.-P. Aubin [5, 7℄ for thefollowing ordinary di�erential equation _x = f(t; x); (7)where f is 
ontinuous in t 2 I and lo
ally Lips
hitz in x 2 Rn. Let M � Rn be a 
losed subset,t0 2 I, 
 = (t0; T ) � I is an open interval, in general 
ase unbounded. Following [7℄, we give thenext de�nition.D e f i n i t i o n 1. A solution of (7) su
h that x(t0) 2M andx(t) 2M (8)for all t 2 
 is said to be viable in M (on 
). The set M is said to have the property of viability(on 
) for (7), if any solution of (7) su
h that x(t0) 2M is viable in M (on 
).The property of viability is 
losely related to the problems of existen
e of the equilibrium points,
onstru
tion of non-smooth Liapunov fun
tionals, and the problems of optimal 
ontrol theory [4℄,in parti
ular, the problem of 
onstru
tion of the admissible 
ontrol v� 2 V for a 
ontrolled system_x = f(t; x; v); x(t0) = x0; v 2 V; (9)su
h that for v = v� the solution of (9) is viable in M on 
 = (t0; T�), where T� = maxv2V T (theproblem of avoidan
e of en
ounters with the set Rn nM , or the maximal viability time problem[21℄).For ordinary di�erential equations the suÆ
ient 
ondition for the set M to have the viabilityproperty (the ne
essary and suÆ
ient 
ondition in the autonomous 
ase) was given in [28℄.



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 3De f i n i t i o n 2 ([7℄). Let �M : Rn ! R be the distan
e fun
tion, �M (x) := inf
2Mfjx� 
jg. Theset KM (x) = fy 2 Rn : lim inf"!0+ ��M �x+ "y�="� = 0g (10)is 
alled the 
ontingent 
one to the set M at the point x 2 Rn.Theorem 1 (Nagumo Theorem). Let M � Rn be 
losed, M 6= ?. Iff(t; x) 2 KM (x) (11)for all t 2 
, x 2 �M , where �M is the boundary of M , then M has the property of viability for(7) on 
.If the system (7) is autonomous, then (11) is a ne
essary and suÆ
ient 
ondition for M to havethe property of viability for (7) (on 
).After the ordinary di�erential equations, the 
onditions for viability were obtained for the di�er-ential in
lusions [6, 7℄, sto
hasti
 di�erential equations [8, 9℄, di�erential equations and di�erentialin
lusions with aftere�e
t [10, 23℄. In the present paper we 
onsider the property of viability forthe systems with distributions _x = f(t; x) + g(t; x)v; v 2 T 0; (12)and provide the suÆ
ient 
ondition for a 
losed set M whi
h is given by the analyti
 
onstraintsM = fx 2 Rn : �i(x) � 0; 1 � i � mg; (13)where �i : Rn ! R are 
ontinuously di�erentiable fun
tions (1 � i � m), to have the property ofviability for the system (12) (a generalization of Nagumo's Theorem). As an appli
ation of theresults obtained, we provide the suÆ
ient 
ondition for the uniform stability of the equilibriumpoints of the systems with distributions of the form_x = f(x) + g(x)v; v 2 T 0:The 
onsideration of the property of viability for the system (12) is also motivated by theproblem of avoidan
e of en
ounters with the set Rn nM . Namely, the problem of avoidan
e ofen
ounters may have no solution for a system with the ordinary 
ontrols_x = f(t; x) + g(t; x)v; v 2 L; (14)whi
h might be viewed as the restri
tion of the system (12) to the set of regular 
ontrols v, and havea solution for the extended system (12), i.e., when 
ontrol is allowed to be distributional (impulse).Furthermore, the optimal solution of (12) has a natural interpretation as the limit of a sequen
eof solutions of (14). Also, let us mention that the 
onsideration of the property of viability for thesystem (12) in the spa
e T 0 allows us to 
onsider the traje
tory at the moment of dis
ontinuity(i.e., at the moment of the 
on
entration of the delta-fun
tion at v), whi
h is important for thede�nition of the property of viability.1.1. Notations. Let I = (a; b) � R be an open interval, �1 6 a < b 6 1. We denote by Rnand Rn�n the spa
es of the ve
tors and the square matri
es of order n 2 N, respe
tively, with theelements fromR, endowed with the max-norms j � j. Further (�; �) stands for the inner produ
t, h�; �istands for the 
omponentwise produ
t in Rn. For any p, q 2 Rn we have jhp; qij � jpjjqj. In whatfollows, we denote by ,! the embedding, i.e., the map preserving the linear and the topologi
alstru
ture.Let Ĝ be the algebra of bounded fun
tions g : I ! R possessing the one-sided limitsg(a+); g(b�); g(t+); g(t�) (15)for all t 2 I. We identify the elements of Ĝ having the same one-sided limits, and denote theobtained algebra of fun
tions (i.e., the equivalen
e 
lasses of su
h fun
tions) by G = G(I). Wede�ne a norm kgkG := supt2I maxfjg(t+)j; jg(t�)jg; (16)so G is a Bana
h algebra [16℄. Following [18℄, we 
all the elements of G the regulated fun
tions.Let T (g) := ft 2 I : �� (g) := g(�+) � g(��) 6= 0g be set of points of dis
ontinuity of a regulatedfun
tion g 2 G .



