FELLER GENERATORS WITH MEASURE-VALUED DRIFTS

DAMIR KINZEBULATOV

ABSTRACT. We construct a LP-strong Feller process associated with the formal differential operator
—A+0-VonR? d> 3, with drift o in a wide class of measures (e.g. the sum of a measure having
density in weak L¢ space and a Kato class measure), by exploiting a quantitative dependence of
the smoothness of the domain of an operator realization of —A + ¢ - V generating a holomorphic
Co-semigroup on LP(R?), p > d — 1, on the value of the relative bound of .

1. Let £ be the Lebesgue measure on R? LP = LP(R? £4), [P = [P>°(RY, L?) and WP =
WLP(RY £4) (p = 1) the standard Lebesgue, weak Lebesgue and Sobolev spaces, C%7 = C%7(R%)
the space of y-Hélder continuous functions (0 < v < 1), Cp = Cp(R%) the space of bounded contin-
uous functions, endowed with the sup-norm, C'no C (Y the closed subspace of functions vanishing at
infinity, WP, s > 0, the Bessel potential space endowed with norm |[u|/.s := ||g|lp, u = (1—A)"2g,
ge LP, W p/ .= p/(p— 1), the anti-dual of W*P, and S = S(R?) the L. Schwartz space of
test functions. Given a v = (v;)L, € CY, set |v|; = Z?Zl |vi|]. We denote by B(X,Y) the space
of bounded linear operators between complex Banach spaces X — Y, endowed with operator norm
I lx=y: B(X) :== B(X,X). Set || - lp—q := || - |zr— L. Depending on the context, <+ will denote
either the weak convergence of measures, or the weak convergence in a given Banach space. =
denotes the strong convergence (or the strong convergence of bounded linear operators) in a given
Banach space.
By (u,v) we denote the inner product in L2,

(u,v) = (uv) := /]Rd uv LY (u,v € L?).

2. Let d > 3. The problem of constructing an operator realization on Cy, of the formal differential
operator —A + o -V, with o a singular vector field R* — R? (or a R% valued measure), that gener-
ates a contraction positivity preserving Cp-semigroup there (Feller semigroup), has been thoroughly
studied in the literature (motivated, in particular, by applications to the theory of stochastic pro-
cesses: by the classical result, such a semigroup determines the transition (sub-) probability function
of a Hunt process). In the context of this problem, we consider the following classes of vector fields
and vector-valued measures on R

1. A Rvalued Borel measure o = (0;)%_, on R? is said to belong to F(;%, 0 > 0, the class of weakly
form-bounded measures, if there exists A = Ay > 0 such that
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where (A — A)fi(x, y) is the Bessel potential kernel, o] := Zf-l:l loi|, |oi| is the variation of o.
2. A R%valued Borel measure o on R? is said to belong to the Kato class I_(f;l“, 0 > 0, if there
exists A = Ay > 0 such that

1
sup [ (= A) e ploh(dy) <
z€Rd JR4

3. A vector field b : R — R? belongs to Fs, § > 0, the class of form-bounded vector fields, if b is
L% measurable and there exists A = \s > 0 such that

11Bl1(A = A) 72 |2 < V3.

1 1
4.F; =F; N {bﬁd with a £%measurable b : R? — Rd},
5. Kﬁ?“ = Kg“ N {bﬁd with a £%measurable b : R — Rd}

6. Kdt! .= Ns>0 Kg“, Kot .= Ns>0 I_{S'H'l, and Fo := (550 Fs.

Simple examples show:
Kngl —Fs;#9, and Fy, — Kngl % @ for any d,01 > 0,

for instance,

1) bL%, where b(x) := 5%33@*2, isin Fg — Kglﬂ for any 0,01 > 0 (by the Hardy inequality).

2) Let b(x) := el|x1|<1\x1]5*1 for some e € R, |e| = 1, where 0 < s < 1, = (x1,...,1q), and
1, <1 is the indicator function of {x € R?: |z1| < 1}. Then bL? € Kt — Fs for any § > 0.

The examples above show that there exist b € Fy (resp. Kf;lH) such that eb ¢ Fy (resp. KIt)
for any € > 0. The classes Fy, Kgl“ cover singularities of b of critical order, i.e. ‘sensitive’ to
multiplication by a constant (replacing a b € Fy with ¢b (€ F25), ¢ > 1, destroys e.g. the uniqueness
of the solution of Cauchy problem for —A + b -V, cf. [KS, Example 5]). The classes Kg“, KgH,
F( (and, thus, L4(R% R%) C F — the inclusion follows by the Sobolev embedding theorem, cf. the
diagram below) don’t contain vector fields having critical order singularities.

