# FELLER GENERATORS WITH MEASURE-VALUED DRIFTS 

DAMIR KINZEBULATOV


#### Abstract

We construct a $L^{p}$-strong Feller process associated with the formal differential operator $-\Delta+\sigma \cdot \nabla$ on $\mathbb{R}^{d}, d \geqslant 3$, with drift $\sigma$ in a wide class of measures (e.g. the sum of a measure having density in weak $L^{d}$ space and a Kato class measure), by exploiting a quantitative dependence of the smoothness of the domain of an operator realization of $-\Delta+\sigma \cdot \nabla$ generating a holomorphic $C_{0}$-semigroup on $L^{p}\left(\mathbb{R}^{d}\right), p>d-1$, on the value of the relative bound of $\sigma$.


1. Let $\mathcal{L}^{d}$ be the Lebesgue measure on $\mathbb{R}^{d}, L^{p}=L^{p}\left(\mathbb{R}^{d}, \mathcal{L}^{d}\right), L^{p, \infty}=L^{p, \infty}\left(\mathbb{R}^{d}, \mathcal{L}^{d}\right)$ and $W^{1, p}=$ $W^{1, p}\left(\mathbb{R}^{d}, \mathcal{L}^{d}\right)(p \geqslant 1)$ the standard Lebesgue, weak Lebesgue and Sobolev spaces, $C^{0, \gamma}=C^{0, \gamma}\left(\mathbb{R}^{d}\right)$ the space of $\gamma$-Hölder continuous functions $(0<\gamma<1), C_{b}=C_{b}\left(\mathbb{R}^{d}\right)$ the space of bounded continuous functions, endowed with the sup-norm, $C_{\infty} \subset C_{b}$ the closed subspace of functions vanishing at infinity, $\mathcal{W}^{s, p}, s>0$, the Bessel potential space endowed with norm $\|u\|_{p, s}:=\|g\|_{p}, u=(1-\Delta)^{-\frac{s}{2}} g$, $g \in L^{p}, \mathcal{W}^{-s, p^{\prime}}, p^{\prime}:=p /(p-1)$, the anti-dual of $\mathcal{W}^{s, p}$, and $\mathcal{S}=\mathcal{S}\left(\mathbb{R}^{d}\right)$ the L. Schwartz space of test functions. Given a $v=\left(v_{i}\right)_{i=1}^{d} \in \mathbb{C}^{d}$, set $|v|_{1}:=\sum_{i=1}^{d}\left|v_{i}\right|$. We denote by $\mathcal{B}(X, Y)$ the space of bounded linear operators between complex Banach spaces $X \rightarrow Y$, endowed with operator norm $\|\cdot\|_{X \rightarrow Y} ; \mathcal{B}(X):=\mathcal{B}(X, X)$. Set $\|\cdot\|_{p \rightarrow q}:=\|\cdot\|_{L^{p} \rightarrow L^{q}}$. Depending on the context, $\xrightarrow{w}$ will denote either the weak convergence of measures, or the weak convergence in a given Banach space. $\xrightarrow{s}$ denotes the strong convergence (or the strong convergence of bounded linear operators) in a given Banach space.

By $\langle u, v\rangle$ we denote the inner product in $L^{2}$,

$$
\langle u, v\rangle=\langle u \bar{v}\rangle:=\int_{\mathbb{R}^{d}} u \bar{v} \mathcal{L}^{d} \quad\left(u, v \in L^{2}\right) .
$$

2. Let $d \geqslant 3$. The problem of constructing an operator realization on $C_{\infty}$ of the formal differential operator $-\Delta+\sigma \cdot \nabla$, with $\sigma$ a singular vector field $\mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ (or a $\mathbb{R}^{d}$-valued measure), that generates a contraction positivity preserving $C_{0}$-semigroup there (Feller semigroup), has been thoroughly studied in the literature (motivated, in particular, by applications to the theory of stochastic processes: by the classical result, such a semigroup determines the transition (sub-) probability function of a Hunt process). In the context of this problem, we consider the following classes of vector fields and vector-valued measures on $\mathbb{R}^{d}$.
3. A $\mathbb{R}^{d}$-valued Borel measure $\sigma=\left(\sigma_{i}\right)_{i=1}^{d}$ on $\mathbb{R}^{d}$ is said to belong to $\overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}, \delta>0$, the class of weakly form-bounded measures, if there exists $\lambda=\lambda_{\delta}>0$ such that

$$
\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}}(\lambda-\Delta)^{-\frac{1}{4}}(x, y) f(y) d y\right)^{2}|\sigma|_{1}(d x) \leqslant \delta\|f\|_{2}^{2}, \quad f \in \mathcal{S},
$$

[^0]where $(\lambda-\Delta)^{-\frac{1}{4}}(x, y)$ is the Bessel potential kernel, $|\sigma|_{1}:=\sum_{i=1}^{d}\left|\sigma_{i}\right|,\left|\sigma_{i}\right|$ is the variation of $\sigma_{i}$.
2. A $\mathbb{R}^{d}$-valued Borel measure $\sigma$ on $\mathbb{R}^{d}$ is said to belong to the Kato class $\overline{\mathbf{K}}_{\delta}^{d+1}, \delta>0$, if there exists $\lambda=\lambda_{\delta}>0$ such that
$$
\sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}(\lambda-\Delta)^{-\frac{1}{2}}(x, y)|\sigma|_{1}(d y) \leqslant \delta .
$$
3. A vector field $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ belongs to $\mathbf{F}_{\delta}, \delta>0$, the class of form-bounded vector fields, if $b$ is $\mathcal{L}^{d}$-measurable and there exists $\lambda=\lambda_{\delta}>0$ such that
$$
\left\||b|_{1}(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2} \leqslant \sqrt{\delta} .
$$
4. $\mathbf{F}_{\delta}^{\frac{1}{2}}:=\overline{\mathbf{F}}_{\delta}^{\frac{1}{2}} \cap\left\{b \mathcal{L}^{d}\right.$ with a $\mathcal{L}^{d}$-measurable $\left.b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}\right\}$,
5. $\mathbf{K}_{\delta}^{d+1}:=\overline{\mathbf{K}}_{\delta}^{d+1} \cap\left\{b \mathcal{L}^{d}\right.$ with a $\mathcal{L}^{d}$-measurable $\left.b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}\right\}$
6. $\mathbf{K}_{0}^{d+1}:=\bigcap_{\delta>0} \mathbf{K}_{\delta}^{d+1}, \overline{\mathbf{K}}_{0}^{d+1}:=\bigcap_{\delta>0} \overline{\mathbf{K}}_{\delta}^{d+1}$, and $\mathbf{F}_{0}:=\bigcap_{\delta>0} \mathbf{F}_{\delta}$.

Simple examples show:

$$
\mathbf{K}_{0}^{d+1}-\mathbf{F}_{\delta} \neq \varnothing, \quad \text { and } \mathbf{F}_{\delta_{1}}-\mathbf{K}_{\delta}^{d+1} \neq \varnothing \quad \text { for any } \delta, \delta_{1}>0,
$$

for instance,

1) $b \mathcal{L}^{d}$, where $b(x):=\sqrt{\delta} \frac{d-2}{2} x|x|^{-2}$, is in $\mathbf{F}_{\delta}-\mathbf{K}_{\delta_{1}}^{d+1}$ for any $\delta, \delta_{1}>0$ (by the Hardy inequality).
2) Let $b(x):=e \mathbf{1}_{\left|x_{1}\right|<1}\left|x_{1}\right|^{s-1}$ for some $e \in \mathbb{R}^{d},|e|=1$, where $0<s<1, x=\left(x_{1}, \ldots, x_{d}\right)$, and $\mathbf{1}_{\left|x_{1}\right|<1}$ is the indicator function of $\left\{x \in \mathbb{R}^{d}:\left|x_{1}\right|<1\right\}$. Then $b \mathcal{L}^{d} \in \mathbf{K}_{0}^{d+1}-\mathbf{F}_{\delta}$ for any $\delta>0$.

The examples above show that there exist $b \in \mathbf{F}_{\delta}$ (resp. $\mathbf{K}_{\delta}^{d+1}$ ) such that $\varepsilon b \notin \mathbf{F}_{0}$ (resp. $\mathbf{K}_{0}^{d+1}$ ) for any $\varepsilon>0$. The classes $\mathbf{F}_{\delta}, \mathbf{K}_{\delta}^{d+1}$ cover singularities of $b$ of critical order, i.e. 'sensitive' to multiplication by a constant (replacing a $b \in \mathbf{F}_{\delta}$ with $c b\left(\in \mathbf{F}_{c^{2} \delta}\right), c>1$, destroys e.g. the uniqueness of the solution of Cauchy problem for $-\Delta+b \cdot \nabla$, cf. [KS, Example 5]). The classes $\mathbf{K}_{0}^{d+1}, \overline{\mathbf{K}}_{0}^{d+1}$, $\mathbf{F}_{0}$ (and, thus, $L^{d}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right) \subsetneq \mathbf{F}_{0}$ - the inclusion follows by the Sobolev embedding theorem, cf. the diagram below) don't contain vector fields having critical order singularities.

