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Abstract: We consider continuous one-dimensional multifrequency Schrödinger oper-
ators, with analytic potential, and prove Anderson localization in the regime of positive
Lyapunov exponent for almost all phases and almost all Diophantine frequencies.
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1. Introduction

We consider the family of operators on L2(R) given by

[H(θ, ω)y](t) = −y′′(t) + V (t, θ + tω)y(t), (1.1)

where the potential V : T × T
d → R is analytic (T := R/Z, d ≥ 1), θ ∈ T

d , and ω

satisfies a Diophantine condition. More precisely we will work with frequency vectors
in a set defined by

DC := {ω ∈ T
d : ‖k · ω‖ ≥ c|k|−A, k ∈ Z

d\{0}},
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for some A > d. We used ‖·‖ to denote the distance to the nearest integer and | · | for
the sup-norm on Zd . We will use L(ω, E) to denote the Lyapunov exponent associated
with our operators (see Sect. 2 for the definition). Our main result is as follows.

Theorem 1.1. Assume that L(ω, E) > 0 for all (ω, E) ∈ DC×[E ′, E ′′]. Then for
almost all phases θ ∈ T

d and almost all frequency vectors ω ∈ DC the part of the
spectrum of H(θ, ω) contained in [E ′, E ′′] is pure point with exponentially decaying
eigenfunctions.

Non-perturbative localization results (in the sense that one only requires positivity of
the Lyapunov exponent) are well known for discrete Schrödinger operators, dating back
to work by Jitomirskaya [Jit99] for the Almost Mathieu operator and by Bourgain and
Goldstein [BG00] for general analytic potentials. For continuous Schrödinger operators
the only known result, due to Fröhlich, Spencer, and Wittwer [FSW90], deals with
potentials of the form

K 2(cos(2π t) + cos(2π(θ + tω))) (1.2)

with K sufficiently large. At the same time, therewas no reason to expect that the discrete
results don’t carry to the continuous case (indeed, [FSW90] treats both the discrete and
the continuous cases). Our motivation for considering this problem stems from the
recent work on the inverse spectral theory for continuous quasiperiodic Schrödinger
operators started by Damanik and Goldstein [DG14]. Their work is in a perturbative
setting (assuming a small coupling constant) and it is natural to try to extend it to a
non-perturbative setting. On one hand, one can try to prove the results of [DG14] in the
discrete case and then make use of the non-perturbative theory available there (though,
it is known that for the inverse spectral problem one should consider Jacobi operators
instead of Schrödinger operators). On the other hand, one is motivated to develop the
non-perturbative theory in the continuous setting. Our work is a step in this direction.

The fact that Theorem 1.1 is non-vacuous, i.e., there exists a portion of the spec-
trum where the theorem applies, follows from work on the positivity of the Lyapunov
exponent, by Sorets and Spencer [SS91] for the case when the potential is of the form
(1.2) and by Bjerklöv [Bje06] for general analytic potentials that assume their minimum
value only finitely many times. The result of [Bje06] is perturbative, in the sense that the
largeness of the coupling constant depends on the frequency vector. It would be inter-
esting to see whether it is possible to obtain a non-perturbative result on the positivity of
the Lyapunov exponent assuming only that V is non-constant. Such results are known
in the discrete case (see [SS91] for d = 1, and [Bou05b] for d ≥ 1). We note that such a
result in the continuous case may not be completely non-perturbative, because it is well
known that the Lyapunov exponent vanishes at high energies (see [Eli92]), and it seems
that the transition between energies with positive Lyapunov exponent and energies with
zero Lyapunov exponent is of a perturbative nature (see [YZ14, Remark 1.2]).

The proof of Theorem 1.1 follows along the same lines as in the discrete case. The
main ingredients are a result on the exponential decay of the finite interval Green’s
function (see Proposition 4.1) and a result on elimination of resonances (see Proposition
7.2). The basis for these results is a large deviations estimate for the logarithm of the
norm of the transfer matrix (see Theorem 3.1), which one obtains immediately from the
discrete case. The fact that the large deviations estimate implies the decay of Green’s
function (on some interval) is trivial in the discrete setting, but not in the continuous
setting, as can be seen from the proof of Proposition 4.1. To eliminate the resonances
we use the strategy of [BG00] based on semialgebraic sets. The main difference from
the discrete case is that to obtain semialgebraic sets it is not enough to approximate the
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potential by a polynomial. Instead we have to directly approximate the entries of the
transfer matrix. This leads to a different set-up for the elimination of resonances (see
Remark 7.3) which, unlike the discrete case, requires the use of Cartan’s estimate as
in [GS08]. Furthermore, the approximating polynomials for the entries of the transfer
matrix cannot be obtained via Fourier series as in the discrete case. We use Faber series
instead.