We have:

_ _ 1
K CFz, (1)
K CFE, By CF2 for 6 =V, 2)
_ _ 1
bl e F2 and v e KIT —  bLY v e FZ, V3= /01 + /0 (3)

The inclusion (1) is Proposition 1 below. The first inclusion in (2) follows e.g. by interpolation
between |[|(\ — A)_%]bhHoo < ¢ and (by duality) |[|b]1(A — A)_%Hl_)l < 4, the second inclusion in
(2) follows by the Heinz inequality; for details, if needed, see [K, Appendix B].

[BC] constructed an operator realization on Cy of —A +0 -V, o € Kg“, generating a strong
Feller semigroup there, thus obtaining e.g. a Brownian motion drifting upward when filtering through

certain fractal-like sets. Below we construct an operator realization on C of —A+ 0 -V generating
2
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a LP-strong Feller semigroup, with drift o of the form

o=bLl 4y, bLYEFL, veKE (4)

(:> aef‘% with V6 := /6, + /62 by(3)>

provided mgd < (5‘57_2;, where
—A)L
ma = inf su V(€ —A) (_fﬂl y)l (5)
> R??io (k~'Re( — A) 2(z,y)
(mg is bounded from above by ﬂ%(2e)_%d%(d - 1)1%01 < 00, see [K, (A.1)]). See Theorem 2 below.

F, V3= 01+ V&%

Kir F}
Kit! K Fs
K+t [L4o° 4 [>]d Fo
(L4 + L]

[LP + L] (p > d)

The general classes of drifts o studied in the literature in connection with the operator —A + o - V.
Here 6, 61,52 > 0. We identify b : R¢ — R? with bL?.
— stands for strict inclusion, and 5 reads “if b=1by + by € [Ld’oo + L°°]d, then b € Fé% with §; > 0 determined by
the value of the L%*°-norm of |b1| (by the Strichartz inequality with sharp constants [KPS, Prop. 2.5, 2.6, Cor. 2.9]).
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EXAMPLE. 1. An example of a bL¢ € Kg“ — Kg“, 0 > 0, can be obtained as follows (modifying
[AS, p. 250, Example 1]). Fix e € RY, |e| = 1. Let 2, := (27™,0,...,0) € R%, n > 1. Set

b(x) :=eF(z), F(z):= ZS"IB(ng—n)(x), z € RY,
n=1

where B(z,,87") is the open ball of radius 8™ centered at z,. Arguing as in [AS, p. 250, Example
1], we obtain that bL? € Kg“ — Kg“ for appropriate § > 0.

2. Recall that a Borel-measurable set I' € R? is called a k-set, 0 < k < d, if for all z € T, all
0<p<l,

cp” < HH N Bz, p)) < czp”,

for some constants 0 < ¢;, ca < 00, where H* is the xk-dimensional Hausdorff measure in R¢ (eg. I'=
A x R, where A is the Sierpinski gasket in R?, is a (1 + log 3/ log 2)-set).
Then, for a fixed e € R?, |e| = 1, if T € R? is a s-set, k > d — 1, the measure

o:=elpH"|r € Kg“‘l,

see [BC, Prop. 2.1].

An example of o € Kg“ — Kg“ can be obtained e.g. by modifying the example in 1, e.g. for
d=3as o:=eF1rH"|p, where ' := A xR, kK = 1 +1log3/log2, z, € I' are chosen at the distance
of at least 2~ from each other, and the coefficients 8™ in F' are replaced with 8 (v—d+1)n
REMARKS. After 1996, the Kato class of vector fields Kg“, with § > 0 sufficiently small (yet
allowed to be non-zero), has been recognized as the general class ‘responsible’ for the Gaussian
upper and lower bounds on the fundamental solution of —A + b -V [S, Z] which, in turn, allow to
construct an associated Feller process (in Cp). The class Fy, § < 4, provides dissipativity of A —b-V
in LP, p > 2/(2 — v/9), needed to run the iterative procedure of [KS] (taking p — oo, assuming
additionally § < min{1, (2/(d — 2))?}), which produces an associated Feller semigroup in Cs,. We
emphasize that, in general, the Gaussian bounds are not valid if |b| € L¢, while b£? € KSH, in
general, destroys LP-dissipativity.