4 D. KINZEBULATOVLemma 1 ([16℄). Let g 2 G . Then T (g) is at most 
ountable.Given g 2 G let us 
onsider a partition d = f�igni=1, a < �1 < � � � < �n < b. We de�nevarI(g) := supd n�1Xk=1 jg(�k+1�)� g(�k+)j (17)(the total variation). If varI(g) <1, then we 
all g the fun
tion of bounded variation. We denotethe algebra of fun
tions of bounded variation by BV= BV(I). We de�nekgkBV:= jg(a+)j+ varI(g); (18)so BV is the Bana
h algebra.Let C = C (I) be the subalgebra of the 
ontinuous elements of G . Clearly, C 
onsists of thebounded 
ontinuous fun
tions on I.Let CBV be the subalgebra of 
ontinuous elements of BV. If g 2 BV, then we denote byg
 2 CBV the 
ontinuous part of g [16℄.We denote by L = L(I) the Bana
h algebra of fun
tions whi
h are Lebesgue summable on I.Let us denote by A C = A C (I) the Bana
h algebra of fun
tions whi
h are absolutely 
ontinuous onI. By A C lo
 and Llo
 we denote the algebras of lo
ally absolutely 
ontinuous fun
tions and lo
allysummable fun
tions, respe
tively [19℄. We denote by BVlo
 and CBVlo
 the algebras of fun
tionsof lo
ally bounded variation.Let us denote by F = F(I) the algebra of fun
tions I ! R. We 
all the elements of F theordinary fun
tions.The de�nitions given above 
an be transferred without signi�
ant 
hanges to the 
ase of a �nite
losed interval. 2. DistributionsLet us re
all the 
onstru
tion of the spa
e of distributions with dynami
 test fun
tions [17℄.2.1. Dynami
 fun
tions. Let J = ��12 ; 12�.D e f i n i t i o n 3 ([17℄). A map f : I ! F(J) is 
alled the dynami
 fun
tion.We denote the set of dynami
 fun
tions by dF = dF(I), and de�ne in dF the pointwise operationsof addition, multipli
ation by the element of R and multipli
ation, so dF forms an algebra.For a given f 2 dF we 
all f(t)(�) a dynami
 value of f at t. If f(t)(�) is identi
ally equal to a
onstant, then we 
all f(t)(�) an ordinary value, and denote it by f(t).We de�ne the embedding F ,! dF as follows. For a given f̂ 2 F we asso
iate f 2 dF su
h thatf(t)(�) � f̂ (t) for all t 2 I.Let us denoteU (f) = ft 2 I : f(t)(�) is an ordinary valueg; D(f) = I n U (f):For a given dynami
 fun
tion f 2 dF and an ordinary fun
tion g 2 F we de�ne the 
ompositiong Æ f 2 dF by the formula �g Æ f�(t)(�) := g�f(t)(�)� (19)for all t 2 I. A

ordingly, de�ne an absolute value jf j 2 dF of f 2 dF byjf j(t)(�) := jf(t)(�)jfor all t 2 I. Let us de�ne the support of a dynami
 fun
tion f 2 dF bysupp(f) := 
lft 2 I : t 2 D(f) or f(t) 6= 0g � I :Let K � I. We de�nesupK (f) := supt2K sups2J�f(t)(s)�; infK (f) := inft2K infs2J�f(t)(s)�:A dynami
 fun
tion f 2 dF is said to be bounded on K � I, if supK jf j < 1. A dynami
fun
tion f 2 dF is said to be non-negative on K (denote f � 0 on K), if infK f � 0 (analogouslyde�ne a non-positive dynami
 fun
tion). A 
onstant 
 2 R is 
alled the right-sided limit of f at



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 5� 2 I (denote f(�+) = 
), if for any " > 0 there exists � > 0 su
h that supt2(�;�+�) jf � 
j � "(analogously de�ne the left-sided limit at � 2 I = (a; b), and the one-sided limits at points a; b). Adynami
 fun
tion f 2 dF is said to be 
ontinuous at � 2 I, if � 2 U (f) and f(� ) = f(�+) = f(��)(otherwise we say that f is dis
ontinuous at � 2 I, denote the set of points of dis
ontinuity of fby T (f) � I; noti
e, that D(f) � T (f) for any f 2 dF).Noti
e that if the dynami
 fun
tions in the de�nitions given above are the ordinary ones, thenthese de�nitions 
oin
ide with the ordinary de�nitions.For the purpose of 
onstru
tion of the spa
e of distributions, we are mainly interested in thefollowing algebras of dynami
 fun
tions. Suppose that g 2 dF is su
h that g(t)(�) 2 G(J) (t 2 I), gpossesses one-sided limits g(a+), g(b�), g(t+), g(t�) for any t 2 I. The algebra of su
h dynami
fun
tions (the regulated dynami
 fun
tions) is denoted by dG , and endowed with the normkgkdG := supI jgj; (20)so dG is the Bana
h algebra.Lemma 2 ([17℄). Let g 2 dG . Then T (g) is at most 
ountable.Sin
e D(g) � T (g), we have that any g 2 dG possesses the ordinary values everywhere on Iex
ept for 
ertain at most 
ountable set. For a given g 2 dG , we de�ne an ordinary fun
tion ĝ byĝ(t) := g(t) (t 2 U (g)). We 
all ĝ the ordinary part of g 2 dG , and denote ord(g) := ĝ.Lemma 3 ([17℄). Let g 2 dG . Then ĝ = ord(g) is de�ned everywhere on I for ex
ept for at mosta 
ountable set, is an element of G , andg(t+) = ĝ(t+); g(t�) = ĝ(t�)for all t 2 I.Let g 2 dG be su
h that g(t)(�) 2 A C (J), g(t)(�1=2) = g(t�), g(t)(1=2) = g(t+) (t 2 I). Wedenote the algebra of su
h dynami
 fun
tions by sG . Then C ,! sG ,! dG . Let us note that forany g 2 sG we have D(g) = T (g).Let g 2 sG be su
h that ord(g) 2 BV andXt2D(g) vars2J�g(t)(s)� <1:We denote the Bana
h algebra of su
h dynami
 fun
tions (the dynami
 fun
tions of boundedvariation) by sBV, and endow it with the normkgksBV:= jg(a+)j+ kg
kCBV+ Xt2D(g) vars2J�g(t)(s)�;where g
 2 CBV is the 
ontinuous part of ord(g) 2 BV. We have that CBV ,! sBV. We de�neanalogously the algebra sBVlo
 of dynami
 fun
tions of lo
ally bounded variation.Example 2. The Heaviside fun
tion ��� 2 sBV is de�ned by��� (t) = � 1; t > �;0; t < �; ��� (� )(�) = �(�);where � 2 A C (J) is su
h that �(�1=2) = 0, �(1=2) = 1.Let Gn , A C n, BVn, Ln and sGn , sBVn be the spa
es of ve
tor-valued fun
tions and dynami
fun
tions, respe
tively, with the operations de�ned 
omponentwise, and the norms agreeing withthe norm in Rn.2.2. Distributions. We denote by D the spa
e of the 
ontinuous test fun
tions, i.e., the spa
eof the elements of C having 
ompa
t support in I, and endowed with the standard lo
ally-
onvextopology [30℄. We denote by T the spa
e of the elements ' 2 dG having 
ompa
t support supp(') �I. The spa
e T is 
alled the spa
e of dynami
 test fun
tions [17℄. The sequen
e f'g1k=1 is saidto be 
onvergent to ' in T , if 'k ! ' in dG and there exists a 
ompa
t set K � I su
h thatsupp('k) � K for all k 2 N. Clearly, we have the embedding D ,! T .