The structure of the paper is as follows. The definition and all of the needed properties
for the transfer matrix and the Laypunov exponent are presented in Sects. 2 and 3. The
exponential decay of Green’s function is established in Sect. 4. Sections 5 and 6 contain
all the preliminary work needed for the elimination of resonances result from Sect. 7.
Finally the proof of Theorem 1.1 is obtained in Sect. 8.

2. Transfer Matrix Formalism

Consider the eigenvalue equation

−y′′(t) + V (t, θ + tω)y(t) = Ey(t), θ ∈ T
d . (2.1)

Let ua = ua(·; θ, ω, E), va = va(·; θ, ω, E) be the solutions of (2.1) satisfying

ua(a) = 1, u′
a(a) = 0, va(a) = 0, v′

a(a) = 1. (2.2)

Any solution y of (2.1) satisfies
[
y(b)
y′(b)

]
= M[a,b]

[
y(a)

y′(a)

]
, a ≤ b

where the transfer matrix is defined by

M[a,b] = M[a,b](θ, ω, E) :=
[
ua(b) va(b)
u′
a(b) v′

a(b)

]
.

The transfer matrix satisfies

M[a,b] = M[t,b]M[a,t], a ≤ t ≤ b (2.3)

Mn+[a,b](θ, ω, E) = M[a,b](θ + nω,ω, E), n ∈ Z. (2.4)

Remark 2.1. The fact that we can only use discrete shifts in (2.4), stems from the fact
that we are working with potentials of the form V (t, θ + tω) instead of just V (θ + tω).
The reason we consider the more general potentials V (t, θ + tω) is to be able to apply
the result of Bjerklöv [Bje06] that guarantees that the statement of our main theorem is
not vacuous.

Equation (2.1) can be re-written as

Y ′(t) = A(t)Y (t), Y (t) =
[
y(t)
y′(t)

]
, A(t) =

[
0 1

V (t, θ + tω) − E 0

]
.

As a consequence of Grönwall’s inequality one has

‖Y (b)‖ ≤ exp

(∫ b

a
‖A(t)‖ dt

)
‖Y (a)‖.
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Therefore we have
log‖M[a,b]‖ ≤ (b − a)C(V, |E |). (2.5)

Since
det M[a,b] = W (ua, va) = 1,

where W stands for the Wronskian, it follows that we also have

log‖M−1
[a,b]‖ ≤ (b − a)C(V, |E |). (2.6)

Using (2.3), (2.4), (2.5), and (2.6) we see that, as in the discrete case, we have the
following “almost invariance” property

∣∣log‖M[a,b](θ, ω, E)‖ − log‖M[a,b](θ + ω,ω, E)‖∣∣ ≤ C(V, |E |). (2.7)

This property is essential for establishing a large deviations estimate (see Theorem 3.1).
The finite scale Lyapunov exponents are defined by

L [a,b](ω, E) = 1

b − a

∫
Td

log‖M[a,b](θ, ω, E)‖ dθ.

We let Mt = M[0,t] and Lt = L [0,t]. By (2.3) and (2.4), the sequence (Ln)n≥1 is
subadditive and so by Fekete’s subadditive lemma we can define the Lyapunov exponent

L(ω, E) := lim
n→∞ Ln(ω, E) = inf

n≥1
Ln(ω, E). (2.8)

We note that by Kingman’s subadditive ergodic theorem we also have

L(ω, E)
a.s.= lim

n→∞
1

n
log‖Mn(θ, ω, E)‖, (2.9)

but we won’t make use of this fact.
Let

Hρ = {z ∈ C : | Im z| ≤ ρ}. (2.10)

It is known that there exists ρ = ρ(V ) such that V extends to be complex analytic
in a neighborhood of Hd+1

ρ and the extension remains periodic in the real direction. In
particular, this implies that

L [a,b](η, ω, E) = 1

b − a

∫
Td

log‖M[a,b](θ + iη, ω, E)‖ dθ

is well defined for all E ∈ C and ω ∈ C
d , η ∈ R

d such that

max(|a|, |b|)‖Imω‖ ≤ ρ/2, ‖η‖ ≤ ρ/2.