We have:

$$
\begin{gather*}
\overline{\mathbf{K}}_{\delta}^{d+1} \subsetneq \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}},  \tag{1}\\
\mathbf{K}_{\delta}^{d+1} \subsetneq \mathbf{F}_{\delta}^{\frac{1}{2}}, \quad \mathbf{F}_{\delta \subsetneq} \mathbf{F}_{\delta_{1}}^{\frac{1}{2}} \text { for } \delta_{1}=\sqrt{\delta},  \tag{2}\\
b \mathcal{L}^{d} \in \mathbf{F}_{\delta_{1}}^{\frac{1}{2}} \text { and } \nu \in \overline{\mathbf{K}}_{\delta_{2}}^{d+1} \quad \Longrightarrow b \mathcal{L}^{d}+\nu \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}, \sqrt{\delta}=\sqrt{\delta_{1}}+\sqrt{\delta_{2}} \tag{3}
\end{gather*}
$$

The inclusion (1) is Proposition 1 below. The first inclusion in (2) follows e.g. by interpolation between $\left\|(\lambda-\Delta)^{-\frac{1}{2}}|b|_{1}\right\|_{\infty} \leqslant \delta$ and (by duality) $\left\||b|_{1}(\lambda-\Delta)^{-\frac{1}{2}}\right\|_{1 \rightarrow 1} \leqslant \delta$, the second inclusion in (2) follows by the Heinz inequality; for details, if needed, see [K, Appendix B].
[BC] constructed an operator realization on $C_{b}$ of $-\Delta+\sigma \cdot \nabla, \sigma \in \overline{\mathbf{K}}_{0}^{d+1}$, generating a strong Feller semigroup there, thus obtaining e.g. a Brownian motion drifting upward when filtering through certain fractal-like sets. Below we construct an operator realization on $C_{\infty}$ of $-\Delta+\sigma \cdot \nabla$ generating

Potential Anal., DOI10.1007/s11118-017-9632-z (2017)
a $L^{p}$-strong Feller semigroup, with drift $\sigma$ of the form

$$
\begin{gather*}
\sigma=b \mathcal{L}^{d}+\nu, \quad b \mathcal{L}^{d} \in \mathbf{F}_{\delta_{1}}^{\frac{1}{2}}, \quad \nu \in \overline{\mathbf{K}}_{\delta_{2}}^{d+1}  \tag{4}\\
\left(\Longrightarrow \quad \sigma \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}} \quad \text { with } \sqrt{\delta}:=\sqrt{\delta_{1}}+\sqrt{\delta_{2}} \quad \text { by }(3)\right)
\end{gather*}
$$

provided $m_{d} \delta<\frac{2 d-5}{(d-2)^{2}}$, where

$$
\begin{equation*}
m_{d}:=\inf _{\kappa>0} \sup _{\substack{x \neq y, \operatorname{Re} \zeta>0}} \frac{\left|\nabla(\zeta-\Delta)^{-1}(x, y)\right|}{\left(\kappa^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{2}}(x, y)} \tag{5}
\end{equation*}
$$

( $m_{d}$ is bounded from above by $\pi^{\frac{1}{2}}(2 e)^{-\frac{1}{2}} d^{\frac{d}{2}}(d-1)^{\frac{1-d}{2}}<\infty$, see $[\mathrm{K}$, (A.1)]). See Theorem 2 below.


The general classes of drifts $\sigma$ studied in the literature in connection with the operator $-\Delta+\sigma \cdot \nabla$.
Here $\delta, \delta_{1}, \delta_{2}>0$. We identify $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with $b \mathcal{L}^{d}$.
$\rightarrow$ stands for strict inclusion, and $\xrightarrow{*}$ reads "if $b=b_{1}+b_{2} \in\left[L^{d, \infty}+L^{\infty}\right]^{d}$, then $b \in \mathbf{F}_{\delta_{1}^{2}}$ with $\delta_{1}>0$ determined by the value of the $L^{d, \infty}$-norm of $\left|b_{1}\right|$ (by the Strichartz inequality with sharp constants [KPS, Prop. 2.5, 2.6, Cor. 2.9]).

Example. 1. An example of a $b \mathcal{L}^{d} \in \mathbf{K}_{\delta}^{d+1}-\mathbf{K}_{0}^{d+1}, \delta>0$, can be obtained as follows (modifying [AS, p. 250, Example 1]). Fix $e \in \mathbb{R}^{d},|e|=1$. Let $z_{n}:=\left(2^{-n}, 0, \ldots, 0\right) \in \mathbb{R}^{d}, n \geqslant 1$. Set

$$
b(x):=e F(x), \quad F(x):=\sum_{n=1}^{\infty} 8^{n} \mathbf{1}_{B\left(z_{n}, 8^{-n}\right)}(x), \quad x \in \mathbb{R}^{d},
$$

where $B\left(z_{n}, 8^{-n}\right)$ is the open ball of radius $8^{-n}$ centered at $z_{n}$. Arguing as in [AS, p. 250, Example 1], we obtain that $b \mathcal{L}^{d} \in \mathbf{K}_{\delta}^{d+1}-\mathbf{K}_{0}^{d+1}$ for appropriate $\delta>0$.
2. Recall that a Borel-measurable set $\Gamma \subset \mathbb{R}^{d}$ is called a $\kappa$-set, $0<\kappa \leqslant d$, if for all $x \in \Gamma$, all $0<\rho<1$,

$$
c_{1} \rho^{\kappa} \leqslant \mathcal{H}^{\kappa}(\Gamma \cap B(x, \rho)) \leqslant c_{2} \rho^{\kappa},
$$

for some constants $0<c_{1}, c_{2}<\infty$, where $\mathcal{H}^{\kappa}$ is the $\kappa$-dimensional Hausdorff measure in $\mathbb{R}^{d}$ (e.g. $\Gamma=$ $A \times \mathbb{R}$, where $A$ is the Sierpinski gasket in $\mathbb{R}^{2}$, is a $(1+\log 3 / \log 2)$-set).

Then, for a fixed $e \in \mathbb{R}^{d},|e|=1$, if $\Gamma \subset \mathbb{R}^{d}$ is a $\kappa$-set, $\kappa>d-1$, the measure

$$
\sigma:=\left.e \mathbf{1}_{\Gamma} \mathcal{H}^{\kappa}\right|_{\Gamma} \in \overline{\mathbf{K}}_{0}^{d+1}
$$

see [BC, Prop. 2.1].
An example of $\sigma \in \overline{\mathbf{K}}_{\delta}^{d+1}-\overline{\mathbf{K}}_{0}^{d+1}$ can be obtained e.g. by modifying the example in 1, e.g. for $d=3$ as $\sigma:=\left.e F \mathbf{1}_{\Gamma} \mathcal{H}^{\kappa}\right|_{\Gamma}$, where $\Gamma:=A \times \mathbb{R}, \kappa=1+\log 3 / \log 2, z_{n} \in \Gamma$ are chosen at the distance of at least $2^{-n}$ from each other, and the coefficients $8^{-n}$ in $F$ are replaced with $8^{-(\kappa-d+1) n}$.

Remarks. After 1996, the Kato class of vector fields $\mathbf{K}_{\delta}^{d+1}$, with $\delta>0$ sufficiently small (yet allowed to be non-zero), has been recognized as the general class 'responsible' for the Gaussian upper and lower bounds on the fundamental solution of $-\Delta+b \cdot \nabla[\mathrm{~S}, \mathrm{Z}]$ which, in turn, allow to construct an associated Feller process (in $C_{b}$ ). The class $\mathbf{F}_{\delta}, \delta<4$, provides dissipativity of $\Delta-b \cdot \nabla$ in $L^{p}, p \geqslant 2 /(2-\sqrt{\delta})$, needed to run the iterative procedure of $[\mathrm{KS}]$ (taking $p \rightarrow \infty$, assuming additionally $\left.\delta<\min \left\{1,(2 /(d-2))^{2}\right\}\right)$, which produces an associated Feller semigroup in $C_{\infty}$. We emphasize that, in general, the Gaussian bounds are not valid if $|b| \in L^{d}$, while $b \mathcal{L}^{d} \in \mathbf{K}_{0}^{d+1}$, in general, destroys $L^{p}$-dissipativity.

In $[\mathrm{K}]$, we constructed an associated with $-\Delta+b \cdot \nabla$ Feller semigroup in $C_{\infty}$ for $b \mathcal{L}^{d} \in \mathbf{F}_{\delta}^{\frac{1}{2}}$, $m_{d} \delta<1$. The starting object for the method is an operator-valued function in $L^{p}, p \in \mathcal{I}:=$ $\left(\frac{2}{1+\sqrt{1-m_{d} \delta}}, \frac{2}{1-\sqrt{1-m_{d} \delta}}\right)$,

$$
\begin{gather*}
\Theta_{p}\left(\zeta, b \mathcal{L}^{d}\right):=(\zeta-\Delta)^{-1}-(\zeta-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}} Q_{p}(q)\left(1+T_{p}\right)^{-1} G_{p}(r)(\zeta-\Delta)^{-\frac{1}{2 r^{\prime}}}  \tag{6}\\
1 \leqslant r<p<q, \quad \operatorname{Re} \zeta \geqslant \lambda d /(d-1)
\end{gather*}
$$

where $Q_{p}(q), T_{p}, G_{p}(r) \in \mathcal{B}\left(L^{p}\right),\left\|T_{p}\right\|_{p \rightarrow p} \leqslant m_{d} \frac{p p^{\prime}}{4} \delta<1$,

$$
G_{p}(r):=b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-\frac{1}{2}-\frac{1}{2 r}}, \quad b^{\frac{1}{p}}:=b|b|^{\frac{1}{p}-1}
$$

$Q_{p}(q)$ and $T_{p}$ are extensions by continuity of densely defined operators

$$
Q_{p}(q):=(\zeta-\Delta)^{-\frac{1}{2 q^{\prime}}}|b|^{\frac{1}{p^{\prime}}}, \quad T_{4} T_{p}:=b^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}|b|^{\frac{1}{p^{\prime}}} .
$$

