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Abstract. We construct a Lp-strong Feller process associated with the formal differential operator

−∆ + σ · ∇ on Rd, d > 3, with drift σ in a wide class of measures (e.g. the sum of a measure having

density in weak Ld space and a Kato class measure), by exploiting a quantitative dependence of

the smoothness of the domain of an operator realization of −∆ + σ · ∇ generating a holomorphic

C0-semigroup on Lp(Rd), p > d− 1, on the value of the relative bound of σ.

1. Let Ld be the Lebesgue measure on Rd, Lp = Lp(Rd,Ld), Lp,∞ = Lp,∞(Rd,Ld) and W 1,p =

W 1,p(Rd,Ld) (p > 1) the standard Lebesgue, weak Lebesgue and Sobolev spaces, C0,γ = C0,γ(Rd)
the space of γ-Hölder continuous functions (0 < γ < 1), Cb = Cb(Rd) the space of bounded contin-

uous functions, endowed with the sup-norm, C∞ ⊂ Cb the closed subspace of functions vanishing at

infinity,Ws,p, s > 0, the Bessel potential space endowed with norm ‖u‖p,s := ‖g‖p, u = (1−∆)−
s
2 g,

g ∈ Lp, W−s,p′ , p′ := p/(p − 1), the anti-dual of Ws,p, and S = S(Rd) the L. Schwartz space of

test functions. Given a v = (vi)
d
i=1 ∈ Cd, set |v|1 :=

∑d
i=1 |vi|. We denote by B(X,Y ) the space

of bounded linear operators between complex Banach spaces X → Y , endowed with operator norm

‖ · ‖X→Y ; B(X) := B(X,X). Set ‖ · ‖p→q := ‖ · ‖Lp→Lq . Depending on the context,
w→ will denote

either the weak convergence of measures, or the weak convergence in a given Banach space.
s→

denotes the strong convergence (or the strong convergence of bounded linear operators) in a given

Banach space.

By 〈u, v〉 we denote the inner product in L2,

〈u, v〉 = 〈uv̄〉 :=

∫
Rd
uv̄Ld (u, v ∈ L2).

2. Let d > 3. The problem of constructing an operator realization on C∞ of the formal differential

operator −∆ + σ · ∇, with σ a singular vector field Rd → Rd (or a Rd–valued measure), that gener-

ates a contraction positivity preserving C0-semigroup there (Feller semigroup), has been thoroughly

studied in the literature (motivated, in particular, by applications to the theory of stochastic pro-

cesses: by the classical result, such a semigroup determines the transition (sub-) probability function

of a Hunt process). In the context of this problem, we consider the following classes of vector fields

and vector-valued measures on Rd.
1. A Rd-valued Borel measure σ = (σi)

d
i=1 on Rd is said to belong to F̄

1
2
δ , δ > 0, the class of weakly

form-bounded measures, if there exists λ = λδ > 0 such that∫
Rd

(∫
Rd

(λ−∆)−
1
4 (x, y)f(y)dy

)2

|σ|1(dx) 6 δ‖f‖22, f ∈ S,
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where (λ−∆)−
1
4 (x, y) is the Bessel potential kernel, |σ|1 :=

∑d
i=1 |σi|, |σi| is the variation of σi.

2. A Rd-valued Borel measure σ on Rd is said to belong to the Kato class K̄d+1
δ , δ > 0, if there

exists λ = λδ > 0 such that

sup
x∈Rd

∫
Rd

(λ−∆)−
1
2 (x, y)|σ|1(dy) 6 δ.

3. A vector field b : Rd → Rd belongs to Fδ, δ > 0, the class of form-bounded vector fields, if b is

Ld-measurable and there exists λ = λδ > 0 such that

‖|b|1(λ−∆)−
1
2 ‖2→2 6

√
δ.

4.F
1
2
δ := F̄

1
2
δ ∩ {bL

d with a Ld-measurable b : Rd → Rd},

5.Kd+1
δ := K̄d+1

δ ∩ {bLd with a Ld-measurable b : Rd → Rd}

6.Kd+1
0 :=

⋂
δ>0 K

d+1
δ , K̄d+1

0 :=
⋂
δ>0 K̄

d+1
δ , and F0 :=

⋂
δ>0 Fδ.

Simple examples show:

Kd+1
0 − Fδ 6= ∅, and Fδ1 −Kd+1

δ 6= ∅ for any δ, δ1 > 0,

for instance,

1) bLd, where b(x) :=
√
δ d−2

2 x|x|−2, is in Fδ −Kd+1
δ1

for any δ, δ1 > 0 (by the Hardy inequality).

2) Let b(x) := e1|x1|<1|x1|s−1 for some e ∈ Rd, |e| = 1, where 0 < s < 1, x = (x1, . . . , xd), and

1|x1|<1 is the indicator function of {x ∈ Rd : |x1| < 1}. Then bLd ∈ Kd+1
0 − Fδ for any δ > 0.

The examples above show that there exist b ∈ Fδ (resp. Kd+1
δ ) such that εb 6∈ F0 (resp. Kd+1

0 )

for any ε > 0. The classes Fδ, Kd+1
δ cover singularities of b of critical order, i.e. ‘sensitive’ to

multiplication by a constant (replacing a b ∈ Fδ with cb (∈ Fc2δ), c > 1, destroys e.g. the uniqueness

of the solution of Cauchy problem for −∆ + b · ∇, cf. [KS, Example 5]). The classes Kd+1
0 , K̄d+1

0 ,

F0 (and, thus, Ld(Rd,Rd) ( F0 – the inclusion follows by the Sobolev embedding theorem, cf. the

diagram below) don’t contain vector fields having critical order singularities.