As before, we can define

L(η, ω, E) = lim
n→∞ Ln(η, ω, E) = inf

n≥1
Ln(η, ω, E).
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3. Properties of the Transfer Matrix

All the results of this section are analogues of results obtained in the discrete setting by
Goldstein and Schlag [GS01,GS08] (a large deviations estimate and an uniform upper
bound can also be found in [BG00]). Since the results we need from [GS01] were already
obtained in amultifrequency setting with general Diophantine condition we only discuss
their proofs in Appendix A (which includes proofs for Theorem 3.1, Proposition 3.2,
and Lemma 3.3). The results we need from [GS08] were obtained in a single frequency
setting with a strong Diophantine condition, so we present their proofs in this section.
In either case, the proofs are only given in the interest of clarity, as they follow along
the same lines as in the originals.

Let
DCt := {ω ∈ T

d : ‖k · ω‖ ≥ c|k|−A, k ∈ Z
d\{0}, |k| ≤ t}.

For the purposes of the semialgebraic approximation it is important to keep track of the
fact that most finite scale results require only a finite Diophantine condition, as above,
and only the positivity of the finite interval Lyapunov exponent (if needed at all).

In what follows we will always assume that the intervals we work on are finite and
non-trivial. Also note that all the results are only effective when the size of the interval
is large enough. For smaller sizes the constants can be adjusted so that the results hold
trivially.

The main ingredient for both the decay of Green’s function and the elimination of
resonances is the following large deviations estimate.

Theorem 3.1. Let I = [a, b] and ε > 0. Then for any ω ∈ DC|I |, E ∈ C, and η ∈ R
d ,

‖η‖ ≤ ρ(V ), we have

mes{θ ∈ T
d : | log‖MI (θ+iη, ω, E)‖−|I |L I (η, ω, E)| ≥ ε|I |1−σ } ≤ C exp(−c|I |σ ),

with c = c(V, d,DC, |E |, ε), C = C(V, d,DC, |E |), and σ = σ(d,DC) ∈ (0, 1).

Note. From now on σ will denote the constant from Theorem 3.1.

We will need the following result to relate the Lyapunov exponent with the finite
interval Lyapunov exponents, and the finite interval Laypunov exponents with each
other.

Proposition 3.2. Let I = [a, b], J = [b, c], ||I | − |J || ≤ δ. If (η, ω, E) ∈ R
d ×

DC|I | ×C, is such that ‖η‖ ≤ ρ(V ), L I (η, ω, E) ≥ γ > 0, then we have

|L I (η, ω, E) − L I∪J (η, ω, E)| ≤ C(log(1 + |I |))1/σ
|I | (3.1)

with C = C(V, d,DC, |E |, γ, δ). Furthermore, if ω ∈ DC then

|L I (η, ω, E) − L(η, ω, E)| ≤ C(log(1 + |I |))1/σ
|I | (3.2)

with C = C(V, d,DC, |E |, γ ).

We will use the next estimate to see that positivity of the Lyapunov exponent for
some interval also implies positivity for smaller intervals (we do this because we won’t
be able to apply (3.2) when ω ∈ DC|I |). It is possible to adjust the estimate to also give
meaningful information when |I | is close to |J |, but we are only interested in the case
|I | 
 |J |.
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Lemma 3.3. Let I = [a, b], J = [c, d], |I | > |J |. Then for any (η, ω, E) ∈ R
d ×T

d ×
C, ‖η‖ ≤ ρ(V ) we have

L J (η, ω, E) ≥ L I (η, ω, E) − C(V, |E |)
( |J | + 1

|I | − |J | +
1

|J |
)

.

Now we start the build-up toward the proof of the uniform upper bound from Propo-
sition 3.11. This result is crucial for the decay of the Green’s function and the application
of Cartan’s estimate. While for the decay of Green’s function the simpler estimate from
Corollary 3.12 is enough, for Cartan’s estimate we also need the estimate to have good
stability under (complex) perturbations in (θ, ω, E). See [GS08, Sect. 4] for the discrete
counterparts of the results that follow.

One of the ingredients for the proof of Proposition 3.11 will be the fact that the
Lyapunov exponent is Lipschitz with respect to η. This follows immediately from the
multivariable generalization of the following fact from [GS08].

Lemma 3.4 ([GS08, Lemma 4.1]). Let 1 > ρ > 0 and suppose u is subharmonic on

Aρ := {z : 1 − ρ < |z| < 1 + ρ}
such that supz∈Aρ

u(z) ≤ 1 and
∫
T
u(e(x)) dx ≥ 0 (we used the notation e(x) = e2π i x ).

Then for any r1, r2 so that 1 − ρ/2 < r1, r2 < 1 + ρ/2 one has∣∣∣∣
∫
T

u(r1e(x)) dx −
∫
T

u(r2e(x)) dx

∣∣∣∣ ≤ Cρ |r1 − r2|.