6 D. KINZEBULATOVWe use the notation D0 for the spa
e of 
lassi
al distributions, i.e., the spa
e of 
ontinuous linearfun
tionals D ! R [30℄. We denote by T the spa
e of distributions with dynami
 test fun
tions,i.e., the spa
e of 
ontinuous linear fun
tionals T ! R [17℄. The value of a distribution f 2 T 0 on atest fun
tion ' 2 T is denoted by (f; ') 2 R. The linear operations in T 0 are de�ned in a standardway, the spa
e T 0 is endowed with the weak topology, so fk ! f in T 0 if and only if for any ' 2 T(fk; ')! (f; ').Theorem 2 ([17℄). Any distribution in D0 admits an extension from D to T .Example 3. Given f 2 Llo
, let us de�ne a regular distribution by the formula(f; ') := ZI f(t)'̂(t)dt;where ' 2 T , '̂ = ord('). Sin
e D ,! T , and the linear manifold of regular distributions inD0 is isomorphi
 to Llo
 [30℄, we may identify the elements of Llo
 and the 
orresponding regulardistributions in T 0.Example 4. The delta-fun
tion Æ�� 2 T 0 is de�ned by the formula(Æ�� ; ') := ZJ �(s)'(� )(s)ds; (21)where ' 2 T , � 2 I, and the parameter � 2 L(J) su
h thatZJ �(s)ds = 1; (22)is 
alled the shape of the delta-fun
tion. Noti
e, that for any ' 2 D we have(Æ�� ; ') = ZJ �(s)'(� )ds = '(� );so Æ�� is an extension of the 
lassi
al delta-fun
tion Æ� 2 D0 from D to T .For a given � satisfying (22) we de�ne a sequen
e f!�ng1n=1,!�n(t) := � n�(n(t� � )); t 2 �� � 12n ; � + 12n�;0; otherwise; (23)whi
h is 
alled the delta-sequen
e having the shape �.We de�ne the produ
t of f 2 T 0 and g 2 dG by the formula(gf; ') := (f; g'); (24)where g' 2 T . The operation of multipli
ation de�ned by (24) is 
ontinuous, 
ommutative andasso
iative in the sense that (hg)f = h(gf) in T 0 for any h, g 2 dG , f 2 T 0 [17℄.Example 5. As follows from (24), the produ
t of the Heaviside fun
tion ��� 2 sG and the delta-fun
tion Æ�� 2 T 0 is de�ned by the formula��� Æ�� = �ZJ �(s)�(s)ds�Æ
� ;where 
(s) = �(s)�(s)= RJ �(s)�(s)ds (s 2 J) satis�es (22), if RJ �(s)�(s)ds 6= 0.Let f 2 T 0. Let us de�ne the support supp(f) � I to be the minimal 
losed set su
h that forany ' 2 T with supp(') \ supp(f) = ? we have (f; ') = 0.A distribution f 2 T 0 is 
alled non-negative (non-positive) if for any ' 2 T su
h that ' � 0 wehave (f; ') � 0 (or (f; ') � 0, respe
tively).For a given distribution f 2 T 0 let us de�ne the value of the integral over (t0; t1) ([t0; t1℄ � I)by the formula Z(t0;t1) fdt := (f; 't0;t1); (25)where 't0;t1(t) = 1 if t0 < t < t1, and 't0;t1 = 0 otherwise, so 't0;t1 2 T . The operator ofintegration in T 0 whi
h is given by (25) is linear and 
ontinuous [17℄.



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 7Let g 2 sBVlo
, we de�ne the derivative _g 2 T 0 by the formula( _g; ') := ZI '̂(t)dg
(t) + X�2T (g) ZJ '(� )(s)(g(� )(s))�sds: (26)where ' 2 T , g
 2 CBVlo
, and the set of points of dis
ontinuity T (g) is at most 
ountable byLemma 2. If for any � 2 T (g) �� (g) = g(�+) � g(��) 6= 0, then_g = _g
 + X�2T (g) �� (g)Æ��� (27)in T 0, where the shape of a delta-fun
tion �� (s) = (g(� )(s))�s=�� (g) (s 2 J).Example 6. The derivative of the Heaviside fun
tion ��� is the delta-fun
tion Æ�� ,_��� = Æ�� ;where � = _�.In what follows the notations D0n and T 0n stand for the spa
es of the ve
tor-valued distributionswith the 
onvergen
e and the operations de�ned 
omponentwise.3. Systems with distributionsLet D � I �Rn be open. Consider in T 0n = T 0n(I) an initial value problem_x = f(t; x) + g(t; x)v; x(t0�) = x0; (28)where (t0; x0) 2 D,1) The fun
tion f : D ! Rn is Caratheodory in (t; x) 2 D and Lips
hitz in x with the 
onstantKf > 0 in D.2) The fun
tion g : D ! Rn�n belongs to sGn in t (in parti
ular, g is 
ontinuous in t) andLips
hitz in x with the 
onstant Kg > 0 in D.3) The distribution v 2 T 0n is de�ned by v = _u;where u 2 sBVlo
n , we assume that for any � 2 T (u) �� (u) 6= 0, so a

ording to the de�nition ofthe derivative in T 0n v = _u
 + X�2T (u)
�� (u); Æ��� �; (29)where Æ��� 2 T 0n is the ve
tor-valued delta-fun
tion, (Æ��� ; ') := �(Æ�i�� ; ')�ni=1, where ' 2 T ,�� = (�i� )ni=1 2 Ln(J), h; i is the 
omponentwise produ
t in Rn.Let us note that g may be dis
ontinuous in t. This is important, sin
e in the problems of optimal
ontrol g may also depend on the (dis
ontinuous) ordinary 
ontrol (in t), whi
h is not 
onsideredhere.A solution of the initial value problem (28) on 
 � I is the dynami
 fun
tion x 2 sBVlo
n (
)su
h that x(t)(s) 2 D (t 2 
, s 2 J) and (28) is satis�ed in T 0n(
). An ordinary part x̂ 2 BVlo
n (
)of the solution x is 
alled the ordinary solution of (28). Let us note that in 
ontrast to theapproa
h based on the spa
e of distributions D0 the operations of multipli
ation, di�erentiationand 
omposition arising in (28) are 
orre
tly de�ned in the sense of the distribution theory inT 0n(
) (see the Introdu
tion).In the formulation of the next theorem we put 
 = I.Theorem 3. Let x 2 sBVlo
n be the solution of (28), x̂ 2 BVlo
n be the ordinary solution of (28).Thenx̂(t) = x0 + Z tt0 f�r; x̂(r)�dr + Z tt0 ĝ�r; x̂(r)�du
(r)+X�<t�
� (1=2)� x̂(��)� � X�<t0(
� (1=2)� x̂(��)); (30)