We have:

K̄d+1
δ ( F̄

1
2
δ , (1)

Kd+1
δ ( F

1
2
δ , Fδ ( F

1
2
δ1

for δ1 =
√
δ, (2)

bLd ∈ F
1
2
δ1

and ν ∈ K̄d+1
δ2

=⇒ bLd + ν ∈ F̄
1
2
δ ,
√
δ =

√
δ1 +

√
δ2 (3)

The inclusion (1) is Proposition 1 below. The first inclusion in (2) follows e.g. by interpolation

between ‖(λ −∆)−
1
2 |b|1‖∞ 6 δ and (by duality) ‖|b|1(λ −∆)−

1
2 ‖1→1 6 δ, the second inclusion in

(2) follows by the Heinz inequality; for details, if needed, see [K, Appendix B].

[BC] constructed an operator realization on Cb of −∆ + σ · ∇, σ ∈ K̄d+1
0 , generating a strong

Feller semigroup there, thus obtaining e.g. a Brownian motion drifting upward when filtering through

certain fractal-like sets. Below we construct an operator realization on C∞ of −∆+σ ·∇ generating
2
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a Lp-strong Feller semigroup, with drift σ of the form

σ = bLd + ν, bLd ∈ F
1
2
δ1
, ν ∈ K̄d+1

δ2
, (4)

(
=⇒ σ ∈ F̄

1
2
δ with

√
δ :=

√
δ1 +

√
δ2 by (3)

)
provided mdδ <

2d−5
(d−2)2

, where

md := inf
κ>0

sup
x6=y,

Re ζ>0

|∇(ζ −∆)−1(x, y)|(
κ−1Re ζ −∆

)− 1
2 (x, y)

(5)

(md is bounded from above by π
1
2 (2e)−

1
2d

d
2 (d− 1)

1−d
2 <∞, see [K, (A.1)]). See Theorem 2 below.

[Lp + L∞]d (p > d)

[Ld + L∞]d
OO

[Ld + L∞]d

[Ld,∞ + L∞]d
OO

[Ld,∞ + L∞]d

Fδ21

∗

OO

F0

Fδ21 ffMMMMMMMMMMMMMMMMMM

[Ld + L∞]d

F088qqqqqqqqqqqqqqqq

[Lp + L∞]d (p > d)

Kd+1
0 __??????????????????????????

Kd+1
0

Kd+1
δ2??����������

Fδ21

F
1
2
δ1OO

Kd+1
δ2

F
1
2
δ1??����������

Kd+1
0

K̄d+1
0OO

Kd+1
δ2

K̄d+1
δ2OO

F
1
2
δ1

K̄d+1
δ2

+ F
1
2
δ1OO

K̄d+1
0

K̄d+1
δ2??����������

K̄d+1
δ2

K̄d+1
δ2

+ F
1
2
δ1??����������

K̄d+1
δ2

+ F
1
2
δ1

F̄
1
2
δ ,
√
δ =
√
δ1 +

√
δ2

OO

The general classes of drifts σ studied in the literature in connection with the operator −∆ + σ · ∇.

Here δ, δ1, δ2 > 0. We identify b : Rd → Rd with bLd.
→ stands for strict inclusion, and

∗→ reads “if b = b1 + b2 ∈ [Ld,∞ + L∞]d, then b ∈ Fδ21
with δ1 > 0 determined by

the value of the Ld,∞-norm of |b1| (by the Strichartz inequality with sharp constants [KPS, Prop. 2.5, 2.6, Cor. 2.9]).
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Example. 1. An example of a bLd ∈ Kd+1
δ −Kd+1

0 , δ > 0, can be obtained as follows (modifying

[AS, p. 250, Example 1]). Fix e ∈ Rd, |e| = 1. Let zn := (2−n, 0, . . . , 0) ∈ Rd, n > 1. Set

b(x) := eF (x), F (x) :=
∞∑
n=1

8n1B(zn,8−n)(x), x ∈ Rd,

where B(zn, 8
−n) is the open ball of radius 8−n centered at zn. Arguing as in [AS, p. 250, Example

1], we obtain that bLd ∈ Kd+1
δ −Kd+1

0 for appropriate δ > 0.

2. Recall that a Borel-measurable set Γ ⊂ Rd is called a κ-set, 0 < κ 6 d, if for all x ∈ Γ, all

0 < ρ < 1,

c1ρ
κ 6 Hκ(Γ ∩B(x, ρ)) 6 c2ρ

κ,

for some constants 0 < c1, c2 <∞, where Hκ is the κ-dimensional Hausdorff measure in Rd (e.g. Γ =

A× R, where A is the Sierpinski gasket in R2, is a (1 + log 3/ log 2)-set).

Then, for a fixed e ∈ Rd, |e| = 1, if Γ ⊂ Rd is a κ-set, κ > d− 1, the measure

σ := e1ΓHκ|Γ ∈ K̄d+1
0 ,

see [BC, Prop. 2.1].

An example of σ ∈ K̄d+1
δ − K̄d+1

0 can be obtained e.g. by modifying the example in 1, e.g. for

d = 3 as σ := eF1ΓHκ|Γ, where Γ := A× R, κ = 1 + log 3/ log 2, zn ∈ Γ are chosen at the distance

of at least 2−n from each other, and the coefficients 8−n in F are replaced with 8−(κ−d+1)n.

Remarks. After 1996, the Kato class of vector fields Kd+1
δ , with δ > 0 sufficiently small (yet

allowed to be non-zero), has been recognized as the general class ‘responsible’ for the Gaussian

upper and lower bounds on the fundamental solution of −∆ + b · ∇ [S, Z] which, in turn, allow to

construct an associated Feller process (in Cb). The class Fδ, δ < 4, provides dissipativity of ∆−b ·∇
in Lp, p > 2/(2 −

√
δ), needed to run the iterative procedure of [KS] (taking p → ∞, assuming

additionally δ < min{1, (2/(d − 2))2}), which produces an associated Feller semigroup in C∞. We

emphasize that, in general, the Gaussian bounds are not valid if |b| ∈ Ld, while bLd ∈ Kd+1
0 , in

general, destroys Lp-dissipativity.