ST

In [K], we constructed an associated with —A + b -V Feller semigroup in Cy, for bL% € F

mgd < 1. The starting object for the method is an operator-valued function in LP, p € T :

2 2
(1+\/1—md(5’ 1—\/1—md6)’

OplC L) = (C = A) 7 = (¢ = 8) M Qp)(1+ T) M Gy(r)(¢ — &) 72
1<r<p<gq, Re(>Ad/(d-1),

—
=2}
SN—

where Qp(q), Ty, Gp(r) € B(LP), | Tyllp—sp < mat2d < 1,
1 _1_1 1 1_q
Gp(r) :==br -V((—A) 2727, br:=blbr -,
Qp(q) and T), are extensions by continuity of densely defined operators

Qp(q) == (¢ — A) "2 |b] 7, 4T,, — by V(¢ — A) |7
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We prove that
O,(¢, L) = (C+ Ap(0)™!, Re( > Ad/(d—1),

where A, (b) is the generator of a holomorphic Cp-semigroup e~**»(®) on LP. The proof uses ideas
from [BS], and appeals to the LP-inequalities between the operator (A — A)% and the “potential”
1
|b]. Then, as follows from the definition of ©,(¢,bL%), D(A,(b)) C WP g > p. In particular,
d—2

if mgd < 4@’ then there exists p € Z, p > d — 1, and by the Sobolev embedding theorem

D(A, (b)) CC™, v <1— %. The latter allows us to construct
_ d
(,U, + ACoo (b)) 1|S = @p(N7 bﬁd)LSa 1% = m)‘u p> d— ]-a
where Ac__ () is the required generator of a Feller semigroup on Co.
Foro € F%, o & L% (a subject of this work) ©,(¢, o), as in (6), is not well defined. We modify the

method in [K]. This modification highlights the fundamental role of the L?-theory in the Cyo-theory
of —A + ¢ -V, in particular, the role of the alternative representation of (6) in L?,

=

02(¢,0) = (C—A)"i(1+B) 1 (¢~ A)T,

3
4

Bi=(C—A)ig-V(C—A)"1 (well defined),

used in [S2, Theorem 5.1].

Also, in contrast to the setup of [K], a o as above doesn’t admit a monotone approximation by
regular vector fields vy, (i.e. by v£%), which complicates the proof of the convergence Qo (¢, v L) >
O2(¢,0) in L?, needed to carry out the method. We resolve this using an important variant of the
Kato-Ponce inequality by [GO] (Proposition 6 below); there, we also employ a modification of an
argument from [SV, proof of Theorem 2.1].

The method depends on the fact that the two operators constituting —A+o -V, i.e. —A and V,
commute; in particular, the method admits a straightforward generalization to fractional powers of
the Laplacian (for fundamental results on potential theory of the latter, see [BJ]).

_ 1
REMARK. Our main results (Theorems 1 and 2 below) are valid for o € Fj such that there exist
C*°-smooth approximating vector fields v such that

d 3 d W
v L €F§+2_k, v LY = o.

We construct these vy’s for o as in (4) (Proposition 1 below), but do not consider the problem of
constructing such an approximation for an arbitrary weakly form-bounded measure o.

REMARK. The symmetry assumption on the generator allows to include drifts of the form: the
countable sum of certain (possibly accumulating) hypersurface measures, see [ST].

3. We proceed to precise formulations of our results.

In the next theorem we allow C%valued measures (the modification of the definitions 1, 2 is

straightforward).
)
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_1
Theorem 1 (LP-theory). Let d > 3. Assume that o is a C%-valued Borel measure in F; such that
o =bLl+ v, where b: R — C? is L%-measurable,

bL‘deF% ve K, V6 = /61 + /05

There exist vector fields vy, € C° (R4, C?) such that v, L € F?
If mgé < 1, then for every

d W
Sao- k,vkﬁ — 0.

1 1
eJ =11 , 1
peJ < Tl r i me +1\/1md5>

we have:

—tAp (o)

(i) There exists a holomorphic Cy-semigroup e in LP such that, possibly after replacing

v L%’s with a sequence of their convex combinations (also weakly converging to measure o), we have
e thp(el?) 5, —thp(o) ;o P,

as k — oo, where
Ap(pLh) == —A + v -V,  D(Ay(vpLY)) = WP,

(#) The resolvent set p(—A,(0)) contains a half-plane O C {( € C : Re( > 0}, and the re-
solvent (¢ + Ap(a))*l, ¢ € O, admits extension by continuity to a bounded linear operator in

1
B (W_%’p,WHE’p) , where 1 <r < min{2, p}, max{2,p} < q.
(iii) The domain of the generator D(Ap(c)) C Witer for every ¢ > max{p, 2}.
Theorem 1 allows us to prove

Theorem 2 (Coo-theory). Let d > 3. Assume that o is a R -valued Borel measure in Fé such that
o =bL%+ v, where b : R* = R? is L% measurable,

bﬁdeF%, ueKd+1 V6 = /61 + \/0s.