8 D. KINZEBULATOVand the dynami
 value 
� (�) := x(� )(�) satis�es_
� (s) = g��; 
� (s)�(s)
�� (u); �� (s)�; 
� (�1=2) = x(��); (31)where T (u) = f�g is at most 
ountable by Lemma 2, g�t; x�(s) is a dynami
 value of g at (t; x),x(�+) = x̂(�+) = 
� (1=2).Conversely, any x 2 sBVlo
n satisfying (30),(31) is a solution of (28).Proof. Observe that by our assumptions a solution of the problem (31) exists and is unique. Letus show that the se
ond statement holds. Suppose that there exists a solution x̂ 2 BVlo
n of theintegral equation (30). Then we may de�ne x 2 sBVlo
 as in the formulation of the theorem. First,show that x 2 sBVlo
n satis�es the initial 
ondition in (28). We have that x(t0�) = x̂(t0�), thelimit x̂(t0�) exists sin
e x̂ 2 BVlo
n . Sin
e all the integrals in (30) are 
ontinuous in t, we havelimt!t0� Z tt0 f(r; x̂(r))dr = 0; limt!t0� Z tt0 ĝ(r; x̂(r))du
(r) = 0;so the limit of the step part in (30) islimt!t0�X�<t�
� (1=2)� x̂(��)� = X�<t0(
� (1=2)� x̂(��));i.e., x(t0�) = x0. Se
ond, we show that x 2 sBVlo
n satis�es the di�erential equation in (28) in T 0n.A

ording to the de�nition of the derivative, we have( _x; ') = ZI '̂(t)dx
(t) + X�2T (u) ZJ '(� )(s)(x(� )(s))�sds; (32)where x(� )(s) = 
� (s), so di�erential equation (28) is equivalent toZI '̂(t)dx
(t) + X�2T (u) ZJ '(� )(s)(x(� )(s))�sds == ZI f(t; x̂(t))'̂(t)dt+ ZI ĝ(t; x̂(t))du
(t) + X�2T (u) ZJ '(� )(s)g��; x(� )(s)�(s)h�� (u); �� (s)ids:Let us show that the equalityZJ '(� )(s)(x(� )(s))�sds = ZJ '(� )(s)g��; x(� )(s)�(s)h�� (u); �� (s)ids (33)holds for any ' 2 T , � 2 T (u), and _x
 = f(t; x) + g(t; x) _u
: (34)Indeed, the equality (33) follows from (31), where x(� )(s) = 
� (s) (� 2 T (u)). Further, by thede�nition of the regular distribution in T 0n, the equality (34) is equivalent to the equalityZI '̂(t)dx
(t) = ZI '̂(t)f(t; x̂(t))dt+ ZI '̂(t)ĝ(t; x̂(t))du
(t)for any ' 2 Tn. Then the last equality is equivalent tox
(t) = x
(t0) + Z tt0 f(r; x̂(r))dr + Z tt0 ĝ(r; x̂(r))du
(r) (35)for all t 2 I. As follows from the 
onstru
tion of x 2 sBVlo
 in the statement of the theorem, thevalue of the jump of the solution x(�+) � x(��) 
an be found from the dynami
 value x(� )(�) =
� (�). Consequently, the equality of the 
ontinuous parts (35) implies (30). Sin
e the equalitiesobtained are equivalent to the equalities (33),(34) in T 0n, the dynami
 fun
tion x 2 sBVlo
n is asolution of the initial value problem (28).We now show that the �rst statement holds. Let x 2 sBVlo
n be the solution of the problem(28). Then (33) and (34) are true. Further, the equality (34) is equivalent toZI '̂(t)dx
(t) = ZI '̂(t)f(t; x̂(t))dt+ ZI '̂(t)ĝ(t; x̂(t))du
(t)
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ording to DuBois-Reymond Lemma [15℄, we havex
(t) = x
(t0) + Z tt0 f(r; x̂(r))dr + Z tt0 ĝ(r; x̂(r))du
(r) (36)for all t 2 I. Analogously, as follows from DuBois-Reymond Lemma, the equality (33) implies that(31) holds for any � 2 T (u). Then (30) is true, as follows from the de�nition of the spa
e sBVlo
nand the initial 
ondition x(t0�) = x0. �Theorem 4. There is a 
onstant h > 0 su
h that there exists a solution x 2 sBVn(t0�h; t0+h) ofthe problem (28) , whi
h is unique in the sense that it 
oin
ides with any other solution of (28) onthe 
ommon interval of de�nition in (t0 � h; t0 + h), and depends 
ontinuously on uj(t0�h;t0+h) 2sBVn(t0 � h; t0 + h).Proof. Let us denote Ih := (t0 � h; t0 + h), I+h := (t0; t0 + h), I�h := (t0 � h; t0) � I = (a; b). Letus 
onsider in BVn(I+h ) the following integral equationx̂(t) = x0 + Z tt0 f�r; x̂(r)�dr+ Z tt0 ĝ�r; x̂(r)�du
(r) + Xt0<�<t�
� (1=2)� x̂(��)�; (37)_
� (s) = g��; 
� (s)�(s)
�� (u); ��(s)�; 
� (�1=2) = x̂(��); (38)where � 2 T (u) � I+h , the dynami
 fun
tion u is assumed to be restri
ted to I+h . Clearly, if thesolution x̂ 2 BVn(I+h ) of (37)(38) exists, then x̂(t0+) = x0. Let us show the existen
e of solutionof (37)(38) in BVn(I+h ) for some h > 0. Let N > 0. We de�neMhg = maxfjg(t; x)(s)j : s 2 J; t 2 [t0; t0 + h℄; jx� x0j � Ng � 0; (39)Q+h = fx̂ 2 BVn(I+h ) : kx̂� x0kBVn(I+h ) � Ng; (40)so that [t0; t0 + h℄� fx 2 Rn : jx� x0j � Ng � D. Obviously, Q+h is a 
omplete metri
 subspa
e.We de�ne a map P on Q+h by the formulaP (x̂)(t) = x0 + Z tt0 f�r; x̂(r)�dr + Z tt0 ĝ�r; x̂(r)�du
(r) + Xt0<�<t�
� (1=2)� x̂(��)�;where t 2 I+h , x̂ 2 Q+h . ThenkP (x̂) � x0kBVn(I+h ) � ZI+h ��f�r; x̂(r)���dr+Mhg �varI+h (u)�2 +Mhg varI+h (u):Then there exists h > 0 su
h that kP (x̂)� x0kBVn(I+h ) 6 N , i.e., P : Q+h ! Q+h . Let us show thatthere exists h > 0 suÆ
iently small su
h that there is � > 0 su
h thatkP (x̂)� P (ŷ)kBVn(I+h ) � �kx̂� ŷkBVn(I+h ) (41)for all x̂, ŷ 2 Q+h . Indeed, to have the inequality (41) satis�ed it suÆ
es to put� = Kfh+KgvarI+h (u)h +KgvarI+h (u)vartt0(u) � 0; (42)so we 
an �nd h > 0 suÆ
iently small su
h that � < 1. Then a