In [K], we constructed an associated with −∆ + b · ∇ Feller semigroup in C∞ for bLd ∈ F
1
2
δ ,

mdδ < 1. The starting object for the method is an operator-valued function in Lp, p ∈ I :=(
2

1+
√

1−mdδ
, 2

1−
√

1−mdδ
)
,

Θp(ζ, bLd) := (ζ −∆)−1 − (ζ −∆)
− 1

2
− 1

2qQp(q)(1 + Tp)
−1Gp(r)(ζ −∆)−

1
2r′ , (6)

1 6 r < p < q, Re ζ > λd/(d− 1),

where Qp(q), Tp, Gp(r) ∈ B(Lp), ‖Tp‖p→p 6 md
pp′

4 δ < 1,

Gp(r) := b
1
p · ∇(ζ −∆)−

1
2
− 1

2r , b
1
p := b|b|

1
p
−1
,

Qp(q) and Tp are extensions by continuity of densely defined operators

Qp(q) := (ζ −∆)
− 1

2q′ |b|
1
p′ , Tp := b

1
p · ∇(ζ −∆)−1|b|

1
p′ .

4
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We prove that

Θp(ζ, bLd) = (ζ + Λp(b))
−1, Re ζ > λd/(d− 1),

where Λp(b) is the generator of a holomorphic C0-semigroup e−tΛp(b) on Lp. The proof uses ideas

from [BS], and appeals to the Lp-inequalities between the operator (λ − ∆)
1
2 and the “potential”

|b|. Then, as follows from the definition of Θp(ζ, bLd), D(Λp(b)) ⊂ W1+ 1
q
,p

, q > p. In particular,

if mdδ < 4 d−2
(d−1)2

, then there exists p ∈ I, p > d − 1, and by the Sobolev embedding theorem

D(Λp(b)) ⊂ C0,γ , γ < 1− d−1
p . The latter allows us to construct

(µ+ ΛC∞(b))−1|S := Θp(µ, bLd)|S , µ >
d

d− 1
λ, p > d− 1,

where ΛC∞(b) is the required generator of a Feller semigroup on C∞.

For σ ∈ F̄
1
2
δ , σ 6� Ld (a subject of this work) Θp(ζ, σ), as in (6), is not well defined. We modify the

method in [K]. This modification highlights the fundamental role of the L2-theory in the C∞-theory

of −∆ + σ · ∇, in particular, the role of the alternative representation of (6) in L2,

Θ2(ζ, σ) := (ζ −∆)−
3
4 (1 +B)−1(ζ −∆)−

1
4 ,

B := (ζ −∆)−
1
4σ · ∇(ζ −∆)−

3
4 (well defined),

used in [S2, Theorem 5.1].

Also, in contrast to the setup of [K], a σ as above doesn’t admit a monotone approximation by

regular vector fields vk (i.e. by vkLd), which complicates the proof of the convergence Θ2(ζ, vkLd)
s→

Θ2(ζ, σ) in L2, needed to carry out the method. We resolve this using an important variant of the

Kato-Ponce inequality by [GO] (Proposition 6 below); there, we also employ a modification of an

argument from [SV, proof of Theorem 2.1].

The method depends on the fact that the two operators constituting −∆ +σ · ∇, i.e. −∆ and ∇,

commute; in particular, the method admits a straightforward generalization to fractional powers of

the Laplacian (for fundamental results on potential theory of the latter, see [BJ]).

Remark. Our main results (Theorems 1 and 2 below) are valid for σ ∈ F̄
1
2
δ such that there exist

C∞-smooth approximating vector fields vk such that

vkLd ∈ F
1
2

δ+2−k
, vkLd

w→ σ.

We construct these vk’s for σ as in (4) (Proposition 1 below), but do not consider the problem of

constructing such an approximation for an arbitrary weakly form-bounded measure σ.

Remark. The symmetry assumption on the generator allows to include drifts of the form: the

countable sum of certain (possibly accumulating) hypersurface measures, see [ST].

3. We proceed to precise formulations of our results.

In the next theorem we allow Cd-valued measures (the modification of the definitions 1, 2 is

straightforward).
5
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Theorem 1 (Lp-theory). Let d > 3. Assume that σ is a Cd-valued Borel measure in F̄
1
2
δ such that

σ = bLd + ν, where b : Rd → Cd is Ld-measurable,

bLd ∈ F
1
2
δ1
, ν ∈ K̄d+1

δ2
,

√
δ :=

√
δ1 +

√
δ2.

There exist vector fields vk ∈ C∞0 (Rd,Cd) such that vkLd ∈ F
1
2

δ+2−k
, vkLd

w→ σ.

If mdδ < 1, then for every

p ∈ J :=

(
1 +

1

1 +
√

1−mdδ
, 1 +

1

1−
√

1−mdδ

)
we have:

(i) There exists a holomorphic C0-semigroup e−tΛp(σ) in Lp such that, possibly after replacing

vkLd’s with a sequence of their convex combinations (also weakly converging to measure σ), we have

e−tΛp(vkLd) s−→ e−tΛp(σ) in Lp,

as k →∞, where

Λp(vkLd) := −∆ + vk · ∇, D(Λp(vkLd)) =W2,p.

(ii) The resolvent set ρ(−Λp(σ)) contains a half-plane O ⊂ {ζ ∈ C : Re ζ > 0}, and the re-

solvent (ζ + Λp(σ))−1, ζ ∈ O, admits extension by continuity to a bounded linear operator in

B
(
W−

1
r′ ,p,W1+ 1

q
,p
)
, where 1 6 r < min{2, p}, max{2, p} < q.

(iii) The domain of the generator D
(
Λp(σ)

)
⊂ W1+ 1

q
,p

for every q > max{p, 2}.

Theorem 1 allows us to prove

Theorem 2 (C∞-theory). Let d > 3. Assume that σ is a Rd-valued Borel measure in F̄
1
2
δ such that

σ = bLd + ν, where b : Rd → Rd is Ld-measurable,

bLd ∈ F
1
2
δ1
, ν ∈ K̄d+1

δ2
,

√
δ :=

√
δ1 +

√
δ2.

There exist vector fields vk ∈ C∞0 (Rd,Rd) such that vkLd ∈ F
1
2

δ+2−k
, vkLd

w→ σ.