There exist vector fields v, € C° (R, RY) such that vy L € F!
If mgd <

d’ll)
o vy VELY = 0.

(d 2)2, then:

(i) There exists a positivity preserving contraction Cp-semigroup e e () on Co such that,
possibly after replacing v, L% ’s with a sequence of their convex combinations (also weakly converging
to measure o) we have

d .
e—tAcoo('Ukﬁ ) i} e_tACOO (@) m Cooa t > 07

as k — oo, where
Ao, (0pL?) = —A+ v, -V, D(Ac, (0plL?)) =(1—-A)"1Cx

(it) [LP-strong Feller property] (u+ Ac. (o ))_118; > 0, can be extended by contz’nuity to a

bounded linear operator in B(LP,C%7), v <1 — —, for everyd—1<p<1l+ W

(iii) The integral kernel e *A=(@)(z y) (x,y € RY) of e *A=(?) determines the (sub-Markov)

transition probability function of a Feller process.
6
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REMARK. If o0 < £%, then the interval 7 in Theorem 1 can be expanded; accordingly, the assump-
tion on ¢ in Theorem 2 can be relaxed, cf. [K, Theorems 1, 2]. There, we work directly in LP, while
in the proof of Theorem 1 we have to first prove our convergence results in L?, and then transfer
them to LP (Proposition 8), which leads to more restrictive constraints on p and, respectively, 0.

Acknowledgments. I am thankful to the referee for comments that helped to improve the presen-
tation, and for pointing out the reference [ST].

PROOFS OF THEOREM 1 AND THEOREM 2

In the proofs of both Theorem 1 and Theorem 2 we use the following

Proposition 1. Let o = bL? + v, where b : R — C? is L% -measurable,
bleFL,  veREL  Vei= o+ /5.
Then o € % and there exist vector fields vy € C§°(RY, C?) such that

ulLh €FZ, . Vo= /6 + /5,

u Ll S o as k — oco.

If o is R%-valued, then vy,’s are R*-valued.

Proof. First, let us construct the vector fields v. We fix functions pp € C§°, 0 < pp, <1, p=11in
{reRy: |z| <k}, p=0in {z € R%:|z| > k+ 1}, and a sequence ¢, | 0. We define

v = pkee’“Ay, by = pkes’“Alkb,

where ]-k = 1{m€Rd:|m|<k,\b(z)\<k}7 and
Uk[:d = bkﬁd + l/kﬁd.

Clearly, v, € C§°(R?,C9) and L o as k — oo

Let us prove that v, L% € F5+2 .. First, let us show that v, L% € Kg;l. We have a.e.on R%:

(A= A) 3y < (A= A) 3 [e*20]; < (A= A) 22 ]y = ¢+ (A — A) 3 |ul1.

Since || (A—=A) "2 [V]1]loo < [(A=A) 72 |v]1 |0 and, in turn, [[(A=A) "2 ][] < 62 (& v € K,
1 1
we have v, L% € KdH. Now, since ngl C F§, (cf. (2)), we have L4 e F§,. Next, since 1;[b| < [b],

d 3
we have b L €F5 8k s12-k>

The latter, and the convergence v, L4 = o, imply that o € Fg. O
7

(possibly, after selecting smaller ¢ | 0). Thus, vkﬁd € F as needed.
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Proof of Theorem 1. Due to the strict inequality mgd < 1, we may assume that the infimum my
(cf. (5)) is attained, i.e. there is k4 > 0 such that

D=

V(¢ —A) Ha,y)| < md<f<:glReC - A) (z,y), x,y€eR% z#y Re(>0,

Set
O :={C€C:Re (> rars}

We fix o as in the formulation of the theorem. In view of the strict strict inequality mgd < 1, we

1
may assume that the approximating vector fields vy, : R* — C? in Proposition 1 are in F;.