ording to the Fixed PointTheorem [25℄ the mapping P has the only �xed point in Q+h , whi
h is the only solution of theintegral equation (37)(38). Sin
e the solution 
� of the problem (31) exists on J for any � 2 T (u),and T (u) = T (x̂) = ft 2 I+h : x̂(t+) 6= x̂(t�)g, we may de�ne x 2 sBVn(Ih) by x(t) = x̂(t) ift 62 T (u), and x(t)(s) = 
t(s) (s 2 J) if t 2 T (u). A

ording to Theorem 3, the dynami
 fun
tionx 2 sBVn(I+h ) is the solution of the initial value problem (28) on I+h .



10 D. KINZEBULATOVFurther, by the 
hange of independent variable in (37) from t to �t we 
an show that thereexists h > 0 su
h that [t0 � h; t0 + h℄� fx 2 Rn : jx � x0j � Ng � D and the following integralequationx̂(t) = x0 + Z tt0 f�r; x̂(r)�dr + Z tt0 ĝ�r; x̂(r)�du
(r)+Xt0�h<�<t�
� (1=2)� x̂(��)�� X�<t0�
� (1=2)� x(��)�; (43)endowed with 
ondition (38), where � 2 T (u) � Ih, and the dynami
 fun
tion u is assumed to berestri
ted to Ih, has a unique solution inQh = fx̂ 2 BVn(Ih) : kx̂� x0kBVn(Ih) � Ng:Now let us show that the mapping P = Pu depends 
ontinuously on u 2 sBVn(I+h ). Supposethat we have fukg1k=1 � sBVn(I+h ), u 2 sBVn(I+h ) anduk ! uin sBVn(I+h ). Let us show that for any x̂ 2 Q+h we have Puk(x̂)! Pu(x̂) in Q+h . Indeed, we havekPu(x̂)� Puk(x̂)kBV(I+h ) � Mhg varI+h (u� uk)+Mhg varI+h (u� uk)varI+h (u) +Mhg varI+h (uk)varI+h (u� uk);where fvarI+h (uk)g1k=1 is bounded, sokPu(x̂)� Puk(x̂)kBVn(I+h ) ! 0 as ku� ukksBVn(I+h ) ! 0:As is shown in [25℄, the inequality above implies the 
onvergen
e x̂k ! x̂ in Q+h , where x̂k 2 Q+h isa �xed point of the mapping Puk (k 2 N). Consequently, the solution x̂ 2 BVn(I+h ) of the integralequation (30) depends 
ontinuously on u 2 sBVn(I+h ).Let us show that the solution x 2 sBVn(I+h ) of the problem (28) depends 
ontinuously onu 2 sBVn(I+h ). Let us denote the dynami
 values �� (�) = u(� )(�), �k� (�) = uk(� )(�) 2 A C (J)(� 2 T (u)), and denote the solution of the system (31) 
orresponding to uk by 
k� 2 A C (J).Employing the known estimations we havevarJ (
� � 
k� ) � Mhg �j�� (u)� �� (uk)jvarJ (�� ) + j�� (uk)jvarJ (�� � �k� )�+Kg j�� (uk)jenpnKghMhg �varI+h (u)j�� (u) � �� (uk)j+ j�� (uk)jvarI+h (uk)varJ (�� � �k� )�;where the sequen
es fvarI+h (uk)g, fj�� (uk)jg are bounded. Consequently,kxk � xksBVn(I+h ) ! 0 if kuk ! uksBVn(I+h ) ! 0:The 
ase of the left-sided neighborhood I�h is treated similarly, so the solution x 2 sBVn(Ih) ofthe initial value problem (28) depends 
ontinuously on u 2 sBVn(Ih). �The existen
e of a non-
ontinuable in D solution of the initial value problem (28) 
an be shownin a standard way.Let D = I �N , N � Rn be open. An initial value problem_x = f(t; x) + g(t; x)v; x(t0�) = x0 (44)where v = _u 2 D0n, u 2 BVlo
n , was 
onsidered, in parti
ular, in [2, 3, 20, 27, 29, 31℄. The solutionx 2 BVlo
n of the initial value problem (44) is de�ned byx := limk!1xk in D0n;



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 11where xk 2 A C lo
 is the solution of the initial value problem for the di�erential equation with theordinary right-hand side, _xk = f(t; xk) + g(t; xk)vk(t); xk(t0) = x0;where vk = _uk 2 Llo
n , uk 2 A C lo
n , and vk ! v in D0n [27, 29℄. If the fun
tion g is 
ontinuouslydi�erentiable in (t; x) 2 D, then the ne
essary and suÆ
ient 
ondition for the uniqueness of thesolution of (28), i.e., its independen
e on the 
hoi
e of the approximating sequen
e fvkg1k=1, is theFrobenius 
ondition �gm; gl�x(t; x) = 0; (t; x) 2 D; 1 � l;m � n; (45)where gm is an m-th 
olumn of g, and [�; �℄x is the Lie bra
ket in the variable x, e.g., see [27, 29℄. Ifthe 
ondition (45) is satis�ed, then the solution x 2 BVlo
n of the initial value problem (44) satis�esx(t) = x0 + Z tt0 f�r; x(r)�dr + Z tt0 g�r; x(r)�du
(r)+X�<t�
� (1=2)� x(��)�� X�<t0�
� (1=2)� x(��)�; (46)_
� (s) = g��; 
� (s)��� (u); 
� (�1=2) = x(��); (47)where T (u) = f�g, x(�+) = 
(1=2) [29℄.As is well known, the 
ondition (45) is a ne
essary and suÆ
ient 
ondition for the invarian
e ofthe value 
(1=2) 2 Rn with respe
t to the 
hoi
e of the fun
tion � 2 Ln(J) satisfying (22), where
 is a solution of the problem_
(s) = g��; 
(s)��(s); 
(�1=2) = 
0; (48)where � 2 I, 
0 2 N [22℄. Consequently, (45) is equivalent to the 
ondition of the independen
e ofthe ordinary solution of problem (28) on the 
hoi
e of the shapes of delta-fun
tions �� (� 2 T (u))(see the Introdu
tion).Let us note that if the 
ondition (45) is satis�ed, then (47) 
oin
ides with (31) for �k �(1; : : : ; 1)>.Example 7. Let I = (�1; 1), D = I �R. Let us 
onsider in T 0 the initial value problem,_x = Æ�0 x; x(�1=2�) = x0; (49)where x0 2 R. A