If mdδ <
2d−5

(d−2)2
, then:

(i) There exists a positivity preserving contraction C0-semigroup e−tΛC∞ (σ) on C∞ such that,

possibly after replacing vkLd’s with a sequence of their convex combinations (also weakly converging

to measure σ) we have

e−tΛC∞ (vkLd) s−→ e−tΛC∞ (σ) in C∞, t > 0,

as k →∞, where

ΛC∞(vkLd) := −∆ + vk · ∇, D(ΛC∞(vkLd)) = (1−∆)−1C∞.

(ii) [Lp-strong Feller property ] (µ + ΛC∞(σ))−1|S , µ > 0, can be extended by continuity to a

bounded linear operator in B(Lp, C0,γ), γ < 1− d−1
p , for every d− 1 < p < 1 + 1

1−
√

1−mdδ
.

(iii) The integral kernel e−tΛC∞ (σ)(x, y) (x, y ∈ Rd) of e−tΛC∞ (σ) determines the (sub-Markov)

transition probability function of a Feller process.
6
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Remark. If σ � Ld, then the interval J in Theorem 1 can be expanded; accordingly, the assump-

tion on δ in Theorem 2 can be relaxed, cf. [K, Theorems 1, 2]. There, we work directly in Lp, while

in the proof of Theorem 1 we have to first prove our convergence results in L2, and then transfer

them to Lp (Proposition 8), which leads to more restrictive constraints on p and, respectively, δ.

Acknowledgments. I am thankful to the referee for comments that helped to improve the presen-

tation, and for pointing out the reference [ST].

Proofs of Theorem 1 and Theorem 2

In the proofs of both Theorem 1 and Theorem 2 we use the following

Proposition 1. Let σ = bLd + ν, where b : Rd → Cd is Ld-measurable,

bLd ∈ F
1
2
δ1
, ν ∈ K̄d+1

δ2
,

√
δ :=

√
δ1 +

√
δ2.

Then σ ∈ F̄
1
2
δ , and there exist vector fields vk ∈ C∞0 (Rd,Cd) such that

vkLd ∈ F
1
2

δ+2−k
,
√
δ :=

√
δ1 +

√
δ2,

vkLd
w→ σ as k →∞.

If σ is Rd-valued, then vk’s are Rd-valued.

Proof. First, let us construct the vector fields vk. We fix functions ρk ∈ C∞0 , 0 6 ρk 6 1, ρ ≡ 1 in

{x ∈ Rd : |x| 6 k}, ρ ≡ 0 in {x ∈ Rd : |x| > k + 1}, and a sequence εk ↓ 0. We define

νk := ρke
εk∆ν, bk := ρke

εk∆1kb,

where 1k := 1{x∈Rd:|x|6k,|b(x)|6k}, and

vkLd := bkLd + νkLd.

Clearly, vk ∈ C∞0 (Rd,Cd) and vkLd
w−→ σ as k →∞.

Let us prove that vkLd ∈ F
1
2

δ+2−k
. First, let us show that νkLd ∈ Kd+1

δ2
. We have a.e. on Rd:

(λ−∆)−
1
2 |νk|1 6 (λ−∆)−

1
2 |eεk∆ν|1 6 (λ−∆)−

1
2 eεk∆|ν|1 = eεk∆(λ−∆)−

1
2 |ν|1.

Since ‖eεk∆(λ−∆)−
1
2 |ν|1‖∞ 6 ‖(λ−∆)−

1
2 |ν|1‖∞ and, in turn, ‖(λ−∆)−

1
2 |ν|1‖∞ 6 δ2 (⇔ ν ∈ K̄d+1

δ2
),

we have νkLd ∈ Kd+1
δ2

. Now, since Kd+1
δ2
⊂ F

1
2
δ2

(cf. (2)), we have νkLd ∈ F
1
2
δ2

. Next, since 1k|b| 6 |b|,
we have bkLd ∈ F

1
2

δ1+8−k
(possibly, after selecting smaller εk ↓ 0). Thus, vkLd ∈ F

1
2

δ+2−k
, as needed.

The latter, and the convergence vkLd
w→ σ, imply that σ ∈ F̄

1
2
δ . �

7
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Proof of Theorem 1. Due to the strict inequality mdδ < 1, we may assume that the infimum md

(cf. (5)) is attained, i.e. there is κd > 0 such that

|∇(ζ −∆)−1(x, y)| 6 md

(
κ−1
d Re ζ −∆

)− 1
2

(x, y), x, y ∈ Rd, x 6= y, Re ζ > 0,

Set

O := {ζ ∈ C : Re ζ > κdλδ}.

We fix σ as in the formulation of the theorem. In view of the strict strict inequality mdδ < 1, we

may assume that the approximating vector fields vk : Rd → Cd in Proposition 1 are in F
1
2
δ .

The method of proof. Let us fix p ∈ J and r, q satisfying 1 6 r < min{2, p},max{2, p} < q. Our

starting object is an operator-valued function

Θp(ζ, σ) := (ζ −∆)
− 1

2
− 1

2qΩp(ζ, σ, q, r)(ζ −∆)−
1

2r′ ∈ B(Lp), ζ ∈ O,

which is ‘a candidate’ for the resolvent of the desired operator realization Λp(σ) of −∆ + σ · ∇ on

Lp. Here

Ωp(ζ, σ, q, r) :=

(
Ω2(ζ, σ, q, r)

∣∣∣∣
Lp∩L2

)clos

Lp
∈ B(Lp) (7)

((·)clos
Lp denotes the extension of an operator by continuity to Lp), where, on L2,

Ω2(ζ, σ, q, r) := (ζ −∆)
− 1

2

(
1
2
− 1
q

)
(1 + Z2(ζ, σ))−1(ζ −∆)−

1
2

(
1
2
− 1
r′

)
∈ B(L2),

Z2(ζ, σ)h(x) := (ζ −∆)−
1
4σ · ∇(ζ −∆)−

3
4h(x)

=

∫
Rd

(ζ −∆)−
1
4 (x, y)

(∫
Rd
∇(ζ −∆)−

3
4 (y, z)h(z)dz

)
· σ(y)dy, x ∈ Rd, h ∈ S,

and ‖Z2‖2→2 < 1, so Ω2(ζ, σ, q, r) ∈ B(L2), see Proposition 2 below. We prove that Ωp(ζ, σ, q, r) ∈
B(Lp) in Proposition 7 below.