The method of proof. Let us fix p € J and r,q satisfying 1 < r < min{2,p}, max{2,p} < ¢g. Our
starting object is an operator-valued function

0,(C,0) == (C = A) 220, (C,0,¢,7)(C — )37 € B(LP), (€O,

which is ‘a candidate’ for the resolvent of the desired operator realization A,(0) of —A+ ¢ -V on
LP. Here

clos
> € B(LP) (7)
LrnL2

QP(C’ 0,4, 7“) = <QQ(C’ g,4, "”)
Lp

((-)$19% denotes the extension of an operator by continuity to LP), where, on L?,
1

0(Crovarr) = (¢~ AT ED a1 20,00 (- A HED) e B2,

Zo(C,0)h(@) = (= A) 50 - V(¢ — A)"1h(x)

- [t ([ ve-ar

and || Zal2—2 < 1, so Q2(¢,0,q,7) € B(L?), see Proposition 2 below. We prove that ,(¢,0,q,7) €
B(LP) in Proposition 7 below.
We show that ©,,(¢, o) is the resolvent of A,(o) (assertion (i) of Theorem 1) by verifying conditions

NI

v, z)h(z)dz) o)y, veR’, hes,

of the Trotter approximation theorem:

1) ©,(¢,veLd) = (¢ +Ap(vpL)) 7L, ¢ € O, where Ap(viLY) := —A+vy -V, D(Ay(vi L)) = WP,

2) sup,1 10p(¢, kL) |lpsp < Cpl¢| ™, ¢ € O,

3) 10, (¢,vpL?) > 1 in LP as p 1 0o uniformly in k.

4) ©,(¢,veLY) > ©,(¢,0) in LP for some ¢ € O as k — oo (possibly after replacing vy £%'s with
a sequence of their convex combinations, also weakly converging to measure o), see Propositions 3
- 8 below for details.

We note that a priori in 1) the set of ¢’s for which ©,(¢, vxL?) = (¢ + Ap(vx L)) could depend
on k; the fact that it does not is the content of Proposition 4.

The proofs of 2), 3), contained in Proposition 3 and Proposition 5, are based on an explicit

representation of €,(¢, L% q,7), k > 1, that doesn’t exist if o has a non-zero singular part.
8
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Next, 4) follows from (¢, vxL%) > O4(¢, ), combined with sup,, H@p(c,Ude)||2(p,1)*>2(p,1) <
o0 (<= 2)) and Hélder’s inequality, see Proposition 8. Our proof of @ (¢, v L?) = 05(¢, o) (Propo-
sition 6) uses the Kato-Ponce inequality by [GO].

Finally, we note that the very definition of the operator-valued function 0,(¢,c) implies that it

1 1
admits extension to an operator-valued function in B(W_W’p S wita? ) = assertion (7). Assertion
(i11) is immediate from (i).
We proceed to formulating and proving Propositions 2-8.

Proposition 2. We have, for every ( € O,
(1) ||Z2(C,’Uk£d)H2_>2 § (5 fOT“ all k.
(2) [1Z2(C,0) fll2 < 0| fll2, for all f €S, all k.

Proof. (1) Define H := \vk\%(c — A)fi, S = vé - V(¢ — A)fg, where vé = |vk|7%vk. Then
Z5(¢, v L) = H*S, and we have
122(C, vk L) a2 < [[H [l221S 1l < [H 32 V(C = A) 2 [lana <6,
where we have used ||V (¢ — A)_%Hg%g =1, and
|Hlss  (here we are using [vg] < [vg]1)
< okl (¢ = A) H a2
(here we are using |(¢ — A)~(z,y)| < |(Re¢ — A)" (2, )], 7,y € R, z £ )
<V5 (since v L% e F(S%)
(2) We have, for every f, g € S,
(9. 22(¢.0)f) =((¢ = A) Tig.o - V(C = A)71f)
(here we are using v, L? 5 o)
= lim((¢ — A) ig,0x- V(¢ = A) 5 f)
(here we are using assertion (1))

< Sllgll2ll f1l2;
ie. [|[Z2(C,0)fll2 < O f|l2, as needed. O

The extension of Z5((,0)|s by continuity to a bounded linear operator in B(L?) will be denoted
again by Z2(C,0). Since [[Z2(C, vel?)ll2-2,|22(C, 0) 22 < & (< 1), we have Qa(C, vl q,7),
(G 0,q,7) € B(L?).

Set

2 2
I.= , .
(1+\/1—md5 1—\/1—md5>
In the following propositions, given a p € Z, we assume that r, ¢ satisfy 1 < r < min{2, p}, max{2, p} <
q.

The following proposition plays a principal role:
9
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Proposition 3. Let p € Z. There exist constants Cy,, Cp 4, < 00 such that, for every ¢ € O,
(1> |’QP(C7 vk£d7 Q7T)‘|p—>p g Cp,q,r fOT all k,
(2) ||Qp(c,1}k£d, 00, 1)||p%p < CpK’_% fO?“ all k.