The previous Lemma admits the following multivariable extension.

Lemma 3.5. Let 1 > ρ > 0 and suppose u is subharmonic in each variable on

Ad
ρ := {z ∈ C

d : 1 − ρ < |zi | < 1 + ρ, i = 1, . . . , d}
such that

0 ≤ u(z) ≤ 1, z ∈ Ad
ρ.

Then for any r, r̃ ∈ R
d so that 1 − ρ/2 < ri , r̃i < 1 + ρ/2, i = 1, . . . , d, one has∣∣∣∣

∫
Td

u(r1e(x1), . . . , rde(xd)) dx −
∫
Td

u(r̃1e(x1), . . . , r̃de(xd)) dx

∣∣∣∣ ≤ Cρ

∑
i

|ri − r̃i |.

Proof. The proof is by induction on d. The case d = 1 holds by Lemma 3.4. We assume
the result holds for d and prove it for d + 1. Let

v(zd+1) =
∫
Td

u(r1e(x1), . . . , rde(xd), zd+1) dx, ṽ(zd+1)

=
∫
Td

u(r̃1e(x1), . . . , r̃de(xd), zd+1) dx .

By the induction assumption

|v(zd+1) − ṽ(zd+1)| ≤ Cρ

d∑
i=1

|ri − r̃i |, zd+1 ∈ Aρ.
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At the same time we have that v is subharmonic on Aρ and 0 ≤ v ≤ 1, so we can apply
the case d = 1 to it to get the desired conclusion. Indeed, we have

∣∣∣∣
∫
T

v(rd+1e(xd+1)) dxd+1 −
∫
T

ṽ(r̃d+1e(xd+1)) dxd+1

∣∣∣∣
≤

∣∣∣∣
∫
T

v(rd+1e(xd+1)) dxd+1 −
∫
T

v(r̃d+1e(xd+1)) dxd+1

∣∣∣∣
+

∣∣∣∣
∫
T

(v(r̃d+1e(xd+1)) − ṽ(r̃d+1e(xd+1))) dxd+1

∣∣∣∣
≤ Cρ |rd+1 − r̃d+1| + Cρ

d∑
i=1

|ri − r̃i |.

As an immediate consequence of Lemma 3.5 we have the following result.

Proposition 3.6. Let I = [a, b]. If (η, ω, E) ∈ R
d × C

d × C are such that

max(|a|, |b|)‖Imω‖ ≤ ρ(V ), ‖η‖ ≤ ρ(V )

then

|L I (η, ω, E) − L I (ω, E)| ≤ C‖η‖,C = C(V, d, |E |).
The other ingredient needed for Proposition 3.11 is the stability of the logarithm of

the norm of the transfer matrix. We have the following “rough” estimate, that will be
refined through the use of the Avalanche Principle.

Lemma 3.7. Let I = [a, b]. Let (θi , ωi , Ei ) ∈ C
d × C

d × C, i = 1, 2, such that

|E2| ≤ |E1|, ‖Im θi‖ ≤ ρ(V ), max(|a|, |b|)‖Imωi‖ ≤ ρ(V ).

Then we have

|log‖MI (θ1, ω1, E1)‖ − log‖MI (θ2, ω2, E2)‖|
≤ eC(V,|E1|)|I | ‖θ1 − θ2‖ + max(|a|, |b|)‖ω1 − ω2‖ + |E1 − E2|

maxi‖MI (θi , ωi , Ei )‖ ,

provided the right-hand side is � 1.

Proof. Let Yi (t), i = 1, 2, be solutions of the equations

Y ′
i (t) = Ai (t)Yi (t), Ai (t) =

[
0 1

V (t, θi + tωi ) − Ei 0

]
.

Using the variations of constants method we have

Y2(b) = M[a,b]Y2(a) +
∫ b

a
M[a,s](A2(s) − A1(s))Y2(s) ds
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where M denotes the transfer matrix corresponding to the equation with i = 1. So, if
Y1(a) = Y2(a), then

‖Y2(b) − Y1(b)‖ ≤
∫ b

a
‖M[a,s]‖‖A2(s) − A1(s)‖‖Y2(s)‖ ds

≤ ‖Y2(a)‖
∫ b

a
eC(V,|E1|)(s−a)(C(V )‖θ1 − θ2‖ + C(V )|s|‖ω1 − ω2‖

+|E1 − E2|) ds
≤ ‖Y2(a)‖eC|I |(‖θ1 − θ2‖ + max(|a|, |b|)‖ω1 − ω2‖ + |E1 − E2|).

