FELLER GENERATORS WITH MEASURE-VALUED DRIFTS

DAMIR KINZEBULATOV

ABSTRACT. We construct a L^p -strong Feller process associated with the formal differential operator $-\Delta + \sigma \cdot \nabla$ on \mathbb{R}^d , $d \ge 3$, with drift σ in a wide class of measures (e.g. the sum of a measure having density in weak L^d space and a Kato class measure), by exploiting a quantitative dependence of the smoothness of the domain of an operator realization of $-\Delta + \sigma \cdot \nabla$ generating a holomorphic C_0 -semigroup on $L^p(\mathbb{R}^d)$, p > d - 1, on the value of the relative bound of σ .

1. Let \mathcal{L}^d be the Lebesgue measure on \mathbb{R}^d , $L^p = L^p(\mathbb{R}^d, \mathcal{L}^d)$, $L^{p,\infty} = L^{p,\infty}(\mathbb{R}^d, \mathcal{L}^d)$ and $W^{1,p} = W^{1,p}(\mathbb{R}^d, \mathcal{L}^d)$ $(p \ge 1)$ the standard Lebesgue, weak Lebesgue and Sobolev spaces, $C^{0,\gamma} = C^{0,\gamma}(\mathbb{R}^d)$ the space of γ -Hölder continuous functions $(0 < \gamma < 1)$, $C_b = C_b(\mathbb{R}^d)$ the space of bounded continuous functions, endowed with the sup-norm, $C_\infty \subset C_b$ the closed subspace of functions vanishing at infinity, $\mathcal{W}^{s,p}$, s > 0, the Bessel potential space endowed with norm $\|u\|_{p,s} := \|g\|_p$, $u = (1 - \Delta)^{-\frac{s}{2}}g$, $g \in L^p$, $\mathcal{W}^{-s,p'}$, p' := p/(p-1), the anti-dual of $\mathcal{W}^{s,p}$, and $\mathcal{S} = \mathcal{S}(\mathbb{R}^d)$ the L. Schwartz space of bounded linear operators between complex Banach spaces $X \to Y$, endowed with operator norm $\|\cdot\|_{X\to Y}$; $\mathcal{B}(X) := \mathcal{B}(X, X)$. Set $\|\cdot\|_{p\to q} := \|\cdot\|_{L^p\to L^q}$. Depending on the context, $\stackrel{w}{\to}$ will denote either the weak convergence of measures, or the weak convergence in a given Banach space. $\stackrel{s}{\to}$ denotes the strong convergence (or the strong convergence of bounded linear operators) in a given Banach space.

By $\langle u, v \rangle$ we denote the inner product in L^2 ,

$$\langle u, v \rangle = \langle u \bar{v} \rangle := \int_{\mathbb{R}^d} u \bar{v} \mathcal{L}^d \qquad (u, v \in L^2).$$

2. Let $d \ge 3$. The problem of constructing an operator realization on C_{∞} of the formal differential operator $-\Delta + \sigma \cdot \nabla$, with σ a singular vector field $\mathbb{R}^d \to \mathbb{R}^d$ (or a \mathbb{R}^d -valued measure), that generates a contraction positivity preserving C_0 -semigroup there (Feller semigroup), has been thoroughly studied in the literature (motivated, in particular, by applications to the theory of stochastic processes: by the classical result, such a semigroup determines the transition (sub-) probability function of a Hunt process). In the context of this problem, we consider the following classes of vector fields and vector-valued measures on \mathbb{R}^d .

1. A \mathbb{R}^d -valued Borel measure $\sigma = (\sigma_i)_{i=1}^d$ on \mathbb{R}^d is said to belong to $\overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}$, $\delta > 0$, the class of weakly form-bounded measures, if there exists $\lambda = \lambda_{\delta} > 0$ such that

$$\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} (\lambda - \Delta)^{-\frac{1}{4}} (x, y) f(y) dy \right)^2 |\sigma|_1 (dx) \leqslant \delta ||f||_2^2, \quad f \in \mathcal{S},$$

²⁰¹⁰ Mathematics Subject Classification. 35J15, 47D07 (primary), 35J75 (secondary).

Key words and phrases. Feller processes, measure-valued drift, regularity of solutions, non-local operators. Research supported in part by NSERC.

where $(\lambda - \Delta)^{-\frac{1}{4}}(x, y)$ is the Bessel potential kernel, $|\sigma|_1 := \sum_{i=1}^d |\sigma_i|, |\sigma_i|$ is the variation of σ_i .

2. A \mathbb{R}^d -valued Borel measure σ on \mathbb{R}^d is said to belong to the Kato class $\bar{\mathbf{K}}^{d+1}_{\delta}, \delta > 0$, if there exists $\lambda = \lambda_{\delta} > 0$ such that

$$\sup_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} (\lambda - \Delta)^{-\frac{1}{2}} (x, y) |\sigma|_1 (dy) \leq \delta.$$

3. A vector field $b : \mathbb{R}^d \to \mathbb{R}^d$ belongs to $\mathbf{F}_{\delta}, \, \delta > 0$, the class of form-bounded vector fields, if b is \mathcal{L}^d -measurable and there exists $\lambda = \lambda_{\delta} > 0$ such that

$$||b|_1(\lambda - \Delta)^{-\frac{1}{2}}||_{2 \to 2} \leqslant \sqrt{\delta}.$$

- 4. $\mathbf{F}_{\delta}^{\frac{1}{2}} := \bar{\mathbf{F}}_{\delta}^{\frac{1}{2}} \cap \{b\mathcal{L}^d \text{ with a } \mathcal{L}^d \text{-measurable } b : \mathbb{R}^d \to \mathbb{R}^d\},\$ 5. $\mathbf{K}^{d+1}_{\delta} := \bar{\mathbf{K}}^{d+1}_{\delta} \cap \{ b\mathcal{L}^d \text{ with a } \mathcal{L}^d \text{-measurable } b : \mathbb{R}^d \to \mathbb{R}^d \}$
- 6. $\mathbf{K}_0^{d+1} := \bigcap_{\delta > 0} \mathbf{K}_{\delta}^{d+1}, \ \bar{\mathbf{K}}_0^{d+1} := \bigcap_{\delta > 0} \bar{\mathbf{K}}_{\delta}^{d+1}, \ \text{and} \ \mathbf{F}_0 := \bigcap_{\delta > 0} \mathbf{F}_{\delta}.$ Simple examples show:

$$\mathbf{K}_0^{d+1} - \mathbf{F}_{\delta} \neq \varnothing, \text{ and } \mathbf{F}_{\delta_1} - \mathbf{K}_{\delta}^{d+1} \neq \varnothing \text{ for any } \delta, \delta_1 > 0,$$

for instance,

1) $b\mathcal{L}^d$, where $b(x) := \sqrt{\delta} \frac{d-2}{2} x |x|^{-2}$, is in $\mathbf{F}_{\delta} - \mathbf{K}_{\delta_1}^{d+1}$ for any $\delta, \delta_1 > 0$ (by the Hardy inequality). 2) Let $b(x) := e \mathbf{1}_{|x_1| < 1} |x_1|^{s-1}$ for some $e \in \mathbb{R}^d$, |e| = 1, where 0 < s < 1, $x = (x_1, \dots, x_d)$, and $\mathbf{1}_{|x_1|<1}$ is the indicator function of $\{x \in \mathbb{R}^d : |x_1|<1\}$. Then $b\mathcal{L}^d \in \mathbf{K}_0^{d+1} - \mathbf{F}_{\delta}$ for any $\delta > 0$.

The examples above show that there exist $b \in \mathbf{F}_{\delta}$ (resp. $\mathbf{K}_{\delta}^{d+1}$) such that $\varepsilon b \notin \mathbf{F}_{0}$ (resp. \mathbf{K}_{0}^{d+1}) for any $\varepsilon > 0$. The classes \mathbf{F}_{δ} , $\mathbf{K}_{\delta}^{d+1}$ cover singularities of b of critical order, i.e. 'sensitive' to multiplication by a constant (replacing a $b \in \mathbf{F}_{\delta}$ with $cb \ (\in \mathbf{F}_{c^2\delta}), c > 1$, destroys e.g. the uniqueness of the solution of Cauchy problem for $-\Delta + b \cdot \nabla$, cf. [KS, Example 5]). The classes \mathbf{K}_0^{d+1} , $\bar{\mathbf{K}}_0^{d+1}$, \mathbf{F}_0 (and, thus, $L^d(\mathbb{R}^d, \mathbb{R}^d) \subsetneq \mathbf{F}_0$ – the inclusion follows by the Sobolev embedding theorem, cf. the diagram below) don't contain vector fields having critical order singularities.