1 1
Proof. Denote v} := |vk|5_1vk. Set

D=

Op(Counl g, r) = (- 020 _ Q0+ )G, ceo, (8)

where

=

_ 1 1 1 1 11
Qu(q) = (¢ — A) 3 ¥, Tpi=v? - V(C— A) Yol Gp(r) =P - V(¢ — A) 2 2,

are uniformly in £ bounded in B(L?) (see the proof of [K, Prop. 1(7)]); in particular, ||T}|lp—p <

pr’mch, where pr,mdé < 1 since p € Z. Therefore, Cp,, := supy ||Qp(C,Uk£d,q,r)||p%p < oo.

Now, Qp(C,vkﬁd,q,T)]Lszp = Qo(¢, v L q,7)|r2nre (by expanding (1 + Tp)~Y, (1 + Z)~! in the
K. Neumann series in L? and in L2, respectively). Therefore, Q,(¢, v L%, q,7) = Q,(¢, vi L, q,7) =
assertion (1). The proof of assertion (2) follows closely the proof of [K, Prop. 1(i)]. O

Clearly, 0,(C, viL%) does not depend on ¢, r. Taking ¢ = oo, r = 1, by Proposition 3 we obtain:
10,(C vk LY lpsp < Col¢|™, ¢ € 0. 9)

Proposition 4. Let p € Z. For every k > 1 O C p(—Ay(vi L)), the resolvent set of —A,(vpLY),
and

Op(Curl?) = (C+ Ap(ueL)) ™, (€0,
where Ap(vi L) == —A + v, -V, D(Ac, (v L)) = W2P.
Proof. The proof repeats the proof of [K, Prop. 4]. O
Proposition 5. For p € T, u®,(u, vi,L?) 1 in LP as p 1t oo uniformly in k.
Proof. The proof repeats the proof of [K, Prop. 3]. O
Proposition 6. There exists a sequence {0, } C conv{v;} (C C§°(RY, C%)) such that
0, L7 5 0 as n — oo, (10)

and

Qo (¢, 00 L% g, 1) S Qa(C,0,q,7) in L2, (€ O. (11)

Proof. To prove (11), it suffices to establish the convergence Zo (¢, 9,L£%) > Z5(¢, o) in L2.
Let n, €CC,0<n. <1,p,=lon{x eR¥: |z <r}andn, =0on {z € RY: |z| > r +1}.

WV

>\6;

lla2 < 6, for all k.

fll2 < 8lfla, for all £ €.5.
10

Claim 1. We have, for every u
) (= B) 3o (p— &)~
() (n = &)~ Floi(n— )

N
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1
Proof. Define H := |vg|{ (n — A)_%. We have
1 _1 X
(k= A) " ol (p = D)2 |los2 = [ H Hll22 = | H 352 <6,

1
where ||H||3_, < d since v, £? € F?, i.e. we have proved (j). An argument similar to the one in the
proof of Proposition 2, but using assertion (j), yields (j5). [

Claim 2. There exists a sequence {Up} C conv{vi} such that (10) holds, and for every r > 1
(C=A) i (bp—0) - V(C—A)"T 50in L% Rel > .

(here and below we use the shorthand ¥, — o := 9, LY — ).

Proof of Claim 2. In view of Claim 1(j), (jj), it suffices to establish this convergence over S.
Fix some g1 > As. Set c(z) := e . Clearly, c € S, |(1 — A)_%cl > 0 on R%.
Step 1. Let r = 1. Let us show that there exists a sequence {vl}l} C conv{vg} such that

(= A) T (v, —0) - V(u—A)"7 5 0in L2 as £ — oo. (12)

First, we show that
(b — A) i (v — o) (u— A)"1e % 0 in L2 (13)

Indeed, by Claim 1(5), (47), ||(p — A)_%m(vk —o)(n— A)_%CHQ < 26]|c||2 for all k. Hence, there
exists a subsequence of {v} (without loss of generality, it is {vy} itself) such that (u— A)_%m(vk -
o)(u— A)_%c % h for some h € L?. Therefore, given any f € S, we have (f, (u — A)_im(vk —
o)(p— A)fic) — (f,h). Along with that, since v£? % &, we also have

(fy (= D)oy — o) (i — A) T3¢ = ((u— A) 75 fym (v, — 0)(u— A)"ic) = 0,

ie. (f,h) =0. Since f € S was arbitrary, we have h = 0, which yields (13).
Now, in view of (13), by Mazur’s Theorem, there exists a sequence {vy } C conv{vy} such that

(= A) T (vf, — o) (p—A)"Te >0 in L2, (14)