We show that Θp(ζ, σ) is the resolvent of Λp(σ) (assertion (i) of Theorem 1) by verifying conditions

of the Trotter approximation theorem:

1) Θp(ζ, vkLd) = (ζ+Λp(vkLd))−1, ζ ∈ O, where Λp(vkLd) := −∆+vk ·∇, D(Λp(vkLd)) =W2,p.

2) supn>1 ‖Θp(ζ, vkLd)‖p→p 6 Cp|ζ|−1, ζ ∈ O.

3) µΘp(ζ, vkLd)
s→ 1 in Lp as µ ↑ ∞ uniformly in k.

4) Θp(ζ, vkLd)
s→ Θp(ζ, σ) in Lp for some ζ ∈ O as k →∞ (possibly after replacing vkLd’s with

a sequence of their convex combinations, also weakly converging to measure σ), see Propositions 3

- 8 below for details.

We note that a priori in 1) the set of ζ’s for which Θp(ζ, vkLd) = (ζ + Λp(vkLd))−1 could depend

on k; the fact that it does not is the content of Proposition 4.

The proofs of 2), 3), contained in Proposition 3 and Proposition 5, are based on an explicit

representation of Ωp(ζ, vkLd, q, r), k > 1, that doesn’t exist if σ has a non-zero singular part.
8
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Next, 4) follows from Θ2(ζ, vkLd)
s→ Θ2(ζ, σ), combined with supn ‖Θp(ζ, vkLd)‖2(p−1)→2(p−1) <

∞ (⇐ 2)) and Hölder’s inequality, see Proposition 8. Our proof of Θ2(ζ, vkLd)
s→ Θ2(ζ, σ) (Propo-

sition 6) uses the Kato-Ponce inequality by [GO].

Finally, we note that the very definition of the operator-valued function Θp(ζ, σ) implies that it

admits extension to an operator-valued function in B
(
W−

1
r′ ,p,W1+ 1

q
,p) ⇒ assertion (ii). Assertion

(iii) is immediate from (ii).

We proceed to formulating and proving Propositions 2-8.

Proposition 2. We have, for every ζ ∈ O,

(1) ‖Z2(ζ, vkLd)‖2→2 6 δ for all k.

(2) ‖Z2(ζ, σ)f‖2 6 δ‖f‖2, for all f ∈ S, all k.

Proof. (1) Define H := |vk|
1
2 (ζ − ∆)−

1
4 , S := v

1
2
k · ∇(ζ − ∆)−

3
4 , where v

1
2
k := |vk|−

1
2 vk. Then

Z2(ζ, vkLd) = H∗S, and we have

‖Z2(ζ, vkLd)‖2→2 6 ‖H‖2→2‖S‖2→2 6 ‖H‖22→2‖∇(ζ −∆)−
1
2 ‖2→2 6 δ,

where we have used ‖∇(ζ −∆)−
1
2 ‖2→2 = 1, and

‖H‖2→2 (here we are using |vk| 6 |vk|1)

6 ‖|vk|
1
2
1 (ζ −∆)−

1
4 ‖2→2

(here we are using |(ζ −∆)−1(x, y)| 6 |(Re ζ −∆)−1(x, y)|, x, y ∈ Rd, x 6= y)

6
√
δ (since vkLd ∈ F

1
2
δ ).

(2) We have, for every f , g ∈ S,〈
g, Z2(ζ, σ)f

〉
=
〈
(ζ −∆)−

1
4 g, σ · ∇(ζ −∆)−

3
4 f
〉

(here we are using vkLd
w→ σ)

= lim
k

〈
(ζ −∆)−

1
4 g, vk · ∇(ζ −∆)−

3
4 f
〉

(here we are using assertion (1))

6 δ‖g‖2‖f‖2,

i.e. ‖Z2(ζ, σ)f‖2 6 δ‖f‖2, as needed. �

The extension of Z2(ζ, σ)|S by continuity to a bounded linear operator in B(L2) will be denoted

again by Z2(ζ, σ). Since ‖Z2(ζ, vkLd)‖2→2, ‖Z2(ζ, σ)‖2→2 6 δ (< 1), we have Ω2(ζ, vkLd, q, r),
Ω2(ζ, σ, q, r) ∈ B(L2).

Set

I :=

(
2

1 +
√

1−mdδ
,

2

1−
√

1−mdδ

)
.

In the following propositions, given a p ∈ I, we assume that r, q satisfy 1 6 r < min{2, p},max{2, p} <
q.

The following proposition plays a principal role:
9
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Proposition 3. Let p ∈ I. There exist constants Cp, Cp,q,r <∞ such that, for every ζ ∈ O,

(1) ‖Ωp(ζ, vkLd, q, r)‖p→p 6 Cp,q,r for all k,

(2) ‖Ωp(ζ, vkLd,∞, 1)‖p→p 6 Cp|ζ|−
1
2 for all k.

Proof. Denote v
1
p

k := |vk|
1
p
−1
vk. Set

Ω̃p(ζ, vkLd, q, r) := (ζ −∆)
1
2

(
1
q
− 1
r

)
−Qp(q)(1 + Tp)

−1Gp(r), ζ ∈ O, (8)

where

Qp(q) := (ζ −∆)
− 1

2q′ |vk|
1
p′ , Tp := v

1
p

k · ∇(ζ −∆)−1|vk|
1
p′ , Gp(r) := v

1
p

k · ∇(ζ −∆)−
1
2
− 1

2r ,

are uniformly in k bounded in B(Lp) (see the proof of [K, Prop. 1(i)]); in particular, ‖Tp‖p→p 6
pp′

4 mdδ, where pp′

4 mdδ < 1 since p ∈ I. Therefore, Cp,q,r := supk ‖Ω̃p(ζ, vkLd, q, r)‖p→p < ∞.