We have:

$$\bar{\mathbf{K}}_{\delta}^{d+1} \subsetneq \bar{\mathbf{F}}_{\delta}^{\frac{1}{2}},\tag{1}$$

$$\mathbf{K}_{\delta}^{d+1} \subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}}, \quad \mathbf{F}_{\delta} \subsetneq \mathbf{F}_{\delta_{1}}^{\frac{1}{2}} \quad \text{for } \delta_{1} = \sqrt{\delta}, \tag{2}$$

$$b\mathcal{L}^d \in \mathbf{F}_{\delta_1}^{\frac{1}{2}} \text{ and } \nu \in \bar{\mathbf{K}}_{\delta_2}^{d+1} \implies b\mathcal{L}^d + \nu \in \bar{\mathbf{F}}_{\delta}^{\frac{1}{2}}, \ \sqrt{\delta} = \sqrt{\delta_1} + \sqrt{\delta_2}$$
(3)

The inclusion (1) is Proposition 1 below. The first inclusion in (2) follows e.g. by interpolation between $\|(\lambda - \Delta)^{-\frac{1}{2}}\|b\|_1\|_{\infty} \leq \delta$ and (by duality) $\||b|_1(\lambda - \Delta)^{-\frac{1}{2}}\|_{1 \to 1} \leq \delta$, the second inclusion in (2) follows by the Heinz inequality; for details, if needed, see [K, Appendix B].

[BC] constructed an operator realization on C_b of $-\Delta + \sigma \cdot \nabla$, $\sigma \in \bar{\mathbf{K}}_0^{d+1}$, generating a strong Feller semigroup there, thus obtaining e.g. a Brownian motion drifting upward when filtering through certain fractal-like sets. Below we construct an operator realization on C_{∞} of $-\Delta + \sigma \cdot \nabla$ generating

a L^p -strong Feller semigroup, with drift σ of the form

$$\sigma = b\mathcal{L}^{d} + \nu, \quad b\mathcal{L}^{d} \in \mathbf{F}_{\delta_{1}}^{\frac{1}{2}}, \quad \nu \in \bar{\mathbf{K}}_{\delta_{2}}^{d+1}, \tag{4}$$

$$\left(\implies \sigma \in \bar{\mathbf{F}}_{\delta}^{\frac{1}{2}} \quad \text{with } \sqrt{\delta} := \sqrt{\delta_{1}} + \sqrt{\delta_{2}} \quad \text{by (3)}\right)$$

provided $m_d \delta < \frac{2d-5}{(d-2)^2}$, where

$$m_d := \inf_{\substack{\kappa > 0 \\ \operatorname{Re}\zeta > 0}} \sup_{\substack{x \neq y, \\ \operatorname{Re}\zeta > 0}} \frac{|\nabla(\zeta - \Delta)^{-1}(x, y)|}{\left(\kappa^{-1} \operatorname{Re}\zeta - \Delta\right)^{-\frac{1}{2}}(x, y)}$$
(5)

 $(m_d \text{ is bounded from above by } \pi^{\frac{1}{2}}(2e)^{-\frac{1}{2}}d^{\frac{d}{2}}(d-1)^{\frac{1-d}{2}} < \infty, \text{ see [K, (A.1)]}).$ See Theorem 2 below.

The general classes of drifts σ studied in the literature in connection with the operator $-\Delta + \sigma \cdot \nabla$.

Here $\delta, \delta_1, \delta_2 > 0$. We identify $b : \mathbb{R}^d \to \mathbb{R}^d$ with $b\mathcal{L}^d$.

 \rightarrow stands for strict inclusion, and $\stackrel{*}{\rightarrow}$ reads "if $b = b_1 + b_2 \in [L^{d,\infty} + L^{\infty}]^d$, then $b \in \mathbf{F}_{\delta_1^2}$ with $\delta_1 > 0$ determined by the value of the $L^{d,\infty}$ -norm of $|b_1|$ (by the Strichartz inequality with sharp constants [KPS, Prop. 2.5, 2.6, Cor. 2.9]).

EXAMPLE. 1. An example of a $b\mathcal{L}^d \in \mathbf{K}_{\delta}^{d+1} - \mathbf{K}_0^{d+1}$, $\delta > 0$, can be obtained as follows (modifying [AS, p. 250, Example 1]). Fix $e \in \mathbb{R}^d$, |e| = 1. Let $z_n := (2^{-n}, 0, \dots, 0) \in \mathbb{R}^d$, $n \ge 1$. Set

$$b(x) := eF(x), \quad F(x) := \sum_{n=1}^{\infty} 8^n \mathbf{1}_{B(z_n, 8^{-n})}(x), \quad x \in \mathbb{R}^d,$$

where $B(z_n, 8^{-n})$ is the open ball of radius 8^{-n} centered at z_n . Arguing as in [AS, p. 250, Example 1], we obtain that $b\mathcal{L}^d \in \mathbf{K}_{\delta}^{d+1} - \mathbf{K}_0^{d+1}$ for appropriate $\delta > 0$.

2. Recall that a Borel-measurable set $\Gamma \subset \mathbb{R}^d$ is called a κ -set, $0 < \kappa \leq d$, if for all $x \in \Gamma$, all $0 < \rho < 1$,

$$c_1 \rho^{\kappa} \leqslant \mathcal{H}^{\kappa}(\Gamma \cap B(x,\rho)) \leqslant c_2 \rho^{\kappa},$$

for some constants $0 < c_1, c_2 < \infty$, where \mathcal{H}^{κ} is the κ -dimensional Hausdorff measure in \mathbb{R}^d (e.g. $\Gamma =$ $A \times \mathbb{R}$, where A is the Sierpinski gasket in \mathbb{R}^2 , is a $(1 + \log 3/\log 2)$ -set).

Then, for a fixed $e \in \mathbb{R}^d$, |e| = 1, if $\Gamma \subset \mathbb{R}^d$ is a κ -set, $\kappa > d - 1$, the measure

$$\sigma := e \mathbf{1}_{\Gamma} \mathcal{H}^{\kappa}|_{\Gamma} \in \bar{\mathbf{K}}_{0}^{d+1}$$

see [BC, Prop. 2.1].

An example of $\sigma \in \bar{\mathbf{K}}_{\delta}^{d+1} - \bar{\mathbf{K}}_{0}^{d+1}$ can be obtained e.g. by modifying the example in 1, e.g. for d = 3 as $\sigma := eF\mathbf{1}_{\Gamma}\mathcal{H}^{\kappa}|_{\Gamma}$, where $\Gamma := A \times \mathbb{R}$, $\kappa = 1 + \log 3/\log 2$, $z_n \in \Gamma$ are chosen at the distance of at least 2^{-n} from each other, and the coefficients 8^{-n} in F are replaced with $8^{-(\kappa-d+1)n}$.

REMARKS. After 1996, the Kato class of vector fields $\mathbf{K}_{\delta}^{d+1}$, with $\delta > 0$ sufficiently small (yet allowed to be non-zero), has been recognized as the general class 'responsible' for the Gaussian upper and lower bounds on the fundamental solution of $-\Delta + b \cdot \nabla$ [S, Z] which, in turn, allow to construct an associated Feller process (in C_b). The class \mathbf{F}_{δ} , $\delta < 4$, provides dissipativity of $\Delta - b \cdot \nabla$ in L^p , $p \ge 2/(2-\sqrt{\delta})$, needed to run the iterative procedure of [KS] (taking $p \to \infty$, assuming additionally $\delta < \min\{1, (2/(d-2))^2\})$, which produces an associated Feller semigroup in C_{∞} . We emphasize that, in general, the Gaussian bounds are not valid if $|b| \in L^d$, while $b\mathcal{L}^d \in \mathbf{K}_0^{d+1}$, in general, destroys L^p -dissipativity.

In [K], we constructed an associated with $-\Delta + b \cdot \nabla$ Feller semigroup in C_{∞} for $b\mathcal{L}^d \in \mathbf{F}_{\delta}^{\frac{1}{2}}$, $m_d \delta < 1$. The starting object for the method is an operator-valued function in L^p , $p \in \mathcal{I} :=$ $\left(\frac{2}{1+\sqrt{1-m_d\delta}},\frac{2}{1-\sqrt{1-m_d\delta}}\right),$

$$\Theta_p(\zeta, b\mathcal{L}^d) := (\zeta - \Delta)^{-1} - (\zeta - \Delta)^{-\frac{1}{2} - \frac{1}{2q}} Q_p(q) (1 + T_p)^{-1} G_p(r) (\zeta - \Delta)^{-\frac{1}{2r'}}, \qquad (6)$$

$$1 \leqslant r$$

where $Q_p(q), T_p, G_p(r) \in \mathcal{B}(L^p), ||T_p||_{p \to p} \leq m_d \frac{pp'}{4} \delta < 1$,

$$G_p(r) := b^{\frac{1}{p}} \cdot \nabla(\zeta - \Delta)^{-\frac{1}{2} - \frac{1}{2r}}, \quad b^{\frac{1}{p}} := b|b|^{\frac{1}{p} - 1},$$

 $Q_p(q)$ and T_p are extensions by continuity of densely defined operators

$$Q_p(q) := (\zeta - \Delta)^{-\frac{1}{2q'}} |b|^{\frac{1}{p'}}, \quad T_p := b^{\frac{1}{p}} \cdot \nabla(\zeta - \Delta)^{-1} |b|^{\frac{1}{p'}}.$$

We prove that

$$\Theta_p(\zeta, b\mathcal{L}^d) = (\zeta + \Lambda_p(b))^{-1}, \quad \operatorname{Re} \zeta \ge \lambda d/(d-1),$$

where $\Lambda_p(b)$ is the generator of a holomorphic C_0 -semigroup $e^{-t\Lambda_p(b)}$ on L^p . The proof uses ideas from [BS], and appeals to the L^p -inequalities between the operator $(\lambda - \Delta)^{\frac{1}{2}}$ and the "potential" |b|. Then, as follows from the definition of $\Theta_p(\zeta, b\mathcal{L}^d)$, $D(\Lambda_p(b)) \subset \mathcal{W}^{1+\frac{1}{q},p}$, q > p. In particular, if $m_d \delta < 4\frac{d-2}{(d-1)^2}$, then there exists $p \in \mathcal{I}$, p > d - 1, and by the Sobolev embedding theorem $D(\Lambda_p(b)) \subset C^{0,\gamma}$, $\gamma < 1 - \frac{d-1}{p}$. The latter allows us to construct

$$(\mu + \Lambda_{C_{\infty}}(b))^{-1}|_{\mathcal{S}} := \Theta_p(\mu, b\mathcal{L}^d)|_{\mathcal{S}}, \quad \mu \ge \frac{d}{d-1}\lambda, \quad p > d-1,$$

where $\Lambda_{C_{\infty}}(b)$ is the required generator of a Feller semigroup on C_{∞} .