We may assume without loss of generality that each vl}l € conv{vp fn>e, -
11
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Next, set £ := {1, ¢p == (v} —0), @ := (u— A)fic, fix some u € S. We estimate (cf. [SV, proof
of Theorem 2.1)):
I = 2) e Vi — A)~uf}3
1 _3
= (e V= &), (1= A) 5 V(= A)7Hu)

(smce v =0 on {|x| > 2}, in the left multiple ¢, = @g@?ﬁ)

= <<P£‘I’% V(= A) T, (1 — A) 2 V(- A)_%U>
_3 3
= <¢@¢,%V(u —A)iu [(u — ) Epp V(i — A) D
(here we are using in the left multiple that ¢y = (1 — A)i(,u — A)*igog)

= (- Ayt (a1

where we set f = BV (u— A)_%u € C°(RY,CY), g := (u— A)_%w -V(p— A)_%u € (n— A)_%L2
(in view of Claim 1(j), (jj)). Thus, in view of the above estimates,

_1 1
(e = A) g V(i — A) " 3ull3 < (1 — A) " T0p@afl (1 — A)T (Fg0)]l2-
By the Kato-Ponce inequality of [GO, Theorem 1],

(i — A)i(fao)ll2 < C<||f||oo||(u— A)r gl + || (e — A)‘llflloollgeHz),

=

for some C' = C(d) < co. Clearly, ||f]loe, (1 — A)7flloo < 00, and [[(1n — A)igyllz, [|gella are
uniformly (in £) bounded from above according to Claim 1(j), (jj). Thus, in view of (14), we obtain
(12) (recalling that ¢; = ¢, and ¢y, = nl(vl}l —0)).

Step 2. Now, we can repeat the argument of Step 1, but starting with sequence {Ul}l} in place of
{v;}, thus obtaining a sequence {Ué} C conv{uvy } such that

3

(n— A)_im(v?2 —0)-V(p—A)"t 3 0in L? as £y — oco.

IS

We may assume without loss of generality that each vl? € conv{vl} }oy>0,- Therefore, we also have
(u— A)_im(vé —0)-V(p—A)" 1% 0in L% as o — co.

Repeating this procedure n — 2 times, we obtain a sequence {vy } C conv{v; -t _} (C conv{vg}) such
that

(u— A)fim(v?n —0)-V(p— A)*% % 0in L? as £, — 0o, 1<i<n.
Step 3. We set 0, := vy , n > 1, so for every r > 1
(= A) (0 —0) - V(i — A)"1 50 in L. (15)

Since vy € conv{ve }gn 1>gn,ve 1 € conv{vg }gn 2>0,_1, €tc, we obtain that vyl € conv{vg }r>y,,
i.e. we also have (10). Finally, (15), combmed Wlth the resolvent identity, yield

(¢ —A) 10 (0n —0) - V((—A)7T 5 0in L2, Re¢ > A
12
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i.e. we have proved Claim 2. O
We are in a position to complete the proof of Proposition 6. Let us show that, for every ¢ € O,
(¢ 0nL)g — Z2(C.0)g = (C = A) ¥ (in —0) - V(¢ = A)1g S0 L7, g€,
Let us fix some g € S. We have
(¢ = &) (i —0) V(¢ = A) g = ((~A)
+(C=4)"
+(C—4)"

Claim 3. Given any € > 0, there exists r such that ||I3,]|2,

~ N _3
(Un - nrvn> : V(C - A) 19
" _3
(nrvn - an) -V((—A) 19
(77r0' — U) . V(C - A)_%g = Il,r,n + IQ,r,n + I3,7"-

Bl e

N

Proof of Claim 3. It suffices to prove |1, |2 < € for all n. We will need the following elementary
estimate: |V(¢ — A)_%(x,y)\ < My(k;'Re¢ — A)_i(x,y), r,y € RY 2 # y, for some My < oo
(cf. [K, Appendix A]). We have
_1 . 3
H1rnll2 = [[(Re ¢ = A)75 (1 = n,)0n - V(Re ¢ — A) "1 g]l2
1 1
< caMal (Re ¢ = D)7 (1 = np)|on| (57 'Re ¢ — A) 1g]
11 A _1
< caMal|(Re ¢ — A) 71 ]in| 2], [|(1 = ) l0n|2 (57 "Re ¢ — A) 1],

1

We have ||(Re¢ — A)77 § since (by construction) 0, L% € F6 In turn,

|0n2 H2—>2
(1= n)|ou]2 (57 ' Re¢ — A) g
= [64]2 (k7 Re ¢ — A) 71 (k7 'Re¢ — A)i(1 - n,)(r;'Re¢ — A) g,
SO
8ll(k7 Re ¢ — A)T(1 - ) (kg Re ¢ — A) 1],