Potential Anal., DOI10.1007/s11118-017-9632-z (2017)
We prove that

$$
\Theta_{p}\left(\zeta, b \mathcal{L}^{d}\right)=\left(\zeta+\Lambda_{p}(b)\right)^{-1}, \quad \operatorname{Re} \zeta \geqslant \lambda d /(d-1),
$$

where $\Lambda_{p}(b)$ is the generator of a holomorphic $C_{0}$-semigroup $e^{-t \Lambda_{p}(b)}$ on $L^{p}$. The proof uses ideas from [BS], and appeals to the $L^{p}$-inequalities between the operator $(\lambda-\Delta)^{\frac{1}{2}}$ and the "potential" $|b|$. Then, as follows from the definition of $\Theta_{p}\left(\zeta, b \mathcal{L}^{d}\right), D\left(\Lambda_{p}(b)\right) \subset \mathcal{W}^{1+\frac{1}{q}, p}, q>p$. In particular, if $m_{d} \delta<4 \frac{d-2}{(d-1)^{2}}$, then there exists $p \in \mathcal{I}, p>d-1$, and by the Sobolev embedding theorem $D\left(\Lambda_{p}(b)\right) \subset C^{0, \gamma}, \gamma<1-\frac{d-1}{p}$. The latter allows us to construct

$$
\left.\left(\mu+\Lambda_{C_{\infty}}(b)\right)^{-1}\right|_{\mathcal{S}}:=\left.\Theta_{p}\left(\mu, b \mathcal{L}^{d}\right)\right|_{\mathcal{S}}, \quad \mu \geqslant \frac{d}{d-1} \lambda, \quad p>d-1,
$$

where $\Lambda_{C_{\infty}}(b)$ is the required generator of a Feller semigroup on $C_{\infty}$.
For $\sigma \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}, \sigma \nless \mathcal{L}^{d}$ (a subject of this work) $\Theta_{p}(\zeta, \sigma)$, as in (6), is not well defined. We modify the method in $[\mathrm{K}]$. This modification highlights the fundamental role of the $L^{2}$-theory in the $C_{\infty}$-theory of $-\Delta+\sigma \cdot \nabla$, in particular, the role of the alternative representation of (6) in $L^{2}$,

$$
\begin{gathered}
\Theta_{2}(\zeta, \sigma):=(\zeta-\Delta)^{-\frac{3}{4}}(1+B)^{-1}(\zeta-\Delta)^{-\frac{1}{4}} \\
B:=(\zeta-\Delta)^{-\frac{1}{4}} \sigma \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} \quad(\text { well defined }),
\end{gathered}
$$

used in [S2, Theorem 5.1].
Also, in contrast to the setup of $[\mathrm{K}]$, a $\sigma$ as above doesn't admit a monotone approximation by regular vector fields $v_{k}$ (i.e. by $v_{k} \mathcal{L}^{d}$ ), which complicates the proof of the convergence $\Theta_{2}\left(\zeta, v_{k} \mathcal{L}^{d}\right) \xrightarrow{s}$ $\Theta_{2}(\zeta, \sigma)$ in $L^{2}$, needed to carry out the method. We resolve this using an important variant of the Kato-Ponce inequality by [GO] (Proposition 6 below); there, we also employ a modification of an argument from [SV, proof of Theorem 2.1].

The method depends on the fact that the two operators constituting $-\Delta+\sigma \cdot \nabla$, i.e. $-\Delta$ and $\nabla$, commute; in particular, the method admits a straightforward generalization to fractional powers of the Laplacian (for fundamental results on potential theory of the latter, see [BJ]).

Remark. Our main results (Theorems 1 and 2 below) are valid for $\sigma \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}$ such that there exist $C^{\infty}$-smooth approximating vector fields $v_{k}$ such that

$$
v_{k} \mathcal{L}^{d} \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}, \quad v_{k} \mathcal{L}^{d} \xrightarrow{w} \sigma .
$$

We construct these $v_{k}$ 's for $\sigma$ as in (4) (Proposition 1 below), but do not consider the problem of constructing such an approximation for an arbitrary weakly form-bounded measure $\sigma$.

Remark. The symmetry assumption on the generator allows to include drifts of the form: the countable sum of certain (possibly accumulating) hypersurface measures, see [ST].
3. We proceed to precise formulations of our results.

In the next theorem we allow $\mathbb{C}^{d}$-valued measures (the modification of the definitions 1,2 is straightforward).

Theorem 1 ( $L^{p}$-theory). Let $d \geqslant 3$. Assume that $\sigma$ is a $\mathbb{C}^{d}$-valued Borel measure in $\overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}$ such that $\sigma=b \mathcal{L}^{d}+\nu$, where $b: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d}$ is $\mathcal{L}^{d}$-measurable,

$$
b \mathcal{L}^{d} \in \mathbf{F}_{\delta_{1}}^{\frac{1}{2}}, \quad \nu \in \overline{\mathbf{K}}_{\delta_{2}}^{d+1}, \quad \sqrt{\delta}:=\sqrt{\delta_{1}}+\sqrt{\delta_{2}} .
$$

There exist vector fields $v_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{C}^{d}\right)$ such that $v_{k} \mathcal{L}^{d} \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}, v_{k} \mathcal{L}^{d} \xrightarrow{w} \sigma$.
If $m_{d} \delta<1$, then for every

$$
p \in \mathcal{J}:=\left(1+\frac{1}{1+\sqrt{1-m_{d} \delta}}, 1+\frac{1}{1-\sqrt{1-m_{d} \delta}}\right)
$$

we have:
(i) There exists a holomorphic $C_{0}$-semigroup $e^{-t \Lambda_{p}(\sigma)}$ in $L^{p}$ such that, possibly after replacing $v_{k} \mathcal{L}^{d}$ 's with a sequence of their convex combinations (also weakly converging to measure $\sigma$ ), we have

$$
e^{-t \Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right)} \xrightarrow{s} e^{-t \Lambda_{p}(\sigma)} \text { in } L^{p},
$$

as $k \rightarrow \infty$, where

$$
\Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right):=-\Delta+v_{k} \cdot \nabla, \quad D\left(\Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right)\right)=\mathcal{W}^{2, p}
$$

(ii) The resolvent set $\rho\left(-\Lambda_{p}(\sigma)\right)$ contains a half-plane $\mathcal{O} \subset\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta>0\}$, and the resolvent $\left(\zeta+\Lambda_{p}(\sigma)\right)^{-1}$, $\zeta \in \mathcal{O}$, admits extension by continuity to a bounded linear operator in $\mathcal{B}\left(\mathcal{W}^{-\frac{1}{r^{\prime}}, p}, \mathcal{W}^{1+\frac{1}{q}, p}\right)$, where $1 \leqslant r<\min \{2, p\}$, $\max \{2, p\}<q$.
(iii) The domain of the generator $D\left(\Lambda_{p}(\sigma)\right) \subset \mathcal{W}^{1+\frac{1}{q}, p}$ for every $q>\max \{p, 2\}$.

Theorem 1 allows us to prove
Theorem 2 ( $C_{\infty}$-theory). Let $d \geqslant 3$. Assume that $\sigma$ is a $\mathbb{R}^{d}$-valued Borel measure in $\overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}$ such that $\sigma=b \mathcal{L}^{d}+\nu$, where $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is $\mathcal{L}^{d}$-measurable,

$$
b \mathcal{L}^{d} \in \mathbf{F}_{\delta_{1}}^{\frac{1}{2}}, \quad \nu \in \overline{\mathbf{K}}_{\delta_{2}}^{d+1}, \quad \sqrt{\delta}:=\sqrt{\delta_{1}}+\sqrt{\delta_{2}}
$$

There exist vector fields $v_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ such that $v_{k} \mathcal{L}^{d} \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}, v_{k} \mathcal{L}^{d} \xrightarrow{w} \sigma$.
If $m_{d} \delta<\frac{2 d-5}{(d-2)^{2}}$, then:
(i) There exists a positivity preserving contraction $C_{0}$-semigroup $e^{-t \Lambda_{C_{\infty}}(\sigma)}$ on $C_{\infty}$ such that, possibly after replacing $v_{k} \mathcal{L}^{d}$ 's with a sequence of their convex combinations (also weakly converging to measure $\sigma$ ) we have

$$
e^{-t \Lambda_{C \infty}\left(v_{k} \mathcal{L}^{d}\right)} \xrightarrow{s} e^{-t \Lambda_{C_{\infty}}(\sigma)} \text { in } C_{\infty}, \quad t \geqslant 0,
$$

as $k \rightarrow \infty$, where

$$
\Lambda_{C_{\infty}}\left(v_{k} \mathcal{L}^{d}\right):=-\Delta+v_{k} \cdot \nabla, \quad D\left(\Lambda_{C_{\infty}}\left(v_{k} \mathcal{L}^{d}\right)\right)=(1-\Delta)^{-1} C_{\infty} .
$$

(ii) [ $L^{p}$-strong Feller property $]\left(\mu+\Lambda_{C_{\infty}}(\sigma)\right)^{-1} \mid \mathcal{S}, \mu>0$, can be extended by continuity to $a$ bounded linear operator in $\mathcal{B}\left(L^{p}, C^{0, \gamma}\right), \gamma<1-\frac{d-1}{p}$, for every $d-1<p<1+\frac{1}{1-\sqrt{1-m_{d} \delta}}$.
(iii) The integral kernel $e^{-t \Lambda_{C_{\infty}}(\sigma)}(x, y)\left(x, y \in \mathbb{R}^{d}\right)$ of $e^{-t \Lambda_{C_{\infty}}(\sigma)}$ determines the (sub-Markov) transition probability function of a Feller process.

Remark. If $\sigma \ll \mathcal{L}^{d}$, then the interval $\mathcal{J}$ in Theorem 1 can be expanded; accordingly, the assumption on $\delta$ in Theorem 2 can be relaxed, cf. [ K , Theorems 1, 2]. There, we work directly in $L^{p}$, while in the proof of Theorem 1 we have to first prove our convergence results in $L^{2}$, and then transfer them to $L^{p}$ (Proposition 8), which leads to more restrictive constraints on $p$ and, respectively, $\delta$.

Acknowledgments. I am thankful to the referee for comments that helped to improve the presentation, and for pointing out the reference [ST].