For $\sigma \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}$, $\sigma \not\ll \mathcal{L}^d$ (a subject of this work) $\Theta_p(\zeta, \sigma)$, as in (6), is not well defined. We modify the method in [K]. This modification highlights the fundamental role of the L^2 -theory in the C_{∞} -theory of $-\Delta + \sigma \cdot \nabla$, in particular, the role of the alternative representation of (6) in L^2 ,

$$\Theta_2(\zeta, \sigma) := (\zeta - \Delta)^{-\frac{3}{4}} (1+B)^{-1} (\zeta - \Delta)^{-\frac{1}{4}},$$
$$B := (\zeta - \Delta)^{-\frac{1}{4}} \sigma \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} \quad \text{(well defined)}.$$

used in [S2, Theorem 5.1].

Also, in contrast to the setup of [K], a σ as above doesn't admit a monotone approximation by regular vector fields v_k (i.e. by $v_k \mathcal{L}^d$), which complicates the proof of the convergence $\Theta_2(\zeta, v_k \mathcal{L}^d) \xrightarrow{s} \Theta_2(\zeta, \sigma)$ in L^2 , needed to carry out the method. We resolve this using an important variant of the Kato-Ponce inequality by [GO] (Proposition 6 below); there, we also employ a modification of an argument from [SV, proof of Theorem 2.1].

The method depends on the fact that the two operators constituting $-\Delta + \sigma \cdot \nabla$, i.e. $-\Delta$ and ∇ , commute; in particular, the method admits a straightforward generalization to fractional powers of the Laplacian (for fundamental results on potential theory of the latter, see [BJ]).

REMARK. Our main results (Theorems 1 and 2 below) are valid for $\sigma \in \bar{\mathbf{F}}_{\delta}^{\frac{1}{2}}$ such that there exist C^{∞} -smooth approximating vector fields v_k such that

$$v_k \mathcal{L}^d \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}, \quad v_k \mathcal{L}^d \xrightarrow{w} \sigma.$$

We construct these v_k 's for σ as in (4) (Proposition 1 below), but do not consider the problem of constructing such an approximation for an arbitrary weakly form-bounded measure σ .

REMARK. The symmetry assumption on the generator allows to include drifts of the form: the countable sum of certain (possibly accumulating) hypersurface measures, see [ST].

3. We proceed to precise formulations of our results.

In the next theorem we allow \mathbb{C}^d -valued measures (the modification of the definitions 1, 2 is straightforward).

Theorem 1 (L^p -theory). Let $d \ge 3$. Assume that σ is a \mathbb{C}^d -valued Borel measure in $\overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}$ such that $\sigma = b\mathcal{L}^d + \nu$, where $b : \mathbb{R}^d \to \mathbb{C}^d$ is \mathcal{L}^d -measurable,

$$b\mathcal{L}^d \in \mathbf{F}_{\delta_1}^{\frac{1}{2}}, \qquad \nu \in \bar{\mathbf{K}}_{\delta_2}^{d+1}, \qquad \sqrt{\delta} := \sqrt{\delta_1} + \sqrt{\delta_2}.$$

There exist vector fields $v_k \in C_0^{\infty}(\mathbb{R}^d, \mathbb{C}^d)$ such that $v_k \mathcal{L}^d \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}, v_k \mathcal{L}^d \xrightarrow{w} \sigma$.

If $m_d \delta < 1$, then for every

$$p \in \mathcal{J} := \left(1 + \frac{1}{1 + \sqrt{1 - m_d \delta}}, 1 + \frac{1}{1 - \sqrt{1 - m_d \delta}}\right)$$

we have:

(i) There exists a holomorphic C_0 -semigroup $e^{-t\Lambda_p(\sigma)}$ in L^p such that, possibly after replacing $v_k \mathcal{L}^d$'s with a sequence of their convex combinations (also weakly converging to measure σ), we have $e^{-t\Lambda_p(v_k \mathcal{L}^d)} \xrightarrow{s} e^{-t\Lambda_p(\sigma)}$ in L^p .

as $k \to \infty$, where

$$\Lambda_p(v_k \mathcal{L}^d) := -\Delta + v_k \cdot \nabla, \quad D(\Lambda_p(v_k \mathcal{L}^d)) = \mathcal{W}^{2,p}.$$

(ii) The resolvent set $\rho(-\Lambda_p(\sigma))$ contains a half-plane $\mathcal{O} \subset \{\zeta \in \mathbb{C} : \operatorname{Re} \zeta > 0\}$, and the resolvent $(\zeta + \Lambda_p(\sigma))^{-1}$, $\zeta \in \mathcal{O}$, admits extension by continuity to a bounded linear operator in $\mathcal{B}\left(\mathcal{W}^{-\frac{1}{r'},p}, \mathcal{W}^{1+\frac{1}{q},p}\right)$, where $1 \leq r < \min\{2,p\}, \max\{2,p\} < q$.

(iii) The domain of the generator $D(\Lambda_p(\sigma)) \subset \mathcal{W}^{1+\frac{1}{q},p}$ for every $q > \max\{p,2\}$.

Theorem 1 allows us to prove

Theorem 2 (C_{∞} -theory). Let $d \ge 3$. Assume that σ is a \mathbb{R}^d -valued Borel measure in $\overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}$ such that $\sigma = b\mathcal{L}^d + \nu$, where $b : \mathbb{R}^d \to \mathbb{R}^d$ is \mathcal{L}^d -measurable,

$$b\mathcal{L}^d \in \mathbf{F}_{\delta_1}^{\frac{1}{2}}, \qquad \nu \in \bar{\mathbf{K}}_{\delta_2}^{d+1}, \qquad \sqrt{\delta} := \sqrt{\delta_1} + \sqrt{\delta_2}.$$

There exist vector fields $v_k \in C_0^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$ such that $v_k \mathcal{L}^d \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}, v_k \mathcal{L}^d \xrightarrow{w} \sigma$.

If
$$m_d \delta < \frac{2d-5}{(d-2)^2}$$
, then:

(i) There exists a positivity preserving contraction C_0 -semigroup $e^{-t\Lambda_{C_{\infty}}(\sigma)}$ on C_{∞} such that, possibly after replacing $v_k \mathcal{L}^d$'s with a sequence of their convex combinations (also weakly converging to measure σ) we have

$$e^{-t\Lambda_{C_{\infty}}(v_k\mathcal{L}^d)} \xrightarrow{s} e^{-t\Lambda_{C_{\infty}}(\sigma)} in C_{\infty}, \quad t \ge 0,$$

as $k \to \infty$, where

$$\Lambda_{C_{\infty}}(v_k \mathcal{L}^d) := -\Delta + v_k \cdot \nabla, \quad D(\Lambda_{C_{\infty}}(v_k \mathcal{L}^d)) = (1 - \Delta)^{-1} C_{\infty}.$$

(ii) $[L^p$ -strong Feller property] $(\mu + \Lambda_{C_{\infty}}(\sigma))^{-1}|_{\mathcal{S}}, \mu > 0$, can be extended by continuity to a bounded linear operator in $\mathcal{B}(L^p, C^{0,\gamma}), \gamma < 1 - \frac{d-1}{p}$, for every d - 1 .

(iii) The integral kernel $e^{-t\Lambda_{C_{\infty}}(\sigma)}(x,y)$ $(x,y \in \mathbb{R}^d)$ of $e^{-t\Lambda_{C_{\infty}}(\sigma)}$ determines the (sub-Markov) transition probability function of a Feller process.

REMARK. If $\sigma \ll \mathcal{L}^d$, then the interval \mathcal{J} in Theorem 1 can be expanded; accordingly, the assumption on δ in Theorem 2 can be relaxed, cf. [K, Theorems 1, 2]. There, we work directly in L^p , while in the proof of Theorem 1 we have to first prove our convergence results in L^2 , and then transfer them to L^p (Proposition 8), which leads to more restrictive constraints on p and, respectively, δ .

Acknowledgments. I am thankful to the referee for comments that helped to improve the presentation, and for pointing out the reference [ST].