[ (L=l 2 (g " Re ¢ — A) g, <

where 5”(/@(;1Reg - A)Z(l - nr)(/iglReg‘ = A)fZgHg — 0 asr — oo. The proof of Claim 3 is
completed. O

Claim 2, which yields the convergence ||I 5|2 — 0 as n — oo for every r, and Claim 3, imply
that

Z5(Ct0nLNg — Zo(¢,0)g > 0in L?, geS, (€O,

which, in view of Claim 1(5), (47), yields Zo(C, 9,L%) — Z5(¢,0) = 0in L? (=(11)). By Claim 2, we
also have (10). This completes the proof of Proposition 6. O

Proposition 7. Let p € . There exist constants Cp, Cp 4, < 00 such that, for every ¢ € O,

(1) ”Q C?U Q7T)Hp—>p < p,q,T fOT' all ]{:
( ) ”Q C7U 00, 1)”p—>p C ’C’ 2 fOT' all k.

Proof. Immediate from Proposition 3, Proposition 6 and the definition (7). O

Now, we assume that p € J (C 7).
13
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Proposition 8. Let {0,} be the sequence in Proposition 6. For any p € J,
Qp((a {)n‘cdv qa 7") i> QP(Ca 07 q7 T) Zn va C € O

Proof. Set Q, = Q(¢,0,q,7), Q) = QP(C,ﬁnﬁd, q,7). Since p € J, we have 2(p — 1) € Z. Since ,
Oy eB (LP), it suffices to prove the required convergence over S. We have (f € S):

19205 — Q4 FIE <112 = Fllb 1) 19F = f 2. (16)

Let us estimate the right-hand side in (16):

1) Qpf = f (: Qop—1)f — Qg(p_l)f) is uniformly bounded in L*?~Y in view of Proposition 3
and Proposition 7,

2) Qpf —Qnf =Qof —Q5f 5 0in L? as k — oo by Proposition 6.

Therefore, by (16), 2 f BN Q,f in LP, as needed. d

This completes the proof of assertion (i), and, thus, the proof of Theorem 1.

Proof of Theorem 2. (i) The approximating vector fields v, (€ Co(R% R%)) were constructed
in Proposition 1. The proof essentially repeats the proof of [K, Theorem 2]. Namely, we verify
conditions of the Trotter approximation theorem for Ac_ (v L%) := —A +vi - V, D(Ac,, (v L)) =
(1-A)"1C:

1°) sup,, [[(1 4+ Ao (06LY)  Hloosoo < p7h 1= Ka.

2°) p(p+ A, (L)™' = 1 in Oy as p 1 0o uniformly in n.

3°) There exists s-Coo-limy, (1 4+ Ac, (v£L3)) ™1 for some p > kgA.

1°) is immediate. Let us verify 2°) and 3°). Fix some p € J, p > d — 1 (such p exists since

mgd < ((21{7_23”2). Let

_1_ 1
Op(p,0) == (11— A) 2 2Qy(pn,0,q,1) € B(LF), p = kal, (17)

where max{2, p} < g, see the proof of Theorem 1 for notation. We will be using the properties of the
operator-valued function Q,(p, 0, ¢, 1) established there. Without loss of generality, we may assume
that {vx} is the sequence constructed in Proposition 8, that is, vxz£% = o, and Q,(u, vi.L%, q,1) >
Qy(p,0,q,1) in LP as k — oo.

Given any v < 1 — %, we can select ¢ sufficiently close to p so that by the Sobolev embedding
theorem,

=

(i— A2 %[LP) C OV N LP, and  (u—A) 7 % € B(LP, Cso).

Then Proposition 8 yields O, (u, 9, LY f = Op(p,0)f in O, f € S, as n — co. The latter,
combined with the next proposition and 1°), verifies condition 3°):

Proposition 9. For every k > 1, O,(u, vLH)S C S, and
(1 + Ao (L) s = Opp, vl h)]s, 1> K.
Proof. The proof repeats the proof of [K, Prop. 6]. O

Proposition 10. p0,(u,vy) 21 in Cs as p 1 0o uniformly in k.
14
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Proof. The proof repeats the proof of [K, Prop. 8|. O

The last two propositions yield 2°). This completes the proof of assertion (7).

(ii) follows from ©,(p,0)|s = (1 + A, (Cxo))7t|s (by construction), representation (17), and
the Sobolev embedding theorem.

(iii) Tt follows from (i) that e *Ac=(?) is positivity preserving. The latter, 1°) and the Riesz-
Markov-Kakutani representation theorem imply (4ii).
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