ording to Theorem 3 the solution x 2 sBV of the problem (49) is given byx(t) = � x0; t < 0;x0e; t > 0; x(0)(s) = x0eR s�1=2 �(�)d� (s 2 J);where J = [�1=2; 1=2℄.Note that the same value of the jump of the solution at t = 0 
an be obtained if the delta-fun
tion Æ�0 in (49) is repla
ed by the terms of the delta-sequen
e (23) having the shape �. Alsonote that the value of the jump of the solution at t = 0 is independent of the 
hoi
e of the shape� sin
e for n = 1 the Frobenius 
ondition (45) is always satis�ed.4. Viability Theorem and stability analysisLet 
 = (t0; T ) � I, let M � Rn be a 
losed subset, D = I � N , where N is an open subset,M � N . The following extends De�nition 1.D e f i n i t i o n 4. A solution of the system (28) su
h that x(t0�) 2M andx(t)(s) 2Mfor all t 2 
[ft0g, s 2 J , where t0 2 I, is said to be viable in M on 
. The set M is said to havethe property of viability for (28) on 
, if any solution of (28) su
h that x(t0�) 2M is viable in M(on 
).



12 D. KINZEBULATOVSuppose that the set M � Rn is given byM = fx 2 Rn : �i(x) � 0; 1 � i � mg; (50)where �i : Rn ! R are 
ontinuously di�erentiable on Rn (1 � i � m), so M is 
losed in Rn.Clearly, for ea
h 1 � i � m if x 2 Rn is su
h that �i(x) = 0, _�i(x) 6= 0, thenKfp : �i(p)�0g(x) = fy : ( _�i(x); y) � 0g:Then a

ording to [7, p.224℄ for any x 2 �M su
h that _�i(x) 2 Rn (i 2 Lx = fi : �i(x) = 0g) arelinearly independent, the 
ontingent 
one KM (x) is given byKM (x) = fy 2 Rn : � _�i(x); y� � 0; i 2 Lxg: (51)The following theorem follows immediately from the Nagumo Theorem.Theorem 5. Let _�i(x) 2 Rn (i 2 Lx) be linearly independent for any x 2 �M . If� _�i(x); f(t; x)� � 0 (i 2 Lx)for all t 2 
, x 2 �M , then M has the the property of viability for (7) (on 
).Let us 
onsider in T 0n the following di�erential equation with distributions of the form (28),_x = f(t; x) + g(t; x)v; v = w + 1Xk=1h
k; Æ�k�k i 2 T 0n; (52)where the fun
tion w : I ! Rn is 
ontinuous, f�kg1k=1 � I, Æ�k�k 2 T 0n, the 
oeÆ
ients 
k 2 Rnare su
h that the primitive of v in T 0n is in sBVlo
n , �k 2 Cn (J), the fun
tions f , g satisfy 1), 2)and f is also 
ontinuous in t 2 
. We suppose that for any x0 2 D there exists a non-
ontinuablesolution of the initial value problem for (52) in D with the initial value x(t0�) = x0.The following statement generalizes Theorem 5.Theorem 6. Let _�i(x) 2 Rn (i 2 Lx) be linearly independent for any x 2 �M . If� _�i(x); f(t; x) + g(t; x)v� � 0 (i 2 Lx) (53)in T 0(
) for all x 2 �M , then M has the property of viability for (52) (on 
).The de�nition of a non-positive distribution in T 0 was given in Se
tion 2. As follows from(53) and the examples below, the property of viability depends on the 
hoi
e of the shapes of thedelta-fun
tion in v, in
luding the 
ase where the Frobenius 
ondition (45) is satis�ed.Proof. 1) Let x 2 �M , i 2 Lx. Let us show that if the inequality (53) holds, then� _�i(x); f(t; x) + ĝ(t; x)w(t)� � 0 (54)for all t 2 
, and � _�i(x); g(�k; x)(s)h
k; �k(s)i� � 0 (55)for all s 2 J , k 2 N. A

ording to the de�nition of a non-positive distribution in T 0, the inequality(53) implies thatZI( _�i(x); f(t; x) + ĝ(t; x)w(t))'̂(t)dt + 1Xk=1( _�i; g(�k; x)(s)h
k; (Æ�k�k ; ')i) � 0for any ' 2 T , ' � 0, where '̂ = ord('), i.e., by the de�nition of the delta-fun
tionZI( _�i(x); f(t; x) + ĝ(t; x)w(t))'̂(t)dt+ 1Xk=1� _�i; ZJ g(�k; x)(s) h
k; �k(s)'(�k)(s)i ds� � 0 (56)for any ' 2 T , ' � 0. Let k0 2 N be �xed. Let ' 2 T be su
h that '̂ � 0, '(�k)(�) � 0 (k 6= k0),'(�k0)(�) � 0. Then (56) implies that� _�i(x); ZJ g(�k0 ; x)(s) h
k0 ; �k0(s)'(�k0 )(s)i ds� � 0: (57)