PROOFS OF THEOREM 1 AND THEOREM 2

In the proofs of both Theorem 1 and Theorem 2 we use the following

Proposition 1. Let $\sigma = b\mathcal{L}^d + \nu$, where $b : \mathbb{R}^d \to \mathbb{C}^d$ is \mathcal{L}^d -measurable,

$$b\mathcal{L}^d \in \mathbf{F}_{\delta_1}^{\frac{1}{2}}, \qquad \nu \in \bar{\mathbf{K}}_{\delta_2}^{d+1}, \qquad \sqrt{\delta} := \sqrt{\delta_1} + \sqrt{\delta_2}.$$

Then $\sigma \in \bar{\mathbf{F}}_{\delta}^{\frac{1}{2}}$, and there exist vector fields $v_k \in C_0^{\infty}(\mathbb{R}^d, \mathbb{C}^d)$ such that

$$v_k \mathcal{L}^d \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}, \quad \sqrt{\delta} := \sqrt{\delta_1} + \sqrt{\delta_2},$$

 $v_k \mathcal{L}^d \stackrel{w}{\to} \sigma \ as \ k \to \infty.$

If σ is \mathbb{R}^d -valued, then v_k 's are \mathbb{R}^d -valued.

Proof. First, let us construct the vector fields v_k . We fix functions $\rho_k \in C_0^{\infty}$, $0 \leq \rho_k \leq 1$, $\rho \equiv 1$ in $\{x \in \mathbb{R}^d : |x| \leq k\}$, $\rho \equiv 0$ in $\{x \in \mathbb{R}^d : |x| \geq k+1\}$, and a sequence $\varepsilon_k \downarrow 0$. We define

$$\nu_k := \rho_k e^{\varepsilon_k \Delta} \nu, \quad b_k := \rho_k e^{\varepsilon_k \Delta} \mathbf{1}_k b,$$

where $\mathbf{1}_k := \mathbf{1}_{\{x \in \mathbb{R}^d : |x| \leq k, |b(x)| \leq k\}}$, and

$$v_k \mathcal{L}^d := b_k \mathcal{L}^d + \nu_k \mathcal{L}^d.$$

Clearly, $v_k \in C_0^{\infty}(\mathbb{R}^d, \mathbb{C}^d)$ and $v_k \mathcal{L}^d \xrightarrow{w} \sigma$ as $k \to \infty$.

Let us prove that $v_k \mathcal{L}^d \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}$. First, let us show that $\nu_k \mathcal{L}^d \in \mathbf{K}_{\delta_2}^{d+1}$. We have a.e. on \mathbb{R}^d :

$$(\lambda - \Delta)^{-\frac{1}{2}} |\nu_k|_1 \leqslant (\lambda - \Delta)^{-\frac{1}{2}} |e^{\varepsilon_k \Delta} \nu|_1 \leqslant (\lambda - \Delta)^{-\frac{1}{2}} e^{\varepsilon_k \Delta} |\nu|_1 = e^{\varepsilon_k \Delta} (\lambda - \Delta)^{-\frac{1}{2}} |\nu|_1.$$

Since $\|e^{\varepsilon_k \Delta} (\lambda - \Delta)^{-\frac{1}{2}} |\nu|_1\|_{\infty} \leq \|(\lambda - \Delta)^{-\frac{1}{2}} |\nu|_1\|_{\infty}$ and, in turn, $\|(\lambda - \Delta)^{-\frac{1}{2}} |\nu|_1\|_{\infty} \leq \delta_2 \ (\Leftrightarrow \nu \in \bar{\mathbf{K}}_{\delta_2}^{d+1})$, we have $\nu_k \mathcal{L}^d \in \mathbf{K}_{\delta_2}^{d+1}$. Now, since $\mathbf{K}_{\delta_2}^{d+1} \subset \mathbf{F}_{\delta_2}^{\frac{1}{2}}$ (cf. (2)), we have $\nu_k \mathcal{L}^d \in \mathbf{F}_{\delta_2}^{\frac{1}{2}}$. Next, since $\mathbf{1}_k |b| \leq |b|$, we have $b_k \mathcal{L}^d \in \mathbf{F}_{\delta_1 + 8^{-k}}^{\frac{1}{2}}$ (possibly, after selecting smaller $\varepsilon_k \downarrow 0$). Thus, $\nu_k \mathcal{L}^d \in \mathbf{F}_{\delta_2 + 2^{-k}}^{\frac{1}{2}}$, as needed.

The latter, and the convergence $v_k \mathcal{L}^d \xrightarrow{w} \sigma$, imply that $\sigma \in \bar{\mathbf{F}}_{\delta}^{\frac{1}{2}}$.

Proof of Theorem 1. Due to the strict inequality $m_d \delta < 1$, we may assume that the infimum m_d (cf. (5)) is attained, i.e. there is $\kappa_d > 0$ such that

$$|\nabla(\zeta - \Delta)^{-1}(x, y)| \leq m_d \left(\kappa_d^{-1} \operatorname{Re} \zeta - \Delta\right)^{-\frac{1}{2}}(x, y), \quad x, y \in \mathbb{R}^d, \, x \neq y, \, \operatorname{Re} \zeta > 0,$$

 Set

$$\mathcal{O} := \{ \zeta \in \mathbb{C} : \operatorname{Re} \zeta \ge \kappa_d \lambda_\delta \}.$$

We fix σ as in the formulation of the theorem. In view of the strict strict inequality $m_d \delta < 1$, we may assume that the approximating vector fields $v_k : \mathbb{R}^d \to \mathbb{C}^d$ in Proposition 1 are in $\mathbf{F}_{\delta}^{\frac{1}{2}}$.

The method of proof. Let us fix $p \in \mathcal{J}$ and r, q satisfying $1 \leq r < \min\{2, p\}, \max\{2, p\} < q$. Our starting object is an operator-valued function

$$\Theta_p(\zeta,\sigma) := (\zeta - \Delta)^{-\frac{1}{2} - \frac{1}{2q}} \Omega_p(\zeta,\sigma,q,r) (\zeta - \Delta)^{-\frac{1}{2r'}} \in \mathcal{B}(L^p), \quad \zeta \in \mathcal{O}_q$$

which is 'a candidate' for the resolvent of the desired operator realization $\Lambda_p(\sigma)$ of $-\Delta + \sigma \cdot \nabla$ on L^p . Here

$$\Omega_p(\zeta, \sigma, q, r) := \left(\Omega_2(\zeta, \sigma, q, r) \Big|_{L^p \cap L^2} \right)_{L^p}^{\text{clos}} \in \mathcal{B}(L^p)$$
(7)

 $((\cdot)_{L^p}^{\text{clos}}$ denotes the extension of an operator by continuity to L^p), where, on L^2 ,

$$\Omega_2(\zeta, \sigma, q, r) := (\zeta - \Delta)^{-\frac{1}{2}\left(\frac{1}{2} - \frac{1}{q}\right)} (1 + Z_2(\zeta, \sigma))^{-1} (\zeta - \Delta)^{-\frac{1}{2}\left(\frac{1}{2} - \frac{1}{r'}\right)} \in \mathcal{B}(L^2),$$

$$Z_2(\zeta,\sigma)h(x) := (\zeta - \Delta)^{-\frac{1}{4}} \sigma \cdot \nabla(\zeta - \Delta)^{-\frac{3}{4}}h(x)$$

= $\int_{\mathbb{R}^d} (\zeta - \Delta)^{-\frac{1}{4}}(x,y) \left(\int_{\mathbb{R}^d} \nabla(\zeta - \Delta)^{-\frac{3}{4}}(y,z)h(z)dz \right) \cdot \sigma(y)dy, \quad x \in \mathbb{R}^d, \quad h \in \mathcal{S},$

and $||Z_2||_{2\to 2} < 1$, so $\Omega_2(\zeta, \sigma, q, r) \in \mathcal{B}(L^2)$, see Proposition 2 below. We prove that $\Omega_p(\zeta, \sigma, q, r) \in \mathcal{B}(L^p)$ in Proposition 7 below.

We show that $\Theta_p(\zeta, \sigma)$ is the resolvent of $\Lambda_p(\sigma)$ (assertion (i) of Theorem 1) by verifying conditions of the Trotter approximation theorem:

1)
$$\Theta_p(\zeta, v_k \mathcal{L}^d) = (\zeta + \Lambda_p(v_k \mathcal{L}^d))^{-1}, \zeta \in \mathcal{O}, \text{ where } \Lambda_p(v_k \mathcal{L}^d) := -\Delta + v_k \cdot \nabla, D(\Lambda_p(v_k \mathcal{L}^d)) = \mathcal{W}^{2,p}.$$

2) $\sup_{n \geq 1} \|\Theta_n(\zeta, v_k \mathcal{L}^d)\|_{n \to n} \leq C_n |\zeta|^{-1}, \zeta \in \mathcal{O}.$

2) $\sup_{n \ge 1} \|\Theta_p(\zeta, v_k \mathcal{L}^a)\|_{p \to p} \le C_p |\zeta|^{-1}, \zeta \in \mathcal{O}.$ 3) $\mu \Theta_p(\zeta, v_k \mathcal{L}^d) \xrightarrow{s} 1$ in L^p as $\mu \uparrow \infty$ uniformly in k.

4) $\Theta_p(\zeta, v_k \mathcal{L}^d) \xrightarrow{s} \Theta_p(\zeta, \sigma)$ in L^p for some $\zeta \in \mathcal{O}$ as $k \to \infty$ (possibly after replacing $v_k \mathcal{L}^d$'s with a sequence of their convex combinations, also weakly converging to measure σ), see Propositions 3 - 8 below for details.

We note that a priori in 1) the set of ζ 's for which $\Theta_p(\zeta, v_k \mathcal{L}^d) = (\zeta + \Lambda_p(v_k \mathcal{L}^d))^{-1}$ could depend on k; the fact that it does not is the content of Proposition 4.