Now, Ω̃p(ζ, vkLd, q, r)|L2∩Lp = Ω2(ζ, vkLd, q, r)|L2∩Lp (by expanding (1 + Tp)
−1, (1 + Z2)−1 in the

K. Neumann series in Lp and in L2, respectively). Therefore, Ω̃p(ζ, vkLd, q, r) = Ωp(ζ, vkLd, q, r) ⇒
assertion (1). The proof of assertion (2) follows closely the proof of [K, Prop. 1(ii)]. �

Clearly, Θp(ζ, vkLd) does not depend on q, r. Taking q =∞, r = 1, by Proposition 3 we obtain:

‖Θp(ζ, vkLd)‖p→p 6 Cp|ζ|−1, ζ ∈ O. (9)

Proposition 4. Let p ∈ I. For every k > 1 O ⊂ ρ(−Λp(vkLd)), the resolvent set of −Λp(vkLd),
and

Θp(ζ, vkLd) = (ζ + Λp(vkLd))−1, ζ ∈ O,

where Λp(vkLd) := −∆ + vk · ∇, D(ΛC∞(vkLd)) =W2,p.

Proof. The proof repeats the proof of [K, Prop. 4]. �

Proposition 5. For p ∈ I, µΘp(µ, vkLd)
s→ 1 in Lp as µ ↑ ∞ uniformly in k.

Proof. The proof repeats the proof of [K, Prop. 3]. �

Proposition 6. There exists a sequence {v̂n} ⊂ conv{vk} (⊂ C∞0 (Rd,Cd)) such that

v̂nLd
w−→ σ as n→∞, (10)

and

Ω2(ζ, v̂nLd, q, r)
s→ Ω2(ζ, σ, q, r) in L2, ζ ∈ O. (11)

Proof. To prove (11), it suffices to establish the convergence Z2(ζ, v̂nLd)
s→ Z2(ζ, σ) in L2.

Let ηr ∈ C∞0 , 0 6 ηr 6 1, ηr ≡ 1 on {x ∈ Rd : |x| 6 r} and ηr ≡ 0 on {x ∈ Rd : |x| > r + 1}.

Claim 1. We have, for every µ > λδ,

(j) ‖(µ−∆)−
1
4 |vk|1(µ−∆)−

1
4 ‖2→2 6 δ, for all k.

(jj ) ‖(µ−∆)−
1
4 |σ|1(µ−∆)−

1
4 f‖2 6 δ‖f‖2, for all f ∈ S.

10
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Proof. Define H := |vk|
1
2
1 (µ−∆)−

1
4 . We have

‖(µ−∆)−
1
4 |vk|1(µ−∆)−

1
4 ‖2→2 = ‖H∗H‖2→2 = ‖H‖22→2 6 δ,

where ‖H‖22→2 6 δ since vkLd ∈ F
1
2
δ , i.e. we have proved (j ). An argument similar to the one in the

proof of Proposition 2, but using assertion (j ), yields (jj ). �

Claim 2. There exists a sequence {v̂n} ⊂ conv{vk} such that (10) holds, and for every r > 1

(ζ −∆)−
1
4 ηr(v̂n − σ) · ∇(ζ −∆)−

3
4

s→ 0 in L2, Re ζ > λδ.

(here and below we use the shorthand v̂n − σ := v̂nLd − σ).

Proof of Claim 2. In view of Claim 1(j ), (jj ), it suffices to establish this convergence over S.

Fix some µ > λδ. Set c(x) := e−x
2
. Clearly, c ∈ S, |(µ−∆)−

1
4 c| > 0 on Rd.

Step 1. Let r = 1. Let us show that there exists a sequence {v1
`1
} ⊂ conv{vk} such that

(µ−∆)−
1
4 η1(v1

`1 − σ) · ∇(µ−∆)−
3
4

s→ 0 in L2 as `1 →∞. (12)

First, we show that

(µ−∆)−
1
4 η1(vk − σ)(µ−∆)−

1
4 c

w→ 0 in L2. (13)

Indeed, by Claim 1(j ), (jj ), ‖(µ − ∆)−
1
4 η1(vk − σ)(µ − ∆)−

1
4 c‖2 6 2δ‖c‖2 for all k. Hence, there

exists a subsequence of {vk} (without loss of generality, it is {vk} itself) such that (µ−∆)−
1
4 η1(vk−

σ)(µ − ∆)−
1
4 c

w→ h for some h ∈ L2. Therefore, given any f ∈ S, we have 〈f, (µ − ∆)−
1
4 η1(vk −

σ)(µ−∆)−
1
4 c〉 → 〈f, h〉. Along with that, since vkLd

w→ σ, we also have

〈f, (µ−∆)−
1
4 η1(vk − σ)(µ−∆)−

1
4 c〉 = 〈(µ−∆)−

1
4 f, η1(vk − σ)(µ−∆)−

1
4 c〉 → 0,

i.e. 〈f, h〉 = 0. Since f ∈ S was arbitrary, we have h = 0, which yields (13).

Now, in view of (13), by Mazur’s Theorem, there exists a sequence {v1
`1
} ⊂ conv{vk} such that

(µ−∆)−
1
4 η1(v1

`1 − σ)(µ−∆)−
1
4 c

s→ 0 in L2. (14)

We may assume without loss of generality that each v1
`1
∈ conv{vn}n>`1 .