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 13Due to the linearity of the integral, the inequality (57) is equivalent toZJ� _�i(x); g(�k0 ; x)(s)h
k0 ; �k0(s)i�'(�k0 )(s)ds � 0 (58)for any '(�k0)(�) � 0. Then due to the 
ontinuity of the fun
tions in (58) we have� _�i(x); g(�k0 ; x)(s)h
k0 ; �k0(s)i� � 0for all s 2 J . Sin
e k0 2 N was 
hosen arbitrarily, we obtain (55).Let ' 2 T , ' � 0. Sin
e the 
hange of the dynami
 values of ' in �nitely many points �k doesnot 
hange '̂ = ord('), and the series in the right-hand side of (56) 
onverges, we obtain thatZI� _�i(x); f(t; x) + ĝ(t; x)w(t)�'̂(t)dt � 0for all ' 2 T , ' � 0, whi
h implies (54).Sin
e x 2 �M , i 2 Lx were 
hosen arbitrarily, a

ording to Theorem 5 we obtain that the
onditions (54) and (55) imply that M has the property of viability for_x = f(t; x) + ĝ(t; x)w(t); (59)and for the system (31) (for any k 2 N), respe
tively.2) Consider �rst the parti
ular 
ase where there exists l > 0 su
h that �k+1 � �k � l for allk 2 N. Let 
 = (0;1).Let �1 > 0. Then x(0) = x0 and by Theorem 3 sin
e �k+1� �k � l > 0 for all k 2 N there exists� > 0 su
h that x has the ordinary values x(t) and_x(t) = f�t; x(t)�+ ĝ�t; x(t)�w(t); (60)for all t 2 [0; �). As is mentioned above,M has the property of viability (60) on (0; �), so x(t) 2Mfor all t 2 [0; �).Now suppose that �1 = 0. Then by Theorem 3 the jump of the solution x at �1 = 0 
an befound from (31) at point �1. Due to the remark above we have thatM has the property of viabilityfor (31) at the point �1, so sin
e 
1(�1=2) = x(0�) 2 M we have that 
1(s) 2 M for all s 2 J .Consequently, x(0+) = 
(1=2) 2 M . Analogously to the �rst 
ase we obtain that there exists� > 0 su
h that x(t)(s) 2M for all t 2 [0; �), s 2 J .We show that x(t)(s) 2M for all t � 0, s 2 J . By the 
hange of the independent variable t weobtain that the in
lusion x(t0�) 2M implies that there exists � = �(t0; x(t0�)) > t0 su
h thatx(t)(s) 2M (61)for all t 2 [t0; �), s 2 J . Thus, we obtain a strongly monotoni
ally in
reasing sequen
e ftkg1k=1su
h that M has the property of viability on (0; tk) Suppose that the sequen
e ftkg1k=1 is boundedfrom above. Consequently, tk ! t� from the left, where 0 < t� < 1. By our assumption thesolution x is de�ned for all t � 0. Sin
e M is 
losed, the limit x(t��) 2M . Thus, we may 
hangethe independent variable t, and apply the same arguments for t0 = t�. As a result, we obtain a
ontradi
tion with the assumption that t� is the maximal possible, so (61) holds for all t 2 (0;1),s 2 J .The 
ase of bounded 
 is treated similarly.3) Consider the general 
ase. Without loss of generality we give a proof for the 
ase 
 = (0;1).Let [
; d℄ � 
, u 2 sBVn(
; d), v = _u 2 T 0n(
; d),u = q + 1Xk=1h
k; ��k�k i:where q : I ! Rn is 
ontinuously di�erentiable, w = _q, �k 2 A C n(J), �k = _�k (k 2 N), andwithout loss of generality �k 2 (
; d) (k 2 N). Let us de�neul = q + Xj
kj�1=lh
k; ��k�k i;



14 D. KINZEBULATOVwhere vl = _ul 2 T 0n(
; d) 
ontains the linear 
ombination of delta-fun
tions. Sin
eku� ulksBVn(
;d) = 



 Xj
kj�1=lh
k; ��k�k i



sBVn(
;d) ! 0(l !1), by Theorem 4 we have the 
onvergen
e xl ! x in sBVn(
; d) of the sequen
e of solutionsxl 2 sBVn(
; d) of the initial value problems (52) for vl = _ul. We apply the results obtained aboveto the initial value problems (52) 
orresponding to vl 2 T 0n, so, any solution xl is viable in M on(
; d), i.e., xl(t)(s) 2M for all t 2 (
; d), s 2 J . Convergen
e xl ! x in sBVn(
; d) implies thatxl(t)(s)! x(t)(s) �t 2 (
; d); s 2 J�:Sin
e M is 
losed, we have x(t)(s) 2 M for all t 2 (
; d), s 2 J . Sin
e [
; d℄ � 
 was 
hosenarbitrarily, we obtain that x(t)(s) 2M for all t � t0, s 2 J . �Corollary 1. Let _�i(x) 2 Rn (i 2 Lx) be linearly independent for any x 2 �M . If� _�i(x); f(t; x) + ĝ(t; x)w(t)� � 0 (62)for all t 2 
, x 2 �M , � _�i(x); g(�k; x)(s)

k; �k(s)�� � 0 (63)for all s 2 J , k 2 N, x 2 �M , then M has the property of viability for (52) (on 
).Proof. The proof follows from the proof of Theorem 6. �Example 8. Let I = (�1;1), D = I � (�1; 2). Let 
 = (0;1) � I, f�kg1k=1 � 
, �k !1. Letus 
onsider in T 0 the following ordinary di�erential equation with distributions of the form (52),_x = �x+ �12 � x� 1Xk=1 Æ�k�k ; �k � 0; �k 2 C (J): (64)Let �(x) = (x� 1=2)2 � 1=4, so M = fx 2 R : �(x) � 0g = [0; 1℄:Noti
e, that _�(x) 2 f�1; 1g if x 2 �M = f0; 1g. Sin
e the system (64) has form (44) for f(x) = �x,g(x) = 1=2� x, and v =P1k=1 Æ�k�k , we may apply Corollary 1. We have_�(1)f(1) � 0; _�(0)f(0) � 0;and _�(1)g(1)�k(s) � 0; _�(0)g(0)�k(s) � 0for all s 2 J , k 2 N, where _�(1) = 1, g(1) = �1=2, _�(0) = �1, g(1) = �1=2, f(1) = �1, f(0) = 0and �k � 0 (s 2 J , k 2 N). A

ording to Corollary 1 the set M has the property of viability forthe system (64) on 
.Let us 
onsider the appli
ations of Theorem 6 to stability analysis.Let I = (a;1). Consider the ordinary di�erential equation with distributions of the form (28),_x = f(x) + g(x)v; (65)where f : D ! Rn, g : D ! Rn�n are Lips
hitz in D. The solution of (65) whi
h is identi
allyequal to a 
onstant x� 2 D is 
alled the equilibrium point (
learly, x� is an equilibrium point of(65) if and only if f(x�) = g(x�) = 0).Following the standard terminology, we note that the equilibrium point x� 2 D is uniformlystable, if there exists a sequen
e of the 
losed subsets Mn+1 � Mk � D (k 2 N), where Mk
ontains an open neighbourhood of x� 2 D and is also 
ontained in another open neighbourhoodof x� 2 D, su
h that for any l 2 N there exists k > l having the property: any solution x of (65)with x(t0�) 2Mk is viable in Ml on 
 = (t0;1) � I.Theorem 7. Suppose that x� 2 D is an equilibrium point of (65), and�x� x�; f(x) + g(x)v� 6 0 (66)in T 0n(
) for any x 2 D su
h that jx� x�j2 = 1=l, where j � j2 is a Eu
lidean norm in Rn, l 2 N.Then x� is uniformly stable.