The proofs of 2), 3), contained in Proposition 3 and Proposition 5, are based on an explicit representation of $\Omega_p(\zeta, v_k \mathcal{L}^d, q, r), k \ge 1$, that doesn't exist if σ has a non-zero singular part.

Next, 4) follows from $\Theta_2(\zeta, v_k \mathcal{L}^d) \xrightarrow{s} \Theta_2(\zeta, \sigma)$, combined with $\sup_n \|\Theta_p(\zeta, v_k \mathcal{L}^d)\|_{2(p-1)\to 2(p-1)} < \infty \ (\Leftarrow 2))$ and Hölder's inequality, see Proposition 8. Our proof of $\Theta_2(\zeta, v_k \mathcal{L}^d) \xrightarrow{s} \Theta_2(\zeta, \sigma)$ (Proposition 6) uses the Kato-Ponce inequality by [GO].

Finally, we note that the very definition of the operator-valued function $\Theta_p(\zeta, \sigma)$ implies that it admits extension to an operator-valued function in $\mathcal{B}(\mathcal{W}^{-\frac{1}{r'},p}, \mathcal{W}^{1+\frac{1}{q},p}) \Rightarrow \text{assertion } (ii)$. Assertion (*iii*) is immediate from (*ii*).

We proceed to formulating and proving Propositions 2-8.

Proposition 2. We have, for every $\zeta \in \mathcal{O}$,

- (1) $||Z_2(\zeta, v_k \mathcal{L}^d)||_{2\to 2} \leq \delta$ for all k.
- (2) $||Z_2(\zeta, \sigma)f||_2 \leq \delta ||f||_2$, for all $f \in S$, all k.

Proof. (1) Define $H := |v_k|^{\frac{1}{2}} (\zeta - \Delta)^{-\frac{1}{4}}$, $S := v_k^{\frac{1}{2}} \cdot \nabla(\zeta - \Delta)^{-\frac{3}{4}}$, where $v_k^{\frac{1}{2}} := |v_k|^{-\frac{1}{2}} v_k$. Then $Z_2(\zeta, v_k \mathcal{L}^d) = H^*S$, and we have

$$||Z_2(\zeta, v_k \mathcal{L}^d)||_{2 \to 2} \leq ||H||_{2 \to 2} ||S||_{2 \to 2} \leq ||H||_{2 \to 2}^2 ||\nabla(\zeta - \Delta)^{-\frac{1}{2}}||_{2 \to 2} \leq \delta,$$

where we have used $\|\nabla(\zeta - \Delta)^{-\frac{1}{2}}\|_{2\to 2} = 1$, and

$$\begin{split} \|H\|_{2\to2} & \text{ (here we are using } |v_k| \leq |v_k|_1) \\ & \leq \||v_k|_1^{\frac{1}{2}} (\zeta - \Delta)^{-\frac{1}{4}}\|_{2\to2} \\ \text{ (here we are using } |(\zeta - \Delta)^{-1}(x, y)| \leq |(\operatorname{Re} \zeta - \Delta)^{-1}(x, y)|, \, x, y \in \mathbb{R}^d, \, x \neq y) \\ & \leq \sqrt{\delta} \quad (\text{since } v_k \mathcal{L}^d \in \mathbf{F}_{\delta}^{\frac{1}{2}}). \end{split}$$

(2) We have, for every $f, g \in \mathcal{S}$,

$$\begin{split} \left\langle g, Z_2(\zeta, \sigma) f \right\rangle = &\left\langle (\zeta - \Delta)^{-\frac{1}{4}} g, \sigma \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} f \right\rangle \\ & \text{(here we are using } v_k \mathcal{L}^d \xrightarrow{w} \sigma) \\ &= \lim_k \left\langle (\zeta - \Delta)^{-\frac{1}{4}} g, v_k \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} f \right\rangle \\ & \text{(here we are using assertion (1))} \\ &\leqslant \delta \|g\|_2 \|f\|_2, \end{split}$$

i.e. $||Z_2(\zeta, \sigma)f||_2 \leq \delta ||f||_2$, as needed.

The extension of $Z_2(\zeta, \sigma)|_{\mathcal{S}}$ by continuity to a bounded linear operator in $\mathcal{B}(L^2)$ will be denoted again by $Z_2(\zeta, \sigma)$. Since $||Z_2(\zeta, v_k \mathcal{L}^d)||_{2\to 2}, ||Z_2(\zeta, \sigma)||_{2\to 2} \leq \delta$ (< 1), we have $\Omega_2(\zeta, v_k \mathcal{L}^d, q, r), \Omega_2(\zeta, \sigma, q, r) \in \mathcal{B}(L^2)$.

Set

$$\mathcal{I} := \left(\frac{2}{1 + \sqrt{1 - m_d \delta}}, \frac{2}{1 - \sqrt{1 - m_d \delta}}\right)$$

In the following propositions, given a $p \in \mathcal{I}$, we assume that r, q satisfy $1 \leq r < \min\{2, p\}, \max\{2, p\} < q$.

The following proposition plays a principal role:

 \square

Proposition 3. Let $p \in \mathcal{I}$. There exist constants C_p , $C_{p,q,r} < \infty$ such that, for every $\zeta \in \mathcal{O}$,

- (1) $\|\Omega_p(\zeta, v_k \mathcal{L}^d, q, r)\|_{p \to p} \leq C_{p,q,r}$ for all k,
- (2) $\|\Omega_p(\zeta, v_k \mathcal{L}^d, \infty, 1)\|_{p \to p} \leq C_p |\zeta|^{-\frac{1}{2}}$ for all k.

Proof. Denote $v_k^{\frac{1}{p}} := |v_k|^{\frac{1}{p}-1} v_k$. Set

$$\tilde{\Omega}_p(\zeta, v_k \mathcal{L}^d, q, r) := (\zeta - \Delta)^{\frac{1}{2} \left(\frac{1}{q} - \frac{1}{r}\right)} - Q_p(q)(1 + T_p)^{-1} G_p(r), \quad \zeta \in \mathcal{O},$$
(8)

where

$$Q_p(q) := (\zeta - \Delta)^{-\frac{1}{2q'}} |v_k|^{\frac{1}{p'}}, \quad T_p := v_k^{\frac{1}{p}} \cdot \nabla(\zeta - \Delta)^{-1} |v_k|^{\frac{1}{p'}}, \quad G_p(r) := v_k^{\frac{1}{p}} \cdot \nabla(\zeta - \Delta)^{-\frac{1}{2} - \frac{1}{2r}}$$

are uniformly in k bounded in $\mathcal{B}(L^p)$ (see the proof of [K, Prop. 1(i)]); in particular, $||T_p||_{p \to p} \leq \frac{pp'}{4}m_d\delta$, where $\frac{pp'}{4}m_d\delta < 1$ since $p \in \mathcal{I}$. Therefore, $C_{p,q,r} := \sup_k ||\tilde{\Omega}_p(\zeta, v_k\mathcal{L}^d, q, r)||_{p \to p} < \infty$. Now, $\tilde{\Omega}_p(\zeta, v_k\mathcal{L}^d, q, r)|_{L^2 \cap L^p} = \Omega_2(\zeta, v_k\mathcal{L}^d, q, r)|_{L^2 \cap L^p}$ (by expanding $(1 + T_p)^{-1}$, $(1 + Z_2)^{-1}$ in the K. Neumann series in L^p and in L^2 , respectively). Therefore, $\tilde{\Omega}_p(\zeta, v_k\mathcal{L}^d, q, r) = \Omega_p(\zeta, v_k\mathcal{L}^d, q, r) \Rightarrow$ assertion (1). The proof of assertion (2) follows closely the proof of [K, Prop. 1(ii)].

Clearly, $\Theta_p(\zeta, v_k \mathcal{L}^d)$ does not depend on q, r. Taking $q = \infty, r = 1$, by Proposition 3 we obtain:

$$\|\Theta_p(\zeta, v_k \mathcal{L}^d)\|_{p \to p} \leqslant C_p |\zeta|^{-1}, \quad \zeta \in \mathcal{O}.$$
(9)

Proposition 4. Let $p \in \mathcal{I}$. For every $k \ge 1$ $\mathcal{O} \subset \rho(-\Lambda_p(v_k \mathcal{L}^d))$, the resolvent set of $-\Lambda_p(v_k \mathcal{L}^d)$, and

$$\Theta_p(\zeta, v_k \mathcal{L}^d) = (\zeta + \Lambda_p(v_k \mathcal{L}^d))^{-1}, \quad \zeta \in \mathcal{O},$$

where $\Lambda_p(v_k \mathcal{L}^d) := -\Delta + v_k \cdot \nabla, \ D(\Lambda_{C_\infty}(v_k \mathcal{L}^d)) = \mathcal{W}^{2,p}.$

Proof. The proof repeats the proof of [K, Prop. 4].

Proposition 5. For $p \in \mathcal{I}$, $\mu \Theta_p(\mu, v_k \mathcal{L}^d) \xrightarrow{s} 1$ in L^p as $\mu \uparrow \infty$ uniformly in k.

Proof. The proof repeats the proof of [K, Prop. 3].