11
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Next, set ` := `1, ϕ` := η1(v1
` −σ), Φ := (µ−∆)−

1
4 c, fix some u ∈ S. We estimate (cf. [SV, proof

of Theorem 2.1]):

‖(µ−∆)−
1
4ϕ` · ∇(µ−∆)−

3
4u‖22

=
〈
ϕ` · ∇(µ−∆)−

3
4u, (µ−∆)−

1
2ϕ` · ∇(µ−∆)−

3
4u
〉

(
since ϕ` ≡ 0 on {|x| > 2}, in the left multiple ϕ` = ϕ`Φ

η2

Φ

)
=
〈
ϕ`Φ

η2

Φ
· ∇(µ−∆)−

3
4u, (µ−∆)−

1
2ϕ` · ∇(µ−∆)−

3
4u
〉

=
〈
ϕ`Φ,

η2

Φ
∇(µ−∆)−

3
4u
[
(µ−∆)−

1
2ϕ` · ∇(µ−∆)−

3
4u
]〉

(here we are using in the left multiple that ϕ` = (µ−∆)
1
4 (µ−∆)−

1
4ϕ`)

=

〈
(µ−∆)−

1
4ϕ`Φ, (µ−∆)

1
4 (fg`)

〉
where we set f := η2

Φ∇(µ−∆)−
3
4u ∈ C∞0 (Rd,Cd), g` := (µ−∆)−

1
2ϕ` ·∇(µ−∆)−

3
4u ∈ (µ−∆)−

1
4L2

(in view of Claim 1(j ), (jj )). Thus, in view of the above estimates,

‖(µ−∆)−
1
4ϕ` · ∇(µ−∆)−

3
4u‖22 6 ‖(µ−∆)−

1
4ϕ`Φ‖2‖(µ−∆)

1
4 (fg`)‖2.

By the Kato-Ponce inequality of [GO, Theorem 1],

‖(µ−∆)
1
4 (fg`)‖2 6 C

(
‖f‖∞‖(µ−∆)

1
4 g`‖2 + ‖(µ−∆)

1
4 f‖∞‖g`‖2

)
,

for some C = C(d) < ∞. Clearly, ‖f‖∞, ‖(µ − ∆)
1
4 f‖∞ < ∞, and ‖(µ − ∆)

1
4 g`‖2, ‖g`‖2 are

uniformly (in `) bounded from above according to Claim 1(j ), (jj ). Thus, in view of (14), we obtain

(12) (recalling that `1 = `, and ϕ`1 = η1(v1
`1
− σ)).

Step 2. Now, we can repeat the argument of Step 1, but starting with sequence {v1
`1
} in place of

{vl}, thus obtaining a sequence {v2
`2
} ⊂ conv{v1

`1
} such that

(µ−∆)−
1
4 η2(v2

`2 − σ) · ∇(µ−∆)−
3
4

s→ 0 in L2 as `2 →∞.

We may assume without loss of generality that each v2
`2
∈ conv{v1

`1
}`1>`2 . Therefore, we also have

(µ−∆)−
1
4 η1(v2

`2 − σ) · ∇(µ−∆)−
3
4

s→ 0 in L2 as `2 →∞.

Repeating this procedure n−2 times, we obtain a sequence {vn`n} ⊂ conv{vn−1
`n−1
} (⊂ conv{vk}) such

that

(µ−∆)−
1
4 ηi(v

n
`n − σ) · ∇(µ−∆)−

3
4

s→ 0 in L2 as `n →∞, 1 6 i 6 n.

Step 3. We set v̂n := vn`n , n > 1, so for every r > 1

(µ−∆)−
1
4 ηr(v̂n − σ) · ∇(µ−∆)−

3
4

s→ 0 in L2. (15)

Since vn`n ∈ conv{vn−1
`n−1
}`n−1>`n , vn−1

`n−1
∈ conv{vn−2

`n−2
}`n−2>`n−1 , etc, we obtain that vn`n ∈ conv{vk}k>`n ,

i.e. we also have (10). Finally, (15), combined with the resolvent identity, yield

(ζ −∆)−
1
4 ηr(v̂n − σ) · ∇(ζ −∆)−

3
4

s→ 0 in L2, Re ζ > λδ.
12
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i.e. we have proved Claim 2. �

We are in a position to complete the proof of Proposition 6. Let us show that, for every ζ ∈ O,

Z2(ζ, v̂nLd)g − Z2(ζ, σ)g = (ζ −∆)−
1
4 (v̂n − σ) · ∇(ζ −∆)−

3
4 g

s→ 0 in L2, g ∈ S.

Let us fix some g ∈ S. We have

(ζ −∆)−
1
4 (v̂n − σ) · ∇(ζ −∆)−

3
4 g = (ζ −∆)−

1
4 (v̂n − ηrv̂n) · ∇(ζ −∆)−

3
4 g

+ (ζ −∆)−
1
4 (ηrv̂n − ηrσ) · ∇(ζ −∆)−

3
4 g

+ (ζ −∆)−
1
4 (ηrσ − σ) · ∇(ζ −∆)−

3
4 g =: I1,r,n + I2,r,n + I3,r.

Claim 3. Given any ε > 0, there exists r such that ‖I3,r‖2, ‖I1,r,n‖2 < ε, for all n, ζ ∈ O.

Proof of Claim 3. It suffices to prove ‖I1,r,n‖2 < ε for all n. We will need the following elementary

estimate: |∇(ζ − ∆)−
3
4 (x, y)| 6 Md(κ

−1
d Re ζ − ∆)−

1
4 (x, y), x, y ∈ Rd, x 6= y, for some Md < ∞

(cf. [K, Appendix A]). We have

‖I1,r,n‖2 = ‖(Re ζ −∆)−
1
4 (1− ηr)v̂n · ∇(Re ζ −∆)−

3
4 g‖2

6 cdMd‖(Re ζ −∆)−
1
4 (1− ηr)|v̂n|(κ−1

d Re ζ −∆)−
1
4 g‖2

6 cdMd

∥∥(Re ζ −∆)−
1
4 |v̂n|

1
2

∥∥
2→2

∥∥(1− ηr)|v̂n|
1
2 (κ−1

d Re ζ −∆)−
1
4 g
∥∥

2

We have
∥∥(Re ζ −∆)−

1
4 |v̂n|

1
2

∥∥
2→2
6 δ since (by construction) v̂nLd ∈ F

1
2
δ . In turn,

(1− ηr)|v̂n|
1
2 (κ−1

d Re ζ −∆)−
1
4 g

= |v̂n|
1
2 (κ−1

d Re ζ −∆)−
1
4 (κ−1

d Re ζ −∆)
1
4 (1− ηr)(κ−1

d Re ζ −∆)−
1
4 g,

so ∥∥(1− ηr)|v̂n|
1
2 (κ−1

d Re ζ −∆)−
1
4 g
∥∥

2
6 δ‖(κ−1

d Re ζ −∆)
1
4 (1− ηr)(κ−1

d Re ζ −∆)−
1
4 g‖2,

where δ‖(κ−1
d Re ζ − ∆)