## Proofs of Theorem 1 and Theorem 2

In the proofs of both Theorem 1 and Theorem 2 we use the following
Proposition 1. Let $\sigma=b \mathcal{L}^{d}+\nu$, where $b: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d}$ is $\mathcal{L}^{d}$-measurable,

$$
b \mathcal{L}^{d} \in \mathbf{F}_{\delta_{1}}^{\frac{1}{2}}, \quad \nu \in \overline{\mathbf{K}}_{\delta_{2}}^{d+1}, \quad \sqrt{\delta}:=\sqrt{\delta_{1}}+\sqrt{\delta_{2}} .
$$

Then $\sigma \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}$, and there exist vector fields $v_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{C}^{d}\right)$ such that

$$
\begin{gathered}
v_{k} \mathcal{L}^{d} \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}, \quad \sqrt{\delta}:=\sqrt{\delta_{1}}+\sqrt{\delta_{2}}, \\
v_{k} \mathcal{L}^{d} \xrightarrow{w} \sigma \text { as } k \rightarrow \infty .
\end{gathered}
$$

If $\sigma$ is $\mathbb{R}^{d}$-valued, then $v_{k}$ 's are $\mathbb{R}^{d}$-valued.
Proof. First, let us construct the vector fields $v_{k}$. We fix functions $\rho_{k} \in C_{0}^{\infty}, 0 \leqslant \rho_{k} \leqslant 1, \rho \equiv 1$ in $\left\{x \in \mathbb{R}^{d}:|x| \leqslant k\right\}, \rho \equiv 0$ in $\left\{x \in \mathbb{R}^{d}:|x| \geqslant k+1\right\}$, and a sequence $\varepsilon_{k} \downarrow 0$. We define

$$
\nu_{k}:=\rho_{k} e^{\varepsilon_{k} \Delta} \nu, \quad b_{k}:=\rho_{k} e^{\varepsilon_{k} \Delta} \mathbf{1}_{k} b,
$$

where $\mathbf{1}_{k}:=\mathbf{1}_{\left\{x \in \mathbb{R}^{d}:|x| \leqslant k,|b(x)| \leqslant k\right\}}$, and

$$
v_{k} \mathcal{L}^{d}:=b_{k} \mathcal{L}^{d}+\nu_{k} \mathcal{L}^{d} .
$$

Clearly, $v_{k} \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{C}^{d}\right)$ and $v_{k} \mathcal{L}^{d} \xrightarrow{w} \sigma$ as $k \rightarrow \infty$.
Let us prove that $v_{k} \mathcal{L}^{d} \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}$. First, let us show that $\nu_{k} \mathcal{L}^{d} \in \mathbf{K}_{\delta_{2}}^{d+1}$. We have a.e. on $\mathbb{R}^{d}$ :

$$
(\lambda-\Delta)^{-\frac{1}{2}}\left|\nu_{k}\right|_{1} \leqslant(\lambda-\Delta)^{-\frac{1}{2}}\left|e^{\varepsilon_{k} \Delta} \nu\right|_{1} \leqslant(\lambda-\Delta)^{-\frac{1}{2}} e^{\varepsilon_{k} \Delta}|\nu|_{1}=e^{\varepsilon_{k} \Delta}(\lambda-\Delta)^{-\frac{1}{2}}|\nu|_{1} .
$$

Since $\left\|e^{\varepsilon_{k} \Delta}(\lambda-\Delta)^{-\frac{1}{2}}|\nu|_{1}\right\|_{\infty} \leqslant\left\|(\lambda-\Delta)^{-\frac{1}{2}}|\nu|_{1}\right\|_{\infty}$ and, in turn, $\left\|(\lambda-\Delta)^{-\frac{1}{2}}|\nu|_{1}\right\|_{\infty} \leqslant \delta_{2}\left(\Leftrightarrow \nu \in \overline{\mathbf{K}}_{\delta_{2}}^{d+1}\right)$, we have $\nu_{k} \mathcal{L}^{d} \in \mathbf{K}_{\delta_{2}}^{d+1}$. Now, since $\mathbf{K}_{\delta_{2}}^{d+1} \subset \mathbf{F}_{\delta_{2}}^{\frac{1}{2}}$ (cf. (2)), we have $\nu_{k} \mathcal{L}^{d} \in \mathbf{F}_{\delta_{2}}^{\frac{1}{2}}$. Next, since $\mathbf{1}_{k}|b| \leqslant|b|$, we have $b_{k} \mathcal{L}^{d} \in \mathbf{F}_{\delta_{1}+8^{-k}}^{\frac{1}{2}}$ (possibly, after selecting smaller $\varepsilon_{k} \downarrow 0$ ). Thus, $v_{k} \mathcal{L}^{d} \in \mathbf{F}_{\delta+2^{-k}}^{\frac{1}{2}}$, as needed.

The latter, and the convergence $v_{k} \mathcal{L}^{d} \xrightarrow{w} \sigma$, imply that $\sigma \in \overline{\mathbf{F}}_{\delta}^{\frac{1}{2}}$.

Potential Anal., DOI10.1007/s11118-017-9632-z (2017)
Proof of Theorem 1. Due to the strict inequality $m_{d} \delta<1$, we may assume that the infimum $m_{d}$ (cf. (5)) is attained, i.e. there is $\kappa_{d}>0$ such that

$$
\left|\nabla(\zeta-\Delta)^{-1}(x, y)\right| \leqslant m_{d}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{2}}(x, y), \quad x, y \in \mathbb{R}^{d}, x \neq y, \operatorname{Re} \zeta>0
$$

Set

$$
\mathcal{O}:=\left\{\zeta \in \mathbb{C}: \operatorname{Re} \zeta \geqslant \kappa_{d} \lambda_{\delta}\right\} .
$$

We fix $\sigma$ as in the formulation of the theorem. In view of the strict strict inequality $m_{d} \delta<1$, we may assume that the approximating vector fields $v_{k}: \mathbb{R}^{d} \rightarrow \mathbb{C}^{d}$ in Proposition 1 are in $\mathbf{F}_{\delta}^{\frac{1}{2}}$.

The method of proof. Let us fix $p \in \mathcal{J}$ and $r, q$ satisfying $1 \leqslant r<\min \{2, p\}, \max \{2, p\}<q$. Our starting object is an operator-valued function

$$
\Theta_{p}(\zeta, \sigma):=(\zeta-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}} \Omega_{p}(\zeta, \sigma, q, r)(\zeta-\Delta)^{-\frac{1}{2 r^{\prime}}} \in \mathcal{B}\left(L^{p}\right), \quad \zeta \in \mathcal{O}
$$

which is 'a candidate' for the resolvent of the desired operator realization $\Lambda_{p}(\sigma)$ of $-\Delta+\sigma \cdot \nabla$ on $L^{p}$. Here

$$
\begin{equation*}
\Omega_{p}(\zeta, \sigma, q, r):=\left(\left.\Omega_{2}(\zeta, \sigma, q, r)\right|_{L^{p} \cap L^{2}}\right)_{L^{p}}^{\operatorname{clos}} \in \mathcal{B}\left(L^{p}\right) \tag{7}
\end{equation*}
$$

$\left((\cdot)_{L^{p}}^{\text {clos }}\right.$ denotes the extension of an operator by continuity to $\left.L^{p}\right)$, where, on $L^{2}$,

$$
\begin{aligned}
& \quad \Omega_{2}(\zeta, \sigma, q, r):=(\zeta-\Delta)^{-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{q}\right)}\left(1+Z_{2}(\zeta, \sigma)\right)^{-1}(\zeta-\Delta)^{-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{r^{\prime}}\right)} \in \mathcal{B}\left(L^{2}\right), \\
& Z_{2}(\zeta, \sigma) h(x):=(\zeta-\Delta)^{-\frac{1}{4}} \sigma \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} h(x) \\
& =\int_{\mathbb{R}^{d}}(\zeta-\Delta)^{-\frac{1}{4}}(x, y)\left(\int_{\mathbb{R}^{d}} \nabla(\zeta-\Delta)^{-\frac{3}{4}}(y, z) h(z) d z\right) \cdot \sigma(y) d y, \quad x \in \mathbb{R}^{d}, \quad h \in \mathcal{S},
\end{aligned}
$$

and $\left\|Z_{2}\right\|_{2 \rightarrow 2}<1$, so $\Omega_{2}(\zeta, \sigma, q, r) \in \mathcal{B}\left(L^{2}\right)$, see Proposition 2 below. We prove that $\Omega_{p}(\zeta, \sigma, q, r) \in$ $\mathcal{B}\left(L^{p}\right)$ in Proposition 7 below.

We show that $\Theta_{p}(\zeta, \sigma)$ is the resolvent of $\Lambda_{p}(\sigma)$ (assertion $(i)$ of Theorem 1) by verifying conditions of the Trotter approximation theorem:

1) $\Theta_{p}\left(\zeta, v_{k} \mathcal{L}^{d}\right)=\left(\zeta+\Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right)\right)^{-1}, \zeta \in \mathcal{O}$, where $\Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right):=-\Delta+v_{k} \cdot \nabla, D\left(\Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right)\right)=\mathcal{W}^{2, p}$.
2) $\sup _{n \geqslant 1}\left\|\Theta_{p}\left(\zeta, v_{k} \mathcal{L}^{d}\right)\right\|_{p \rightarrow p} \leqslant C_{p}|\zeta|^{-1}, \zeta \in \mathcal{O}$.
3) $\mu \Theta_{p}\left(\zeta, v_{k} \mathcal{L}^{d}\right) \xrightarrow{s} 1$ in $L^{p}$ as $\mu \uparrow \infty$ uniformly in $k$.
4) $\Theta_{p}\left(\zeta, v_{k} \mathcal{L}^{d}\right) \xrightarrow{s} \Theta_{p}(\zeta, \sigma)$ in $L^{p}$ for some $\zeta \in \mathcal{O}$ as $k \rightarrow \infty$ (possibly after replacing $v_{k} \mathcal{L}^{d}{ }^{\prime}$ s with a sequence of their convex combinations, also weakly converging to measure $\sigma$ ), see Propositions 3 - 8 below for details.

We note that a priori in 1$)$ the set of $\zeta$ 's for which $\Theta_{p}\left(\zeta, v_{k} \mathcal{L}^{d}\right)=\left(\zeta+\Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right)\right)^{-1}$ could depend on $k$; the fact that it does not is the content of Proposition 4.

The proofs of 2), 3), contained in Proposition 3 and Proposition 5, are based on an explicit representation of $\Omega_{p}\left(\zeta, v_{k} \mathcal{L}^{d}, q, r\right), k \geqslant 1$, that doesn't exist if $\sigma$ has a non-zero singular part.

Next, 4) follows from $\Theta_{2}\left(\zeta, v_{k} \mathcal{L}^{d}\right) \xrightarrow{s} \Theta_{2}(\zeta, \sigma)$, combined with $\sup _{n}\left\|\Theta_{p}\left(\zeta, v_{k} \mathcal{L}^{d}\right)\right\|_{2(p-1) \rightarrow 2(p-1)}<$ $\infty(\Leftarrow 2)$ ) and Hölder's inequality, see Proposition 8. Our proof of $\Theta_{2}\left(\zeta, v_{k} \mathcal{L}^{d}\right) \xrightarrow{s} \Theta_{2}(\zeta, \sigma)$ (Proposition 6) uses the Kato-Ponce inequality by [GO].