Proposition 6. There exists a sequence $\{\hat{v}_n\} \subset \operatorname{conv}\{v_k\} \ (\subset C_0^{\infty}(\mathbb{R}^d, \mathbb{C}^d))$ such that

$$\hat{v}_n \mathcal{L}^d \xrightarrow{w} \sigma \ as \ n \to \infty,$$
 (10)

and

$$\Omega_2(\zeta, \hat{v}_n \mathcal{L}^d, q, r) \xrightarrow{s} \Omega_2(\zeta, \sigma, q, r) \text{ in } L^2, \quad \zeta \in \mathcal{O}.$$
(11)

Proof. To prove (11), it suffices to establish the convergence $Z_2(\zeta, \hat{v}_n \mathcal{L}^d) \xrightarrow{s} Z_2(\zeta, \sigma)$ in L^2 . Let $\eta_r \in C_0^{\infty}, 0 \leq \eta_r \leq 1, \eta_r \equiv 1$ on $\{x \in \mathbb{R}^d : |x| \leq r\}$ and $\eta_r \equiv 0$ on $\{x \in \mathbb{R}^d : |x| \geq r+1\}$.

Claim 1. We have, for every
$$\mu \ge \lambda_{\delta}$$
,
(j) $\|(\mu - \Delta)^{-\frac{1}{4}} |v_k|_1 (\mu - \Delta)^{-\frac{1}{4}} \|_{2\to 2} \le \delta$, for all k.
(jj) $\|(\mu - \Delta)^{-\frac{1}{4}} |\sigma|_1 (\mu - \Delta)^{-\frac{1}{4}} f\|_2 \le \delta \|f\|_2$, for all $f \in S$.

Proof. Define $H := |v_k|_1^{\frac{1}{2}} (\mu - \Delta)^{-\frac{1}{4}}$. We have

$$\|(\mu - \Delta)^{-\frac{1}{4}} | v_k |_1 (\mu - \Delta)^{-\frac{1}{4}} \|_{2 \to 2} = \|H^* H\|_{2 \to 2} = \|H\|_{2 \to 2}^2 \leqslant \delta,$$

where $||H||_{2\to 2}^2 \leq \delta$ since $v_k \mathcal{L}^d \in \mathbf{F}_{\delta}^{\frac{1}{2}}$, i.e. we have proved (*j*). An argument similar to the one in the proof of Proposition 2, but using assertion (*j*), yields (*jj*).

Claim 2. There exists a sequence $\{\hat{v}_n\} \subset \operatorname{conv}\{v_k\}$ such that (10) holds, and for every $r \ge 1$

$$(\zeta - \Delta)^{-\frac{1}{4}} \eta_r (\hat{v}_n - \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} \stackrel{s}{\to} 0 \ in \ L^2, \quad \operatorname{Re} \zeta \geqslant \lambda_{\delta}.$$

(here and below we use the shorthand $\hat{v}_n - \sigma := \hat{v}_n \mathcal{L}^d - \sigma$).

Proof of Claim 2. In view of Claim 1(j), (jj), it suffices to establish this convergence over S. Fix some $\mu \ge \lambda_{\delta}$. Set $c(x) := e^{-x^2}$. Clearly, $c \in S$, $|(\mu - \Delta)^{-\frac{1}{4}}c| > 0$ on \mathbb{R}^d .

Step 1. Let r = 1. Let us show that there exists a sequence $\{v_{\ell_1}^1\} \subset \operatorname{conv}\{v_k\}$ such that

$$(\mu - \Delta)^{-\frac{1}{4}} \eta_1 (v_{\ell_1}^1 - \sigma) \cdot \nabla (\mu - \Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text{ in } L^2 \text{ as } \ell_1 \to \infty.$$

$$(12)$$

First, we show that

$$(\mu - \Delta)^{-\frac{1}{4}} \eta_1 (v_k - \sigma) (\mu - \Delta)^{-\frac{1}{4}} c \xrightarrow{w} 0 \text{ in } L^2.$$
(13)

Indeed, by Claim 1(j), (jj), $\|(\mu - \Delta)^{-\frac{1}{4}}\eta_1(v_k - \sigma)(\mu - \Delta)^{-\frac{1}{4}}c\|_2 \leq 2\delta\|c\|_2$ for all k. Hence, there exists a subsequence of $\{v_k\}$ (without loss of generality, it is $\{v_k\}$ itself) such that $(\mu - \Delta)^{-\frac{1}{4}}\eta_1(v_k - \sigma)(\mu - \Delta)^{-\frac{1}{4}}c \xrightarrow{w} h$ for some $h \in L^2$. Therefore, given any $f \in S$, we have $\langle f, (\mu - \Delta)^{-\frac{1}{4}}\eta_1(v_k - \sigma)(\mu - \Delta)^{-\frac{1}{4}}c \rangle \rightarrow \langle f, h \rangle$. Along with that, since $v_k \mathcal{L}^d \xrightarrow{w} \sigma$, we also have

$$\langle f, (\mu - \Delta)^{-\frac{1}{4}} \eta_1 (v_k - \sigma) (\mu - \Delta)^{-\frac{1}{4}} c \rangle = \langle (\mu - \Delta)^{-\frac{1}{4}} f, \eta_1 (v_k - \sigma) (\mu - \Delta)^{-\frac{1}{4}} c \rangle \to 0,$$

i.e. $\langle f, h \rangle = 0$. Since $f \in S$ was arbitrary, we have h = 0, which yields (13).

Now, in view of (13), by Mazur's Theorem, there exists a sequence $\{v_{\ell_1}^1\} \subset \operatorname{conv}\{v_k\}$ such that

$$(\mu - \Delta)^{-\frac{1}{4}} \eta_1 (v_{\ell_1}^1 - \sigma) (\mu - \Delta)^{-\frac{1}{4}} c \xrightarrow{s} 0 \text{ in } L^2.$$
(14)

We may assume without loss of generality that each $v_{\ell_1}^1 \in \operatorname{conv}\{v_n\}_{n \ge \ell_1}$.

Next, set $\ell := \ell_1$, $\varphi_\ell := \eta_1(v_\ell^1 - \sigma)$, $\Phi := (\mu - \Delta)^{-\frac{1}{4}}c$, fix some $u \in S$. We estimate (cf. [SV, proof of Theorem 2.1]):

$$\begin{split} \|(\mu - \Delta)^{-\frac{1}{4}}\varphi_{\ell} \cdot \nabla(\mu - \Delta)^{-\frac{3}{4}}u\|_{2}^{2} \\ &= \left\langle \varphi_{\ell} \cdot \nabla(\mu - \Delta)^{-\frac{3}{4}}u, (\mu - \Delta)^{-\frac{1}{2}}\varphi_{\ell} \cdot \nabla(\mu - \Delta)^{-\frac{3}{4}}u \right\rangle \\ \left(\text{since } \varphi_{\ell} \equiv 0 \text{ on } \{|x| \ge 2\}, \text{ in the left multiple } \varphi_{\ell} = \varphi_{\ell}\Phi\frac{\eta_{2}}{\Phi} \right) \\ &= \left\langle \varphi_{\ell}\Phi\frac{\eta_{2}}{\Phi} \cdot \nabla(\mu - \Delta)^{-\frac{3}{4}}u, (\mu - \Delta)^{-\frac{1}{2}}\varphi_{\ell} \cdot \nabla(\mu - \Delta)^{-\frac{3}{4}}u \right\rangle \\ &= \left\langle \varphi_{\ell}\Phi, \frac{\eta_{2}}{\Phi}\nabla(\mu - \Delta)^{-\frac{3}{4}}u \left[(\mu - \Delta)^{-\frac{1}{2}}\varphi_{\ell} \cdot \nabla(\mu - \Delta)^{-\frac{3}{4}}u \right] \right\rangle \\ \text{ (here we are using in the left multiple that } \varphi_{\ell} = (\mu - \Delta)^{\frac{1}{4}}(\mu - \Delta)^{-\frac{1}{4}}\varphi_{\ell}) \end{split}$$

$$= \left\langle (\mu - \Delta)^{-\frac{1}{4}} \varphi_{\ell} \Phi, (\mu - \Delta)^{\frac{1}{4}} (fg_{\ell}) \right\rangle$$

where we set $f := \frac{\eta_2}{\Phi} \nabla(\mu - \Delta)^{-\frac{3}{4}} u \in C_0^{\infty}(\mathbb{R}^d, \mathbb{C}^d), g_\ell := (\mu - \Delta)^{-\frac{1}{2}} \varphi_\ell \cdot \nabla(\mu - \Delta)^{-\frac{3}{4}} u \in (\mu - \Delta)^{-\frac{1}{4}} L^2$ (in view of Claim 1(j), (jj)). Thus, in view of the above estimates,

$$\|(\mu - \Delta)^{-\frac{1}{4}}\varphi_{\ell} \cdot \nabla(\mu - \Delta)^{-\frac{3}{4}}u\|_{2}^{2} \leq \|(\mu - \Delta)^{-\frac{1}{4}}\varphi_{\ell}\Phi\|_{2}\|(\mu - \Delta)^{\frac{1}{4}}(fg_{\ell})\|_{2}.$$

By the Kato-Ponce inequality of [GO, Theorem 1],

$$\|(\mu - \Delta)^{\frac{1}{4}}(fg_{\ell})\|_{2} \leq C \bigg(\|f\|_{\infty} \|(\mu - \Delta)^{\frac{1}{4}}g_{\ell}\|_{2} + \|(\mu - \Delta)^{\frac{1}{4}}f\|_{\infty} \|g_{\ell}\|_{2} \bigg),$$

for some $C = C(d) < \infty$. Clearly, $||f||_{\infty}$, $||(\mu - \Delta)^{\frac{1}{4}}f||_{\infty} < \infty$, and $||(\mu - \Delta)^{\frac{1}{4}}g_{\ell}||_2$, $||g_{\ell}||_2$ are uniformly (in ℓ) bounded from above according to Claim 1(j), (jj). Thus, in view of (14), we obtain (12) (recalling that $\ell_1 = \ell$, and $\varphi_{\ell_1} = \eta_1(v_{\ell_1}^1 - \sigma)$).