1
4 (1 − ηr)(κ

−1
d Re ζ − ∆)−

1
4 g‖2 → 0 as r → ∞. The proof of Claim 3 is

completed. �

Claim 2, which yields the convergence ‖I2,r,n‖2 → 0 as n → ∞ for every r, and Claim 3, imply

that

Z2(ζ, v̂nLd)g − Z2(ζ, σ)g
s→ 0 in L2, g ∈ S, ζ ∈ O,

which, in view of Claim 1(j ), (jj ), yields Z2(ζ, v̂nLd)−Z2(ζ, σ)
s→ 0 in L2 (⇒(11)). By Claim 2, we

also have (10). This completes the proof of Proposition 6. �

Proposition 7. Let p ∈ I. There exist constants Cp, Cp,q,r <∞ such that, for every ζ ∈ O,

(1) ‖Ωp(ζ, σ, q, r)‖p→p 6 Cp,q,r for all k,

(2) ‖Ωp(ζ, σ,∞, 1)‖p→p 6 Cp|ζ|−
1
2 , for all k.

Proof. Immediate from Proposition 3, Proposition 6 and the definition (7). �

Now, we assume that p ∈ J (⊂ I).
13
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Proposition 8. Let {v̂n} be the sequence in Proposition 6. For any p ∈ J ,

Ωp(ζ, v̂nLd, q, r)
s→ Ωp(ζ, σ, q, r) in Lp, ζ ∈ O.

Proof. Set Ωp ≡ Ωp(ζ, σ, q, r), Ωn
p ≡ Ωp(ζ, v̂nLd, q, r). Since p ∈ J , we have 2(p− 1) ∈ I. Since Ωp,

Ωn
p ∈ B(Lp), it suffices to prove the required convergence over S. We have (f ∈ S):

‖Ωpf − Ωn
pf‖pp 6 ‖Ωpf − Ωn

pf‖
p−1
2(p−1)‖Ωpf − Ωn

pf‖2. (16)

Let us estimate the right-hand side in (16):

1) Ωpf −Ωn
pf
(
= Ω2(p−1)f −Ωn

2(p−1)f
)

is uniformly bounded in L2(p−1) in view of Proposition 3

and Proposition 7,

2) Ωpf − Ωn
pf = Ω2f − Ωn

2f
s→ 0 in L2 as k →∞ by Proposition 6.

Therefore, by (16), Ωn
pf

s→ Ωpf in Lp, as needed. �

This completes the proof of assertion (i), and, thus, the proof of Theorem 1.

Proof of Theorem 2. (i) The approximating vector fields vk (∈ C0(Rd,Rd)) were constructed

in Proposition 1. The proof essentially repeats the proof of [K, Theorem 2]. Namely, we verify

conditions of the Trotter approximation theorem for ΛC∞(vkLd) := −∆ + vk · ∇, D(ΛC∞(vkLd)) =

(1−∆)−1C∞:

1◦) supn ‖(µ+ ΛC∞(vkLd))−1‖∞→∞ 6 µ−1, µ > κdλ.

2◦) µ(µ+ ΛC∞(vkLd))−1 → 1 in C∞ as µ ↑ ∞ uniformly in n.

3◦) There exists s-C∞- limn(µ+ ΛC∞(vkLd))−1 for some µ > κdλ.

1◦) is immediate. Let us verify 2◦) and 3◦). Fix some p ∈ J , p > d − 1 (such p exists since

mdδ <
2d−5

(d−2)2
). Let

Θp(µ, σ) := (µ−∆)
− 1

2
− 1

2qΩp(µ, σ, q, 1) ∈ B(Lp), µ > κdλ, (17)

where max{2, p} < q, see the proof of Theorem 1 for notation. We will be using the properties of the

operator-valued function Ωp(µ, σ, q, 1) established there. Without loss of generality, we may assume

that {vk} is the sequence constructed in Proposition 8, that is, vkLd
w→ σ, and Ωp(µ, vkLd, q, 1)

s→
Ωp(µ, σ, q, 1) in Lp as k →∞.

Given any γ < 1− d−1
p , we can select q sufficiently close to p so that by the Sobolev embedding

theorem,

(µ−∆)
− 1

2
− 1

2q [Lp] ⊂ C0,γ ∩ Lp, and (µ−∆)
− 1

2
− 1

2q ∈ B(Lp, C∞).

Then Proposition 8 yields Θp(µ, v̂nLd)f
s→ Θp(µ, σ)f in C∞, f ∈ S, as n → ∞. The latter,

combined with the next proposition and 1◦), verifies condition 3◦):

Proposition 9. For every k > 1, Θp(µ, vkLd)S ⊂ S, and

(µ+ ΛC∞(vkLd))−1|S = Θp(µ, vkLd)|S , µ > κdλ.

Proof. The proof repeats the proof of [K, Prop. 6]. �

Proposition 10. µΘp(µ, vk)
s→ 1 in C∞ as µ ↑ ∞ uniformly in k.

14
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Proof. The proof repeats the proof of [K, Prop. 8]. �

The last two propositions yield 2◦). This completes the proof of assertion (i).

(ii) follows from Θp(µ, σ)|S = (µ + ΛC∞(C∞))−1|S (by construction), representation (17), and

the Sobolev embedding theorem.

(iii) It follows from (i) that e−tΛC∞ (σ) is positivity preserving. The latter, 1◦) and the Riesz-

Markov-Kakutani representation theorem imply (iii).
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