SYSTEMS WITH DISTRIBUTIONS AND VIABILITY THEOREM 15Proof. Let us note that in the de�nition of the uniform stability above we may have l = k, thatis, it suÆ
es to prove that for ea
h l 2 N the subset Ml has the property of viability for (??) on
 = (t0;1). Let Ml = fx 2 D : �l(x) 6 0g; where �l(x) = jx� x�j22 � 1l2 :Then the sequen
e fMlg1l=1 satis�es the 
onditions above. We have_�l(x) = 2(x� x�) 6= 0for any x 2 D su
h that jx� x�j2 = 1=l. A

ording to Theorem 6 the inequality (66) implies thatMl possesses the property of viability for (65) on 
, so x� is uniformly stable. �Analogously to Theorem 6, we obtain the following 
orollary of Theorem 7.Corollary 2. Suppose that x� 2 D is an equilibrium point of (65), and�x� x�; f(x) + g(x)w(t)� 6 0 (67)for all t 2 
 = (t01) and all x 2 D su
h that jx� x�j2 = 1=l,�x� x�; g(�k; x)(s)

k; �k(s)�� 6 0 (68)for all s 2 J , k 2 N and all x 2 D su
h that jx� x�j2 = 1=l, where j � j2 is a Eu
lidean norm inRn, l 2 N. Then x� is uniformly stable.Proof. The proof follows from the proof of Theorem 6. �Example 9. Let us 
onsider the ordinary di�erential equation with distributions_x = �12 � x� 1Xk=1 Æ�k�k ; (69)where I = (�1;1), the shape �k > 0 is 
ontinuous. Clearly, (69) has an equilibrium pointx� = 12 :The equation (69) has the form of (65) for f(x) � 0, g(x) = 12 � x, w(t) � 0. We have to showthat the inequality (68) holds. Indeed, the inequality (68) is equivalent to�12 � x��k(s)�x� 12� = ��12 � x�2�k(s) 6 0for any s 2 J and any x su
h that jx�1=2j = 1=l (l 2 N). A

ording to Theorem 7 the equilibriumpoint x� = 12 of equation (69) is uniformly stable.5. The statement of the impulse problem of avoidan
e of en
ountersLet M � Rn be a 
losed subset, D = I � N , where N is an open subset, M � N . Let us
onsider in Rn the following 
ontrolled system of the form (9),_x = f(t; x) + g(t; x)v; x(t0) = x0; v 2 V; (70)where f , g satisfy 
onditions 1), 2), the fun
tion f is 
ontinuous in t, and the set of admissibleordinary 
ontrols V is given byV = �v 2 Ln(I) : vi(�) � 0; Z
 vi(s)ds � V; 1 � i � n� ; (71)where 
 = (t0; T ) � I, V > 0 is given, v = (vi)ni=1.Let VM (T ) � V be the maximal set of admissible 
ontrols su
h thatv 2 VM (T ) implies that x is viable in M on 
 = (t0; T ) � I;where x 2 A C n is the solution of system (70). A

ording to [21℄, we 
all the followingmaximizationproblem T !v max; v 2 VM (T ) (72)



16 D. KINZEBULATOVthe problem of avoidan
e of en
ounters with the set Rn nM .Along with the system (70), let us 
onsider in T 0n the following 
ontrolled system_x = f(t; x) + g(t; x)v; x(t0�) = x0; v 2 V0; (73)where f , g satisfy 1), 2), the fun
tion f is 
ontinuous in t, and the set of admissible distributional(i.e., impulse) 
ontrols V0 is given byV0 = (v 2 T 0n(I) : vi � 0; Z Tt0 vids � V; 1 � i � n) ; (74)where V > 0 is given, v = (vi)ni=1 (the de�nitions of a non-negative distribution and integral of adistribution were given in Se
tion 2). Noti
e that V � V0, where the elements of V are viewed asthe regular distributions in T 0n. Thus, system (73)(74) is an extension of system (70)(71).We de�ne V0M (T ) � V0 to be the maximal set of admissible 
ontrols su
h thatv 2 V0M (T ) implies that x is viable in M on 
 = (t0; T ) � I;where x 2 sBVn is a solution of system (73). Analogously to [21℄, we 
all the maximization problemT !v max; v 2 V0M (T ) (75)the impulse problem of avoidan
e of en
ounters with the set Rn nM .As follows from the next example, the problem of avoidan
e of en
ounters may have no solution(T �; v�) for the system (70)(71), but may have a solution for the extended system (73)(74).Example 10. Let I = (�1;1), D = I �R. Let �(x) = x2 � 1, soM = fx 2 R : �(x) � 0g = [�1; 1℄:Let us 
onsider in T 0 the following 
ontrolled system_x = x� v; v 2 V; x(0�) = 1; (76)V = �v 2 T 0 : v � 0; Z 10 vdt � 12� :Let us show that the solution of the problem of avoidan
e of en
ounters with the set RnM for(76) is given by 
� = (0; T �) � I,T � = ln(2); v� = 12Æ�0 ; � � 0:Suppose that v = 1=2Æ�0 , � � 0. Then a

ording to Theorem 3 we have x(0)(s) = 
(s) (s 2 J),x(t) = 1=2et, t 2 �0; ln(2)�, where0 � 
(s) = 1� 12 Z s�12 �(�)d� � 1for all s 2 J , so x is viable in M on 
 = (0; ln(2)) � I. Along with that, for any regular 
ontrol vsolution of (76) is given by x(t) = et � et2 Z t0 v(s)e�sdsfor all t > 0. As follows from the obtained representation, there exists � > 0 su
h that x(t) �et � et e��2 for all t � 0. Thus, T < ln� 11� e��2 � < ln(2);so T � = ln(2) is the maximal viability time.In the subsequent paper we provide the ne
essary 
onditions for optimality in the impulseproblem of avoidan
e of en
ounters with the set Rn nM .
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