Finally, we note that the very definition of the operator-valued function $\Theta_{p}(\zeta, \sigma)$ implies that it admits extension to an operator-valued function in $\mathcal{B}\left(\mathcal{W}^{-\frac{1}{r^{\prime}, p}}, \mathcal{W}^{1+\frac{1}{q}, p}\right) \Rightarrow$ assertion (ii). Assertion (iii) is immediate from (ii).

We proceed to formulating and proving Propositions 2-8.
Proposition 2. We have, for every $\zeta \in \mathcal{O}$,
(1) $\left\|Z_{2}\left(\zeta, v_{k} \mathcal{L}^{d}\right)\right\|_{2 \rightarrow 2} \leqslant \delta$ for all $k$.
(2) $\left\|Z_{2}(\zeta, \sigma) f\right\|_{2} \leqslant \delta\|f\|_{2}$, for all $f \in \mathcal{S}$, all $k$.

Proof. (1) Define $H:=\left|v_{k}\right|^{\frac{1}{2}}(\zeta-\Delta)^{-\frac{1}{4}}, S:=v_{k}^{\frac{1}{2}} \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}}$, where $v_{k}^{\frac{1}{2}}:=\left|v_{k}\right|^{-\frac{1}{2}} v_{k}$. Then $Z_{2}\left(\zeta, v_{k} \mathcal{L}^{d}\right)=H^{*} S$, and we have

$$
\left\|Z_{2}\left(\zeta, v_{k} \mathcal{L}^{d}\right)\right\|_{2 \rightarrow 2} \leqslant\|H\|_{2 \rightarrow 2}\|S\|_{2 \rightarrow 2} \leqslant\|H\|_{2 \rightarrow 2}^{2}\left\|\nabla(\zeta-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2} \leqslant \delta
$$

where we have used $\left\|\nabla(\zeta-\Delta)^{-\frac{1}{2}}\right\|_{2 \rightarrow 2}=1$, and

$$
\begin{aligned}
& \left.\|H\|_{2 \rightarrow 2} \quad \text { (here we are using }\left|v_{k}\right| \leqslant\left|v_{k}\right|_{1}\right) \\
& \leqslant\left\|\left|v_{k}\right|_{1}^{\frac{1}{2}}(\zeta-\Delta)^{-\frac{1}{4}}\right\|_{2 \rightarrow 2} \\
& \text { (here we are using } \left.\left|(\zeta-\Delta)^{-1}(x, y)\right| \leqslant\left|(\operatorname{Re} \zeta-\Delta)^{-1}(x, y)\right|, x, y \in \mathbb{R}^{d}, x \neq y\right) \\
& \leqslant \sqrt{\delta} \quad\left(\text { since } v_{k} \mathcal{L}^{d} \in \mathbf{F}_{\delta}^{\frac{1}{2}}\right)
\end{aligned}
$$

(2) We have, for every $f, g \in \mathcal{S}$,

$$
\begin{aligned}
\left\langle g, Z_{2}(\zeta, \sigma) f\right\rangle= & \left\langle(\zeta-\Delta)^{-\frac{1}{4}} g, \sigma \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} f\right\rangle \\
& \text { (here we are using } \left.v_{k} \mathcal{L}^{d} \xrightarrow{w} \sigma\right) \\
& =\lim _{k}\left\langle(\zeta-\Delta)^{-\frac{1}{4}} g, v_{k} \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} f\right\rangle
\end{aligned}
$$

(here we are using assertion (1))

$$
\leqslant \delta\|g\|_{2}\|f\|_{2},
$$

i.e. $\left\|Z_{2}(\zeta, \sigma) f\right\|_{2} \leqslant \delta\|f\|_{2}$, as needed.

The extension of $\left.Z_{2}(\zeta, \sigma)\right|_{\mathcal{S}}$ by continuity to a bounded linear operator in $\mathcal{B}\left(L^{2}\right)$ will be denoted again by $Z_{2}(\zeta, \sigma)$. Since $\left\|Z_{2}\left(\zeta, v_{k} \mathcal{L}^{d}\right)\right\|_{2 \rightarrow 2},\left\|Z_{2}(\zeta, \sigma)\right\|_{2 \rightarrow 2} \leqslant \delta(<1)$, we have $\Omega_{2}\left(\zeta, v_{k} \mathcal{L}^{d}, q, r\right)$, $\Omega_{2}(\zeta, \sigma, q, r) \in \mathcal{B}\left(L^{2}\right)$.

Set

$$
\mathcal{I}:=\left(\frac{2}{1+\sqrt{1-m_{d} \delta}}, \frac{2}{1-\sqrt{1-m_{d} \delta}}\right) .
$$

In the following propositions, given a $p \in \mathcal{I}$, we assume that $r, q$ satisfy $1 \leqslant r<\min \{2, p\}, \max \{2, p\}<$ $q$.

The following proposition plays a principal role:

Proposition 3. Let $p \in \mathcal{I}$. There exist constants $C_{p}, C_{p, q, r}<\infty$ such that, for every $\zeta \in \mathcal{O}$,
(1) $\left\|\Omega_{p}\left(\zeta, v_{k} \mathcal{L}^{d}, q, r\right)\right\|_{p \rightarrow p} \leqslant C_{p, q, r}$ for all $k$,
(2) $\left\|\Omega_{p}\left(\zeta, v_{k} \mathcal{L}^{d}, \infty, 1\right)\right\|_{p \rightarrow p} \leqslant C_{p}|\zeta|^{-\frac{1}{2}}$ for all $k$.

Proof. Denote $v_{k}^{\frac{1}{p}}:=\left|v_{k}\right|^{\frac{1}{p}-1} v_{k}$. Set

$$
\begin{equation*}
\tilde{\Omega}_{p}\left(\zeta, v_{k} \mathcal{L}^{d}, q, r\right):=(\zeta-\Delta)^{\frac{1}{2}\left(\frac{1}{q}-\frac{1}{r}\right)}-Q_{p}(q)\left(1+T_{p}\right)^{-1} G_{p}(r), \quad \zeta \in \mathcal{O}, \tag{8}
\end{equation*}
$$

where

$$
Q_{p}(q):=(\zeta-\Delta)^{-\frac{1}{2 q^{\prime}}}\left|v_{k}\right|^{\frac{1}{p^{\prime}}}, \quad T_{p}:=v_{k}^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-1}\left|v_{k}\right|^{\frac{1}{p^{\prime}}}, \quad G_{p}(r):=v_{k}^{\frac{1}{p}} \cdot \nabla(\zeta-\Delta)^{-\frac{1}{2}-\frac{1}{2 r}},
$$

are uniformly in $k$ bounded in $\mathcal{B}\left(L^{p}\right)$ (see the proof of [K, Prop. $\left.1(i)\right]$ ); in particular, $\left\|T_{p}\right\|_{p \rightarrow p} \leqslant$ $\frac{p p^{\prime}}{4} m_{d} \delta$, where $\frac{p p^{\prime}}{4} m_{d} \delta<1$ since $p \in \mathcal{I}$. Therefore, $C_{p, q, r}:=\sup _{k}\left\|\tilde{\Omega}_{p}\left(\zeta, v_{k} \mathcal{L}^{d}, q, r\right)\right\|_{p \rightarrow p}<\infty$. Now, $\left.\tilde{\Omega}_{p}\left(\zeta, v_{k} \mathcal{L}^{d}, q, r\right)\right|_{L^{2} \cap L^{p}}=\left.\Omega_{2}\left(\zeta, v_{k} \mathcal{L}^{d}, q, r\right)\right|_{L^{2} \cap L^{p}}$ (by expanding $\left(1+T_{p}\right)^{-1},\left(1+Z_{2}\right)^{-1}$ in the K. Neumann series in $L^{p}$ and in $L^{2}$, respectively). Therefore, $\tilde{\Omega}_{p}\left(\zeta, v_{k} \mathcal{L}^{d}, q, r\right)=\Omega_{p}\left(\zeta, v_{k} \mathcal{L}^{d}, q, r\right) \Rightarrow$ assertion (1). The proof of assertion (2) follows closely the proof of [K, Prop. 1(ii)].

Clearly, $\Theta_{p}\left(\zeta, v_{k} \mathcal{L}^{d}\right)$ does not depend on $q, r$. Taking $q=\infty, r=1$, by Proposition 3 we obtain:

$$
\begin{equation*}
\left\|\Theta_{p}\left(\zeta, v_{k} \mathcal{L}^{d}\right)\right\|_{p \rightarrow p} \leqslant C_{p}|\zeta|^{-1}, \quad \zeta \in \mathcal{O} \tag{9}
\end{equation*}
$$

Proposition 4. Let $p \in \mathcal{I}$. For every $k \geqslant 1 \mathcal{O} \subset \rho\left(-\Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right)\right)$, the resolvent set of $-\Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right)$, and

$$
\Theta_{p}\left(\zeta, v_{k} \mathcal{L}^{d}\right)=\left(\zeta+\Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right)\right)^{-1}, \quad \zeta \in \mathcal{O},
$$

where $\Lambda_{p}\left(v_{k} \mathcal{L}^{d}\right):=-\Delta+v_{k} \cdot \nabla, D\left(\Lambda_{C_{\infty}}\left(v_{k} \mathcal{L}^{d}\right)\right)=\mathcal{W}^{2, p}$.
Proof. The proof repeats the proof of [K, Prop. 4].
Proposition 5. For $p \in \mathcal{I}, \mu \Theta_{p}\left(\mu, v_{k} \mathcal{L}^{d}\right) \xrightarrow{s} 1$ in $L^{p}$ as $\mu \uparrow \infty$ uniformly in $k$.
Proof. The proof repeats the proof of [K, Prop. 3].
Proposition 6. There exists a sequence $\left\{\hat{v}_{n}\right\} \subset \operatorname{conv}\left\{v_{k}\right\}\left(\subset C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{C}^{d}\right)\right)$ such that

$$
\begin{equation*}
\hat{v}_{n} \mathcal{L}^{d} \xrightarrow{w} \sigma \text { as } n \rightarrow \infty, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega_{2}\left(\zeta, \hat{v}_{n} \mathcal{L}^{d}, q, r\right) \xrightarrow{s} \Omega_{2}(\zeta, \sigma, q, r) \text { in } L^{2}, \quad \zeta \in \mathcal{O} . \tag{11}
\end{equation*}
$$