Step 2. Now, we can repeat the argument of Step 1, but starting with sequence $\{v_{\ell_1}^1\}$ in place of $\{v_l\}$, thus obtaining a sequence $\{v_{\ell_2}^2\} \subset \operatorname{conv}\{v_{\ell_1}^1\}$ such that

$$(\mu - \Delta)^{-\frac{1}{4}} \eta_2 (v_{\ell_2}^2 - \sigma) \cdot \nabla (\mu - \Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text{ in } L^2 \text{ as } \ell_2 \to \infty.$$

We may assume without loss of generality that each $v_{\ell_2}^2 \in \operatorname{conv}\{v_{\ell_1}^1\}_{\ell_1 \ge \ell_2}$. Therefore, we also have

$$(\mu - \Delta)^{-\frac{1}{4}} \eta_1 (v_{\ell_2}^2 - \sigma) \cdot \nabla (\mu - \Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text{ in } L^2 \text{ as } \ell_2 \to \infty$$

Repeating this procedure n-2 times, we obtain a sequence $\{v_{\ell_n}^n\} \subset \operatorname{conv}\{v_{\ell_{n-1}}^{n-1}\} (\subset \operatorname{conv}\{v_k\})$ such that

$$(\mu - \Delta)^{-\frac{1}{4}} \eta_i (v_{\ell_n}^n - \sigma) \cdot \nabla (\mu - \Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text{ in } L^2 \text{ as } \ell_n \to \infty, \quad 1 \le i \le n.$$

Step 3. We set $\hat{v}_n := v_{\ell_n}^n, n \ge 1$, so for every $r \ge 1$

$$(\mu - \Delta)^{-\frac{1}{4}} \eta_r (\hat{v}_n - \sigma) \cdot \nabla (\mu - \Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text{ in } L^2.$$

$$(15)$$

Since $v_{\ell_n}^n \in \operatorname{conv}\{v_{\ell_{n-1}}^{n-1}\}_{\ell_{n-1} \ge \ell_n}, v_{\ell_{n-1}}^{n-1} \in \operatorname{conv}\{v_{\ell_{n-2}}^{n-2}\}_{\ell_{n-2} \ge \ell_{n-1}}$, etc, we obtain that $v_{\ell_n}^n \in \operatorname{conv}\{v_k\}_{k \ge \ell_n}$, i.e. we also have (10). Finally, (15), combined with the resolvent identity, yield

$$(\zeta - \Delta)^{-\frac{1}{4}} \eta_r (\hat{v}_n - \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} \stackrel{s}{\to} 0 \text{ in } L^2, \quad \operatorname{Re} \zeta \ge \lambda_\delta.$$

i.e. we have proved Claim 2.

We are in a position to complete the proof of Proposition 6. Let us show that, for every $\zeta \in \mathcal{O}$,

$$Z_2(\zeta, \hat{v}_n \mathcal{L}^d)g - Z_2(\zeta, \sigma)g = (\zeta - \Delta)^{-\frac{1}{4}}(\hat{v}_n - \sigma) \cdot \nabla(\zeta - \Delta)^{-\frac{3}{4}}g \xrightarrow{s} 0 \text{ in } L^2, \quad g \in \mathcal{S}$$

Let us fix some $g \in \mathcal{S}$. We have

$$\begin{aligned} (\zeta - \Delta)^{-\frac{1}{4}} (\hat{v}_n - \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} g &= (\zeta - \Delta)^{-\frac{1}{4}} (\hat{v}_n - \eta_r \hat{v}_n) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} g \\ &+ (\zeta - \Delta)^{-\frac{1}{4}} (\eta_r \hat{v}_n - \eta_r \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} g \\ &+ (\zeta - \Delta)^{-\frac{1}{4}} (\eta_r \sigma - \sigma) \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}} g =: I_{1,r,n} + I_{2,r,n} + I_{3,r}. \end{aligned}$$

Claim 3. Given any $\varepsilon > 0$, there exists r such that $||I_{3,r}||_2$, $||I_{1,r,n}||_2 < \varepsilon$, for all $n, \zeta \in \mathcal{O}$.

Proof of Claim 3. It suffices to prove $||I_{1,r,n}||_2 < \varepsilon$ for all n. We will need the following elementary estimate: $|\nabla(\zeta - \Delta)^{-\frac{3}{4}}(x,y)| \leq M_d(\kappa_d^{-1}\operatorname{Re}\zeta - \Delta)^{-\frac{1}{4}}(x,y), x, y \in \mathbb{R}^d, x \neq y$, for some $M_d < \infty$ (cf. [K, Appendix A]). We have

$$\begin{aligned} \|I_{1,r,n}\|_{2} &= \|(\operatorname{Re}\zeta - \Delta)^{-\frac{1}{4}}(1 - \eta_{r})\hat{v}_{n} \cdot \nabla(\operatorname{Re}\zeta - \Delta)^{-\frac{3}{4}}g\|_{2} \\ &\leqslant c_{d}M_{d}\|(\operatorname{Re}\zeta - \Delta)^{-\frac{1}{4}}(1 - \eta_{r})|\hat{v}_{n}|(\kappa_{d}^{-1}\operatorname{Re}\zeta - \Delta)^{-\frac{1}{4}}g\|_{2} \\ &\leqslant c_{d}M_{d}\|(\operatorname{Re}\zeta - \Delta)^{-\frac{1}{4}}|\hat{v}_{n}|^{\frac{1}{2}}\|_{2 \to 2}\|(1 - \eta_{r})|\hat{v}_{n}|^{\frac{1}{2}}(\kappa_{d}^{-1}\operatorname{Re}\zeta - \Delta)^{-\frac{1}{4}}g\|_{2} \end{aligned}$$

We have $\left\| (\operatorname{Re} \zeta - \Delta)^{-\frac{1}{4}} |\hat{v}_n|^{\frac{1}{2}} \right\|_{2 \to 2} \leq \delta$ since (by construction) $\hat{v}_n \mathcal{L}^d \in \mathbf{F}_{\delta}^{\frac{1}{2}}$. In turn,

$$(1 - \eta_r) |\hat{v}_n|^{\frac{1}{2}} (\kappa_d^{-1} \operatorname{Re} \zeta - \Delta)^{-\frac{1}{4}} g$$

= $|\hat{v}_n|^{\frac{1}{2}} (\kappa_d^{-1} \operatorname{Re} \zeta - \Delta)^{-\frac{1}{4}} (\kappa_d^{-1} \operatorname{Re} \zeta - \Delta)^{\frac{1}{4}} (1 - \eta_r) (\kappa_d^{-1} \operatorname{Re} \zeta - \Delta)^{-\frac{1}{4}} g,$

 \mathbf{SO}

$$\left| (1 - \eta_r) |\hat{v}_n|^{\frac{1}{2}} (\kappa_d^{-1} \operatorname{Re} \zeta - \Delta)^{-\frac{1}{4}} g \right|_2 \leqslant \delta \| (\kappa_d^{-1} \operatorname{Re} \zeta - \Delta)^{\frac{1}{4}} (1 - \eta_r) (\kappa_d^{-1} \operatorname{Re} \zeta - \Delta)^{-\frac{1}{4}} g \|_2,$$

where $\delta \| (\kappa_d^{-1} \operatorname{Re} \zeta - \Delta)^{\frac{1}{4}} (1 - \eta_r) (\kappa_d^{-1} \operatorname{Re} \zeta - \Delta)^{-\frac{1}{4}} g \|_2 \to 0$ as $r \to \infty$. The proof of Claim 3 is completed.

Claim 2, which yields the convergence $||I_{2,r,n}||_2 \to 0$ as $n \to \infty$ for every r, and Claim 3, imply that

$$Z_2(\zeta, \hat{v}_n \mathcal{L}^d)g - Z_2(\zeta, \sigma)g \xrightarrow{s} 0 \text{ in } L^2, \quad g \in \mathcal{S}, \quad \zeta \in \mathcal{O},$$

which, in view of Claim 1(j), (jj), yields $Z_2(\zeta, \hat{v}_n \mathcal{L}^d) - Z_2(\zeta, \sigma) \xrightarrow{s} 0$ in L^2 (\Rightarrow (11)). By Claim 2, we also have (10). This completes the proof of Proposition 6.

Proposition 7. Let $p \in \mathcal{I}$. There exist constants C_p , $C_{p,q,r} < \infty$ such that, for every $\zeta \in \mathcal{O}$,

- (1) $\|\Omega_p(\zeta, \sigma, q, r)\|_{p \to p} \leq C_{p,q,r}$ for all k,
- (2) $\|\Omega_p(\zeta, \sigma, \infty, 1)\|_{p \to p} \leq C_p |\zeta|^{-\frac{1}{2}}$, for all k.