Proof. To prove (11), it suffices to establish the convergence $Z_{2}\left(\zeta, \hat{v}_{n} \mathcal{L}^{d}\right) \xrightarrow{s} Z_{2}(\zeta, \sigma)$ in $L^{2}$.
Let $\eta_{r} \in C_{0}^{\infty}, 0 \leqslant \eta_{r} \leqslant 1, \eta_{r} \equiv 1$ on $\left\{x \in \mathbb{R}^{d}:|x| \leqslant r\right\}$ and $\eta_{r} \equiv 0$ on $\left\{x \in \mathbb{R}^{d}:|x| \geqslant r+1\right\}$.
Claim 1. We have, for every $\mu \geqslant \lambda_{\delta}$,
(j) $\left\|(\mu-\Delta)^{-\frac{1}{4}}\left|v_{k}\right|_{1}(\mu-\Delta)^{-\frac{1}{4}}\right\|_{2 \rightarrow 2} \leqslant \delta$, for all $k$.
$(j j)\left\|(\mu-\Delta)^{-\frac{1}{4}}|\sigma|_{1}(\mu-\Delta)^{-\frac{1}{4}} f\right\|_{2} \leqslant \delta\|f\|_{2}$, for all $f \in \mathcal{S}$.

Potential Anal., DOI10.1007/s11118-017-9632-z (2017)
Proof. Define $H:=\left|v_{k}\right|_{1}^{\frac{1}{2}}(\mu-\Delta)^{-\frac{1}{4}}$. We have

$$
\left\|(\mu-\Delta)^{-\frac{1}{4}}\left|v_{k}\right|_{1}(\mu-\Delta)^{-\frac{1}{4}}\right\|_{2 \rightarrow 2}=\left\|H^{*} H\right\|_{2 \rightarrow 2}=\|H\|_{2 \rightarrow 2}^{2} \leqslant \delta
$$

where $\|H\|_{2 \rightarrow 2}^{2} \leqslant \delta$ since $v_{k} \mathcal{L}^{d} \in \mathbf{F}_{\delta}^{\frac{1}{2}}$, i.e. we have proved $(j)$. An argument similar to the one in the proof of Proposition 2, but using assertion ( $j$ ), yields ( $j j$ ).

Claim 2. There exists a sequence $\left\{\hat{v}_{n}\right\} \subset \operatorname{conv}\left\{v_{k}\right\}$ such that (10) holds, and for every $r \geqslant 1$

$$
(\zeta-\Delta)^{-\frac{1}{4}} \eta_{r}\left(\hat{v}_{n}-\sigma\right) \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text { in } L^{2}, \quad \operatorname{Re} \zeta \geqslant \lambda_{\delta} .
$$

(here and below we use the shorthand $\hat{v}_{n}-\sigma:=\hat{v}_{n} \mathcal{L}^{d}-\sigma$ ).

Proof of Claim 2. In view of Claim $1(j)$, ( $j j$ ), it suffices to establish this convergence over $\mathcal{S}$.
Fix some $\mu \geqslant \lambda_{\delta}$. Set $c(x):=e^{-x^{2}}$. Clearly, $c \in \mathcal{S},\left|(\mu-\Delta)^{-\frac{1}{4}} c\right|>0$ on $\mathbb{R}^{d}$.
Step 1. Let $r=1$. Let us show that there exists a sequence $\left\{v_{\ell_{1}}^{1}\right\} \subset \operatorname{conv}\left\{v_{k}\right\}$ such that

$$
\begin{equation*}
(\mu-\Delta)^{-\frac{1}{4}} \eta_{1}\left(v_{\ell_{1}}^{1}-\sigma\right) \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text { in } L^{2} \text { as } \ell_{1} \rightarrow \infty . \tag{12}
\end{equation*}
$$

First, we show that

$$
\begin{equation*}
(\mu-\Delta)^{-\frac{1}{4}} \eta_{1}\left(v_{k}-\sigma\right)(\mu-\Delta)^{-\frac{1}{4}} c \xrightarrow{w} 0 \text { in } L^{2} . \tag{13}
\end{equation*}
$$

Indeed, by Claim $1(j),(j j),\left\|(\mu-\Delta)^{-\frac{1}{4}} \eta_{1}\left(v_{k}-\sigma\right)(\mu-\Delta)^{-\frac{1}{4}} c\right\|_{2} \leqslant 2 \delta\|c\|_{2}$ for all $k$. Hence, there exists a subsequence of $\left\{v_{k}\right\}$ (without loss of generality, it is $\left\{v_{k}\right\}$ itself) such that $(\mu-\Delta)^{-\frac{1}{4}} \eta_{1}\left(v_{k}-\right.$ $\sigma)(\mu-\Delta)^{-\frac{1}{4}} c \xrightarrow{w} h$ for some $h \in L^{2}$. Therefore, given any $f \in \mathcal{S}$, we have $\left\langle f,(\mu-\Delta)^{-\frac{1}{4}} \eta_{1}\left(v_{k}-\right.\right.$ $\left.\sigma)(\mu-\Delta)^{-\frac{1}{4}} c\right\rangle \rightarrow\langle f, h\rangle$. Along with that, since $v_{k} \mathcal{L}^{d} \xrightarrow{w} \sigma$, we also have

$$
\left\langle f,(\mu-\Delta)^{-\frac{1}{4}} \eta_{1}\left(v_{k}-\sigma\right)(\mu-\Delta)^{-\frac{1}{4}} c\right\rangle=\left\langle(\mu-\Delta)^{-\frac{1}{4}} f, \eta_{1}\left(v_{k}-\sigma\right)(\mu-\Delta)^{-\frac{1}{4}} c\right\rangle \rightarrow 0
$$

i.e. $\langle f, h\rangle=0$. Since $f \in \mathcal{S}$ was arbitrary, we have $h=0$, which yields (13).

Now, in view of (13), by Mazur's Theorem, there exists a sequence $\left\{v_{\ell_{1}}^{1}\right\} \subset \operatorname{conv}\left\{v_{k}\right\}$ such that

$$
\begin{equation*}
(\mu-\Delta)^{-\frac{1}{4}} \eta_{1}\left(v_{\ell_{1}}^{1}-\sigma\right)(\mu-\Delta)^{-\frac{1}{4}} c \xrightarrow{s} 0 \text { in } L^{2} . \tag{14}
\end{equation*}
$$

We may assume without loss of generality that each $v_{\ell_{1}}^{1} \in \operatorname{conv}\left\{v_{n}\right\}_{n \geqslant \ell_{1}}$.

Potential Anal., DOI10.1007/s11118-017-9632-z (2017)
Next, set $\ell:=\ell_{1}, \varphi_{\ell}:=\eta_{1}\left(v_{\ell}^{1}-\sigma\right), \Phi:=(\mu-\Delta)^{-\frac{1}{4}} c$, fix some $u \in \mathcal{S}$. We estimate (cf. [SV, proof of Theorem 2.1]):

$$
\begin{aligned}
& \left\|(\mu-\Delta)^{-\frac{1}{4}} \varphi_{\ell} \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} u\right\|_{2}^{2} \\
& =\left\langle\varphi_{\ell} \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} u,(\mu-\Delta)^{-\frac{1}{2}} \varphi_{\ell} \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} u\right\rangle \\
& \left(\text { since } \varphi_{\ell} \equiv 0 \text { on }\{|x| \geqslant 2\}, \text { in the left multiple } \varphi_{\ell}=\varphi_{\ell} \Phi \frac{\eta_{2}}{\Phi}\right) \\
& =\left\langle\varphi_{\ell} \Phi \frac{\eta_{2}}{\Phi} \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} u,(\mu-\Delta)^{-\frac{1}{2}} \varphi_{\ell} \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} u\right\rangle \\
& =\left\langle\varphi_{\ell} \Phi \frac{\eta_{2}}{\Phi} \nabla(\mu-\Delta)^{-\frac{3}{4}} u\left[(\mu-\Delta)^{-\frac{1}{2}} \varphi_{\ell} \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} u\right]\right\rangle
\end{aligned}
$$

$$
\text { (here we are using in the left multiple that } \left.\varphi_{\ell}=(\mu-\Delta)^{\frac{1}{4}}(\mu-\Delta)^{-\frac{1}{4}} \varphi_{\ell}\right)
$$

$$
=\left\langle(\mu-\Delta)^{-\frac{1}{4}} \varphi_{\ell} \Phi,(\mu-\Delta)^{\frac{1}{4}}\left(f g_{\ell}\right)\right\rangle
$$

where we set $f:=\frac{\eta_{2}}{\Phi} \nabla(\mu-\Delta)^{-\frac{3}{4}} u \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{C}^{d}\right), g_{\ell}:=(\mu-\Delta)^{-\frac{1}{2}} \varphi_{\ell} \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} u \in(\mu-\Delta)^{-\frac{1}{4}} L^{2}$ (in view of Claim $1(j),(j j))$. Thus, in view of the above estimates,

$$
\left\|(\mu-\Delta)^{-\frac{1}{4}} \varphi_{\ell} \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} u\right\|_{2}^{2} \leqslant\left\|(\mu-\Delta)^{-\frac{1}{4}} \varphi_{\ell} \Phi\right\|_{2}\left\|(\mu-\Delta)^{\frac{1}{4}}\left(f g_{\ell}\right)\right\|_{2} .
$$

By the Kato-Ponce inequality of [GO, Theorem 1],

$$
\left\|(\mu-\Delta)^{\frac{1}{4}}\left(f g_{\ell}\right)\right\|_{2} \leqslant C\left(\|f\|_{\infty}\left\|(\mu-\Delta)^{\frac{1}{4}} g_{\ell}\right\|_{2}+\left\|(\mu-\Delta)^{\frac{1}{4}} f\right\|_{\infty}\left\|g_{\ell}\right\|_{2}\right)
$$

for some $C=C(d)<\infty$. Clearly, $\|f\|_{\infty},\left\|(\mu-\Delta)^{\frac{1}{4}} f\right\|_{\infty}<\infty$, and $\left\|(\mu-\Delta)^{\frac{1}{4}} g_{\ell}\right\|_{2},\left\|g_{\ell}\right\|_{2}$ are uniformly (in $\ell$ ) bounded from above according to Claim $1(j),(j j)$. Thus, in view of (14), we obtain (12) (recalling that $\ell_{1}=\ell$, and $\varphi_{\ell_{1}}=\eta_{1}\left(v_{\ell_{1}}^{1}-\sigma\right)$ ).

Step 2. Now, we can repeat the argument of Step 1, but starting with sequence $\left\{v_{\ell_{1}}^{1}\right\}$ in place of $\left\{v_{l}\right\}$, thus obtaining a sequence $\left\{v_{\ell_{2}}^{2}\right\} \subset \operatorname{conv}\left\{v_{\ell_{1}}^{1}\right\}$ such that

$$
(\mu-\Delta)^{-\frac{1}{4}} \eta_{2}\left(v_{\ell_{2}}^{2}-\sigma\right) \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text { in } L^{2} \text { as } \ell_{2} \rightarrow \infty .
$$

We may assume without loss of generality that each $v_{\ell_{2}}^{2} \in \operatorname{conv}\left\{v_{\ell_{1}}^{1}\right\}_{\ell_{1} \geqslant \ell_{2}}$. Therefore, we also have

$$
(\mu-\Delta)^{-\frac{1}{4}} \eta_{1}\left(v_{\ell_{2}}^{2}-\sigma\right) \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text { in } L^{2} \text { as } \ell_{2} \rightarrow \infty .
$$

Repeating this procedure $n-2$ times, we obtain a sequence $\left\{v_{\ell_{n}}^{n}\right\} \subset \operatorname{conv}\left\{v_{\ell_{n-1}}^{n-1}\right\}\left(\subset \operatorname{conv}\left\{v_{k}\right\}\right)$ such that

$$
(\mu-\Delta)^{-\frac{1}{4}} \eta_{i}\left(v_{\ell_{n}}^{n}-\sigma\right) \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text { in } L^{2} \text { as } \ell_{n} \rightarrow \infty, \quad 1 \leqslant i \leqslant n .
$$

Step 3. We set $\hat{v}_{n}:=v_{\ell_{n}}^{n}, n \geqslant 1$, so for every $r \geqslant 1$

$$
\begin{equation*}
(\mu-\Delta)^{-\frac{1}{4}} \eta_{r}\left(\hat{v}_{n}-\sigma\right) \cdot \nabla(\mu-\Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text { in } L^{2} . \tag{15}
\end{equation*}
$$

Since $v_{\ell_{n}}^{n} \in \operatorname{conv}\left\{v_{\ell_{n-1}}^{n-1}\right\}_{\ell_{n-1} \geqslant \ell_{n}}, v_{\ell_{n-1}}^{n-1} \in \operatorname{conv}\left\{v_{\ell_{n-2}}^{n-2}\right\}_{\ell_{n-2} \geqslant \ell_{n-1}}$, etc, we obtain that $v_{\ell_{n}}^{n} \in \operatorname{conv}\left\{v_{k}\right\}_{k \geqslant \ell_{n}}$, i.e. we also have (10). Finally, (15), combined with the resolvent identity, yield

$$
(\zeta-\Delta)^{-\frac{1}{4}} \eta_{r}\left(\hat{v}_{n}-\sigma\right) \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} \xrightarrow{s} 0 \text { in } L^{2}, \quad \operatorname{Re} \zeta \geqslant \lambda_{\delta}
$$

i.e. we have proved Claim 2.

We are in a position to complete the proof of Proposition 6. Let us show that, for every $\zeta \in \mathcal{O}$,

$$
Z_{2}\left(\zeta, \hat{v}_{n} \mathcal{L}^{d}\right) g-Z_{2}(\zeta, \sigma) g=(\zeta-\Delta)^{-\frac{1}{4}}\left(\hat{v}_{n}-\sigma\right) \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} g \xrightarrow{s} 0 \text { in } L^{2}, \quad g \in \mathcal{S}
$$

Let us fix some $g \in \mathcal{S}$. We have

$$
\begin{aligned}
(\zeta-\Delta)^{-\frac{1}{4}}\left(\hat{v}_{n}-\sigma\right) \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} g & =(\zeta-\Delta)^{-\frac{1}{4}}\left(\hat{v}_{n}-\eta_{r} \hat{v}_{n}\right) \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} g \\
& +(\zeta-\Delta)^{-\frac{1}{4}}\left(\eta_{r} \hat{v}_{n}-\eta_{r} \sigma\right) \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} g \\
& +(\zeta-\Delta)^{-\frac{1}{4}}\left(\eta_{r} \sigma-\sigma\right) \cdot \nabla(\zeta-\Delta)^{-\frac{3}{4}} g=: I_{1, r, n}+I_{2, r, n}+I_{3, r}
\end{aligned}
$$

Claim 3. Given any $\varepsilon>0$, there exists $r$ such that $\left\|I_{3, r}\right\|_{2},\left\|I_{1, r, n}\right\|_{2}<\varepsilon$, for all $n, \zeta \in \mathcal{O}$.
Proof of Claim 3. It suffices to prove $\left\|I_{1, r, n}\right\|_{2}<\varepsilon$ for all $n$. We will need the following elementary estimate: $\left|\nabla(\zeta-\Delta)^{-\frac{3}{4}}(x, y)\right| \leqslant M_{d}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{4}}(x, y), x, y \in \mathbb{R}^{d}, x \neq y$, for some $M_{d}<\infty$ (cf. [K, Appendix A]). We have

$$
\begin{aligned}
\left\|I_{1, r, n}\right\|_{2} & =\left\|(\operatorname{Re} \zeta-\Delta)^{-\frac{1}{4}}\left(1-\eta_{r}\right) \hat{v}_{n} \cdot \nabla(\operatorname{Re} \zeta-\Delta)^{-\frac{3}{4}} g\right\|_{2} \\
& \leqslant c_{d} M_{d}\left\|(\operatorname{Re} \zeta-\Delta)^{-\frac{1}{4}}\left(1-\eta_{r}\right)\left|\hat{v}_{n}\right|\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{4}} g\right\|_{2} \\
& \leqslant c_{d} M_{d}\left\|(\operatorname{Re} \zeta-\Delta)^{-\frac{1}{4}}\left|\hat{v}_{n}\right|^{\frac{1}{2}}\right\|_{2 \rightarrow 2}\left\|\left(1-\eta_{r}\right)\left|\hat{v}_{n}\right|^{\frac{1}{2}}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{4}} g\right\|_{2}
\end{aligned}
$$

We have $\left\|(\operatorname{Re} \zeta-\Delta)^{-\frac{1}{4}}\left|\hat{v}_{n}\right|^{\frac{1}{2}}\right\|_{2 \rightarrow 2} \leqslant \delta$ since (by construction) $\hat{v}_{n} \mathcal{L}^{d} \in \mathbf{F}_{\delta}^{\frac{1}{2}}$. In turn,

$$
\begin{aligned}
& \left(1-\eta_{r}\right)\left|\hat{v}_{n}\right|^{\frac{1}{2}}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{4}} g \\
& \quad=\left|\hat{v}_{n}\right|^{\frac{1}{2}}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{4}}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{\frac{1}{4}}\left(1-\eta_{r}\right)\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{4}} g
\end{aligned}
$$

so

$$
\left\|\left(1-\eta_{r}\right)\left|\hat{v}_{n}\right|^{\frac{1}{2}}\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{4}} g\right\|_{2} \leqslant \delta\left\|\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{\frac{1}{4}}\left(1-\eta_{r}\right)\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{4}} g\right\|_{2},
$$

where $\delta\left\|\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{\frac{1}{4}}\left(1-\eta_{r}\right)\left(\kappa_{d}^{-1} \operatorname{Re} \zeta-\Delta\right)^{-\frac{1}{4}} g\right\|_{2} \rightarrow 0$ as $r \rightarrow \infty$. The proof of Claim 3 is completed.

Claim 2, which yields the convergence $\left\|I_{2, r, n}\right\|_{2} \rightarrow 0$ as $n \rightarrow \infty$ for every $r$, and Claim 3, imply that

$$
Z_{2}\left(\zeta, \hat{v}_{n} \mathcal{L}^{d}\right) g-Z_{2}(\zeta, \sigma) g \xrightarrow{s} 0 \text { in } L^{2}, \quad g \in \mathcal{S}, \quad \zeta \in \mathcal{O},
$$

which, in view of Claim $1(j),(j j)$, yields $Z_{2}\left(\zeta, \hat{v}_{n} \mathcal{L}^{d}\right)-Z_{2}(\zeta, \sigma) \xrightarrow{s} 0$ in $L^{2}(\Rightarrow(11))$. By Claim 2 , we also have (10). This completes the proof of Proposition 6.

Proposition 7. Let $p \in \mathcal{I}$. There exist constants $C_{p}, C_{p, q, r}<\infty$ such that, for every $\zeta \in \mathcal{O}$,
(1) $\left\|\Omega_{p}(\zeta, \sigma, q, r)\right\|_{p \rightarrow p} \leqslant C_{p, q, r}$ for all $k$,
(2) $\left\|\Omega_{p}(\zeta, \sigma, \infty, 1)\right\|_{p \rightarrow p} \leqslant C_{p}|\zeta|^{-\frac{1}{2}}$, for all $k$.

Proof. Immediate from Proposition 3, Proposition 6 and the definition (7).
Now, we assume that $p \in \mathcal{J}(\subset \mathcal{I})$.