Proof. Immediate from Proposition 3, Proposition 6 and the definition (7).

Now, we assume that $p \in \mathcal{J} \subset \mathcal{I}$.

Proposition 8. Let $\{\hat{v}_n\}$ be the sequence in Proposition 6. For any $p \in \mathcal{J}$,

$$\Omega_p(\zeta, \hat{v}_n \mathcal{L}^d, q, r) \xrightarrow{s} \Omega_p(\zeta, \sigma, q, r) \text{ in } L^p, \quad \zeta \in \mathcal{O}$$

Proof. Set $\Omega_p \equiv \Omega_p(\zeta, \sigma, q, r), \ \Omega_p^n \equiv \Omega_p(\zeta, \hat{v}_n \mathcal{L}^d, q, r)$. Since $p \in \mathcal{J}$, we have $2(p-1) \in \mathcal{I}$. Since Ω_p , $\Omega_p^n \in \mathcal{B}(L^p)$, it suffices to prove the required convergence over \mathcal{S} . We have $(f \in \mathcal{S})$:

$$\|\Omega_p f - \Omega_p^n f\|_p^p \le \|\Omega_p f - \Omega_p^n f\|_{2(p-1)}^{p-1} \|\Omega_p f - \Omega_p^n f\|_2.$$
(16)

Let us estimate the right-hand side in (16):

1) $\Omega_p f - \Omega_p^n f$ (= $\Omega_{2(p-1)} f - \Omega_{2(p-1)}^n f$) is uniformly bounded in $L^{2(p-1)}$ in view of Proposition 3 and Proposition 7,

2) $\Omega_p f - \Omega_p^n f = \Omega_2 f - \Omega_2^n f \stackrel{s}{\to} 0$ in L^2 as $k \to \infty$ by Proposition 6.

Therefore, by (16), $\Omega_p^n f \xrightarrow{s} \Omega_p f$ in L^p , as needed.

This completes the proof of assertion (i), and, thus, the proof of Theorem 1.

Proof of Theorem 2. (i) The approximating vector fields $v_k \ (\in C_0(\mathbb{R}^d, \mathbb{R}^d))$ were constructed in Proposition 1. The proof essentially repeats the proof of [K, Theorem 2]. Namely, we verify conditions of the Trotter approximation theorem for $\Lambda_{C_{\infty}}(v_k \mathcal{L}^d) := -\Delta + v_k \cdot \nabla$, $D(\Lambda_{C_{\infty}}(v_k \mathcal{L}^d)) =$ $(1 - \Delta)^{-1}C_{\infty}$:

- 1°) $\sup_n \|(\mu + \Lambda_{C_{\infty}}(v_k \mathcal{L}^d))^{-1}\|_{\infty \to \infty} \leq \mu^{-1}, \ \mu \geq \kappa_d \lambda.$
- 2°) $\mu(\mu + \Lambda_{C_{\infty}}(v_k \mathcal{L}^d))^{-1} \to 1$ in C_{∞} as $\mu \uparrow \infty$ uniformly in n.
- 3°) There exists s- C_{∞} $\lim_{n \to \infty} (\mu + \Lambda_{C_{\infty}}(v_k \mathcal{L}^d))^{-1}$ for some $\mu \ge \kappa_d \lambda$.

1°) is immediate. Let us verify 2°) and 3°). Fix some $p \in \mathcal{J}$, p > d - 1 (such p exists since $m_d \delta < \frac{2d-5}{(d-2)^2}$). Let

$$\Theta_p(\mu,\sigma) := (\mu - \Delta)^{-\frac{1}{2} - \frac{1}{2q}} \Omega_p(\mu,\sigma,q,1) \in \mathcal{B}(L^p), \quad \mu \ge \kappa_d \lambda, \tag{17}$$

where $\max\{2, p\} < q$, see the proof of Theorem 1 for notation. We will be using the properties of the operator-valued function $\Omega_p(\mu, \sigma, q, 1)$ established there. Without loss of generality, we may assume that $\{v_k\}$ is the sequence constructed in Proposition 8, that is, $v_k \mathcal{L}^d \xrightarrow{w} \sigma$, and $\Omega_p(\mu, v_k \mathcal{L}^d, q, 1) \xrightarrow{s} \Omega_p(\mu, \sigma, q, 1)$ in L^p as $k \to \infty$.

Given any $\gamma < 1 - \frac{d-1}{p}$, we can select q sufficiently close to p so that by the Sobolev embedding theorem,

$$(\mu - \Delta)^{-\frac{1}{2} - \frac{1}{2q}} [L^p] \subset C^{0,\gamma} \cap L^p$$
, and $(\mu - \Delta)^{-\frac{1}{2} - \frac{1}{2q}} \in \mathcal{B}(L^p, C_\infty).$

Then Proposition 8 yields $\Theta_p(\mu, \hat{v}_n \mathcal{L}^d) f \xrightarrow{s} \Theta_p(\mu, \sigma) f$ in $C_{\infty}, f \in \mathcal{S}$, as $n \to \infty$. The latter, combined with the next proposition and 1°), verifies condition 3°):

Proposition 9. For every $k \ge 1$, $\Theta_p(\mu, v_k \mathcal{L}^d) \mathcal{S} \subset \mathcal{S}$, and

$$(\mu + \Lambda_{C_{\infty}}(v_k \mathcal{L}^d))^{-1}|_{\mathcal{S}} = \Theta_p(\mu, v_k \mathcal{L}^d)|_{\mathcal{S}}, \quad \mu \ge \kappa_d \lambda.$$

Proof. The proof repeats the proof of [K, Prop. 6].

Proposition 10. $\mu \Theta_p(\mu, v_k) \xrightarrow{s} 1$ in C_{∞} as $\mu \uparrow \infty$ uniformly in k.

Proof. The proof repeats the proof of [K, Prop. 8].

The last two propositions yield 2°). This completes the proof of assertion (i).

(*ii*) follows from $\Theta_p(\mu, \sigma)|_{\mathcal{S}} = (\mu + \Lambda_{C_{\infty}}(C_{\infty}))^{-1}|_{\mathcal{S}}$ (by construction), representation (17), and the Sobolev embedding theorem.

(*iii*) It follows from (*i*) that $e^{-t\Lambda_{C_{\infty}}(\sigma)}$ is positivity preserving. The latter, 1°) and the Riesz-Markov-Kakutani representation theorem imply (*iii*).

References

- [AS] M. Aizenman, B. Simon. Brownian motion and Harnack inequality for Schrödinger operators. Comm. Pure. Appl. Math., 35 (1982), p. 209-273.
- [BC] R. Bass, Z.-Q. Chen. Brownian motion with singular drift. Ann. Prob., 31 (2003), p. 791-817.
- [BS] A.G. Belyi and Yu.A. Semenov. On the L^p-theory of Schrödinger semigroups. II. Sibirsk. Math. J., 31 (1990), p. 16-26; English transl. in Siberian Math. J., 31 (1991), p. 540-549.
- [BJ] K. Bogdan, T. Jakubowski. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys., 271 (2007), p. 179-198.
- [GO] L. Grafakos, S. Oh. The Kato-Ponce inequality. Comm. Partial Diff. Equ., 39 (2014), p. 1128-1157.
- [K] D. Kinzebulatov. A new approach to the L^p -theory of $-\Delta + b \cdot \nabla$, and its applications to Feller processes with general drifts. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), to appear, 21 p.
- [KPS] V.F. Kovalenko, M.A. Perelmuter, Yu.A. Semenov. Schrödinger operators with $L_W^{1/2}(\mathbb{R}^l)$ -potentials. J. Math. Phys., 22, 1981, p. 1033-1044.
- [KS] V. F. Kovalenko, Yu.A. Semenov. C_0 -semigroups in $L^p(\mathbb{R}^d)$ and $C_{\infty}(\mathbb{R}^d)$ spaces generated by differential expression $\Delta + b \cdot \nabla$. (Russian) *Teor. Veroyatnost. i Primenen.*, 35 (1990), p. 449-458; English transl. in *Theory Probab.* Appl. 35 (1991), p. 443-453.
- [S] Yu.A. Semenov. On perturbation theory for linear elliptic and parabolic operators; the method of Nash. Contemp. Math., 221 (1999), p. 217-284.
- [S2] Yu.A. Semenov. Regularity theorems for parabolic equations. J. Funct. Anal., 231 (2006), p. 375-417.
- [ST] J. Shin, G. Trutnau. On the stochastic regularity of distorted Brownian motions. *Trans. Amer. Math. Soc.*, to appear.
- [SV] P. Stollmann, J. Voigt. Perturbation of Dirichlet forms by measures. Potential Anal., 5 (1996), p. 109-138.
- [Z] Q. S. Zhang. Gaussian bounds for the fundamental solutions of $\nabla(A\nabla u) + B\nabla u u_t = 0$. Manuscripta Math., 93 (1997), p. 381-390.

UNIVERSITÉ LAVAL, DÉPARTEMENT DE MATHÉMATIQUES ET DE STATISTIQUE, PAVILLON ALEXANDRE-VACHON 1045 AV DE LA MÉDECINE, QUÉBEC, PQ, G1V 0A6, CANADA

 $E\text{-}mail \ address: \texttt{damir.kinzebulatov@mat.ulaval.ca}$