Proposition 8. Let $\left\{\hat{v}_{n}\right\}$ be the sequence in Proposition 6. For any $p \in \mathcal{J}$,

$$
\Omega_{p}\left(\zeta, \hat{v}_{n} \mathcal{L}^{d}, q, r\right) \xrightarrow{s} \Omega_{p}(\zeta, \sigma, q, r) \text { in } L^{p}, \quad \zeta \in \mathcal{O} .
$$

Proof. Set $\Omega_{p} \equiv \Omega_{p}(\zeta, \sigma, q, r), \Omega_{p}^{n} \equiv \Omega_{p}\left(\zeta, \hat{v}_{n} \mathcal{L}^{d}, q, r\right)$. Since $p \in \mathcal{J}$, we have $2(p-1) \in \mathcal{I}$. Since $\Omega_{p}$, $\Omega_{p}^{n} \in \mathcal{B}\left(L^{p}\right)$, it suffices to prove the required convergence over $\mathcal{S}$. We have $(f \in \mathcal{S})$ :

$$
\begin{equation*}
\left\|\Omega_{p} f-\Omega_{p}^{n} f\right\|_{p}^{p} \leqslant\left\|\Omega_{p} f-\Omega_{p}^{n} f\right\|_{2(p-1)}^{p-1}\left\|\Omega_{p} f-\Omega_{p}^{n} f\right\|_{2} . \tag{16}
\end{equation*}
$$

Let us estimate the right-hand side in (16):

1) $\Omega_{p} f-\Omega_{p}^{n} f\left(=\Omega_{2(p-1)} f-\Omega_{2(p-1)}^{n} f\right)$ is uniformly bounded in $L^{2(p-1)}$ in view of Proposition 3 and Proposition 7,
2) $\Omega_{p} f-\Omega_{p}^{n} f=\Omega_{2} f-\Omega_{2}^{n} f \xrightarrow{s} 0$ in $L^{2}$ as $k \rightarrow \infty$ by Proposition 6 .

Therefore, by (16), $\Omega_{p}^{n} f \xrightarrow{s} \Omega_{p} f$ in $L^{p}$, as needed.
This completes the proof of assertion (i), and, thus, the proof of Theorem 1.
Proof of Theorem 2. (i) The approximating vector fields $v_{k}\left(\in C_{0}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)\right)$ were constructed in Proposition 1. The proof essentially repeats the proof of $[\mathrm{K}$, Theorem 2]. Namely, we verify conditions of the Trotter approximation theorem for $\Lambda_{C_{\infty}}\left(v_{k} \mathcal{L}^{d}\right):=-\Delta+v_{k} \cdot \nabla, D\left(\Lambda_{C_{\infty}}\left(v_{k} \mathcal{L}^{d}\right)\right)=$ $(1-\Delta)^{-1} C_{\infty}$ :
$\left.1^{\circ}\right) \sup _{n}\left\|\left(\mu+\Lambda_{C_{\infty}}\left(v_{k} \mathcal{L}^{d}\right)\right)^{-1}\right\|_{\infty \rightarrow \infty} \leqslant \mu^{-1}, \mu \geqslant \kappa_{d} \lambda$.
$\left.2^{\circ}\right) \mu\left(\mu+\Lambda_{C_{\infty}}\left(v_{k} \mathcal{L}^{d}\right)\right)^{-1} \rightarrow 1$ in $C_{\infty}$ as $\mu \uparrow \infty$ uniformly in $n$.
$3^{\circ}$ ) There exists $s-C_{\infty}-\lim _{n}\left(\mu+\Lambda_{C_{\infty}}\left(v_{k} \mathcal{L}^{d}\right)\right)^{-1}$ for some $\mu \geqslant \kappa_{d} \lambda$.
$1^{\circ}$ ) is immediate. Let us verify $2^{\circ}$ ) and $3^{\circ}$ ). Fix some $p \in \mathcal{J}, p>d-1$ (such $p$ exists since $\left.m_{d} \delta<\frac{2 d-5}{(d-2)^{2}}\right)$. Let

$$
\begin{equation*}
\Theta_{p}(\mu, \sigma):=(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}} \Omega_{p}(\mu, \sigma, q, 1) \in \mathcal{B}\left(L^{p}\right), \quad \mu \geqslant \kappa_{d} \lambda, \tag{17}
\end{equation*}
$$

where $\max \{2, p\}<q$, see the proof of Theorem 1 for notation. We will be using the properties of the operator-valued function $\Omega_{p}(\mu, \sigma, q, 1)$ established there. Without loss of generality, we may assume that $\left\{v_{k}\right\}$ is the sequence constructed in Proposition 8 , that is, $v_{k} \mathcal{L}^{d} \xrightarrow{w} \sigma$, and $\Omega_{p}\left(\mu, v_{k} \mathcal{L}^{d}, q, 1\right) \xrightarrow{s}$ $\Omega_{p}(\mu, \sigma, q, 1)$ in $L^{p}$ as $k \rightarrow \infty$.

Given any $\gamma<1-\frac{d-1}{p}$, we can select $q$ sufficiently close to $p$ so that by the Sobolev embedding theorem,

$$
(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}}\left[L^{p}\right] \subset C^{0, \gamma} \cap L^{p}, \quad \text { and } \quad(\mu-\Delta)^{-\frac{1}{2}-\frac{1}{2 q}} \in \mathcal{B}\left(L^{p}, C_{\infty}\right)
$$

Then Proposition 8 yields $\Theta_{p}\left(\mu, \hat{v}_{n} \mathcal{L}^{d}\right) f \xrightarrow{s} \Theta_{p}(\mu, \sigma) f$ in $C_{\infty}, f \in \mathcal{S}$, as $n \rightarrow \infty$. The latter, combined with the next proposition and $1^{\circ}$ ), verifies condition $3^{\circ}$ ):

Proposition 9. For every $k \geqslant 1, \Theta_{p}\left(\mu, v_{k} \mathcal{L}^{d}\right) \mathcal{S} \subset \mathcal{S}$, and

$$
\left.\left(\mu+\Lambda_{C_{\infty}}\left(v_{k} \mathcal{L}^{d}\right)\right)^{-1}\right|_{\mathcal{S}}=\left.\Theta_{p}\left(\mu, v_{k} \mathcal{L}^{d}\right)\right|_{\mathcal{S}}, \quad \mu \geqslant \kappa_{d} \lambda .
$$

Proof. The proof repeats the proof of [K, Prop. 6].
Proposition 10. $\mu \Theta_{p}\left(\mu, v_{k}\right) \xrightarrow{s} 1$ in $C_{\infty}$ as $\mu \uparrow \infty$ uniformly in $k$.

Potential Anal., DOI10.1007/s11118-017-9632-z (2017)

Proof. The proof repeats the proof of [K, Prop. 8].
The last two propositions yield $\left.2^{\circ}\right)$. This completes the proof of assertion $(i)$.
(ii) follows from $\left.\Theta_{p}(\mu, \sigma)\right|_{\mathcal{S}}=\left.\left(\mu+\Lambda_{C_{\infty}}\left(C_{\infty}\right)\right)^{-1}\right|_{\mathcal{S}}$ (by construction), representation (17), and the Sobolev embedding theorem.
(iii) It follows from (i) that $e^{-t \Lambda_{C \infty}(\sigma)}$ is positivity preserving. The latter, $1^{\circ}$ ) and the Riesz-Markov-Kakutani representation theorem imply (iii).

## References

[AS] M. Aizenman, B. Simon. Brownian motion and Harnack inequality for Schrödinger operators. Comm. Pure. Appl. Math., 35 (1982), p. 209-273.
[BC] R. Bass, Z.-Q. Chen. Brownian motion with singular drift. Ann. Prob., 31 (2003), p. 791-817.
[BS] A.G. Belyi and Yu.A. Semenov. On the $L^{p}$-theory of Schrödinger semigroups. II. Sibirsk. Math. J., 31 (1990), p. 16-26; English transl. in Siberian Math. J., 31 (1991), p. 540-549.
[BJ] K. Bogdan, T. Jakubowski. Estimates of heat kernel of fractional Laplacian perturbed by gradient operators. Comm. Math. Phys., 271 (2007), p. 179-198.
[GO] L. Grafakos, S. Oh. The Kato-Ponce inequality. Comm. Partial Diff. Equ., 39 (2014), p. 1128-1157.
[K] D. Kinzebulatov. A new approach to the $L^{p}$-theory of $-\Delta+b \cdot \nabla$, and its applications to Feller processes with general drifts. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), to appear, 21 p.
[KPS] V.F. Kovalenko, M.A. Perelmuter, Yu.A. Semenov. Schrödinger operators with $L_{W}^{1 / 2}\left(R^{l}\right)$-potentials. J. Math. Phys., 22, 1981, p. 1033-1044.
[KS] V. F. Kovalenko, Yu.A. Semenov. $C_{0}$-semigroups in $L^{p}\left(\mathbb{R}^{d}\right)$ and $C_{\infty}\left(\mathbb{R}^{d}\right)$ spaces generated by differential expression $\Delta+b \cdot \nabla$. (Russian) Teor. Veroyatnost. i Primenen., 35 (1990), p. 449-458; English transl. in Theory Probab. Appl. 35 (1991), p. 443-453.
[S] Yu.A. Semenov. On perturbation theory for linear elliptic and parabolic operators; the method of Nash. Contemp. Math., 221 (1999), p. 217-284.
[S2] Yu.A. Semenov. Regularity theorems for parabolic equations. J. Funct. Anal., 231 (2006), p. 375-417.
[ST] J. Shin, G. Trutnau. On the stochastic regularity of distorted Brownian motions. Trans. Amer. Math. Soc., to appear.
[SV] P. Stollmann, J. Voigt. Perturbation of Dirichlet forms by measures. Potential Anal., 5 (1996), p. 109-138.
[Z] Q. S. Zhang. Gaussian bounds for the fundamental solutions of $\nabla(A \nabla u)+B \nabla u-u_{t}=0$. Manuscripta Math., 93 (1997), p. 381-390.

Université Laval, Département de mathématiques et de statistique, pavillon Alexandre-Vachon 1045 av de la Médecine, Québec, PQ, G1V 0A6, Canada

E-mail address: damir.kinzebulatov@mat.ulaval.ca


[^0]:    2010 Mathematics Subject Classification. 35J15, 47D07 (primary), 35J75 (secondary).
    Key words and phrases. Feller processes, measure-valued drift, regularity of solutions, non-local operators. Research supported in part by NSERC.