This implies

‖MI (θ1, ω1, E1) − MI (θ2, ω2, E2)‖
≤ eC(V,|E1|)|I |(‖θ1 − θ2‖ + max(|a|, |b|)‖ω1 − ω2‖ + |E1 − E2|).

The conclusion follows from this and the fact that | log x | � |x−1|, provided |x−1| � 1.

To refine the previous estimate, let us recall the Avalanche Principle.

Proposition 3.8 ([GS01, Proposition 2.2]). Let A1, . . . , An be a sequence of 2 × 2-
matrices. Suppose that

min
1≤ j≤n

‖A j‖ ≥ μ > n and

max
1≤ j<n

(
log‖A j+1‖ + log‖A j‖ − log‖A j+1A j‖

)
<

1

2
logμ.

Then ∣∣∣∣∣∣log‖An . . . A1‖ +
n−1∑
j=2

log‖A j‖ −
n−1∑
j=1

log‖A j+1A j‖
∣∣∣∣∣∣ < C

n

μ
.

Proposition 3.9. Let I = [a, b]. Let (η0, ω0, E0) ∈ R
d × DC|I | ×C, such that ‖η0‖ ≤

ρ(V ), L I (η0, ω0, E0) ≥ γ > 0. Let

� ≥ C(V, d,DC, |E0|, γ )(log(1 + |I |))1/σ . (3.3)

There exists a set

B = BI,ω0,E0,η0,�,mes(B) ≤ C exp(−c�σ ),

C = C(V, d,DC, |E0|, γ ), c = c(V, d,DC, |E0|)
such that for any θ0 ∈ T

d\B and any (θ, ω, E) ∈ C
d × C

d × C satisfying

‖θ − θ0 − iη0‖ + max(|a|, |b|)‖ω − ω0‖ + |E − E0| ≤ exp(−�2),

we have

| log‖MI (θ0 + iη0, ω0, E0)‖ − log‖MI (θ, ω, E)‖| ≤ exp(−γ �/4).
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Proof. Note that if � ≥ |I |1/2+ then the estimate holds for all θ0 (provided |I | is large
enough) by Lemma 3.7. So it is enough to consider the case � < |I |1/2+.

Partition I into n intervals Ji (ordered from left to right) of equal length and such
that |Ji | � �. Using the large deviations estimate and (3.1) we can apply the Avalanche
Principle with Ai = MJi (θ0 + iη0, ω0, E0), μ = exp(γ �/2), provided θ0 is outside of
the set B where the large deviations estimate fails on the intervals Ji , Ji ∪ Ji+1. Note
that we can apply (3.1) because from Lemma 3.3 it follows that L Ji ≥ 3γ /4 (here we
used � < |I |1/2+). We clearly have

mes(B) � nC exp(−c�σ ) ≤ C exp(−c�σ /2).

We use the lower bound (3.3) on � for the above measure estimate and to ensure that
μ > n.

From the assumptions on θ, ω, E and Lemma 3.7 it follows that we can also apply
the Avalanche Principle with Ãi = MJi (θ, ω, E) and the same μ. Subtracting the two
Avalanche Principle expansions and applying Lemma 3.7 again we get

| log‖MI (θ0 + iη0, ω0, E0)‖ − log‖MI (θ, ω, E)‖|
≤

∣∣∣∑ log‖Ai‖ − log‖ Ãi‖
∣∣∣ +

∣∣∣∑ log‖Ai+1Ai‖ − log‖ Ãi+1 Ãi‖
∣∣∣ + C

n

μ

� n exp(C�) exp(−�2) + n exp(−γ �/2) ≤ exp(−γ �/4).

Corollary 3.10. Let I = [a, b]. Let (η0, ω0, E0) ∈ R
d × DC|I | ×C, such that ‖η0‖ ≤

ρ(V ), L I (η0, ω0, E0) ≥ γ > 0. Let

� ≥ C(V, d,DC, |E0|, γ )(log(1 + |I |))1/σ .

Then we have

|L I (η0, ω0, E0) − L I (η0, ω, E)| ≤ C exp(−c�σ )

with C(V, d,DC, |E0|, γ ), c = c(V, d,DC, |E0|), for any (ω, E) ∈ C
d × C such that

max(|a|, |b|)‖ω − ω0‖ + |E − E0| ≤ exp(−�2).

Proof. The conclusion follows by integrating the estimate from Proposition 3.9.

We are now ready to prove the uniform upper bound.

Proposition 3.11. Let I = [a, b]. Let (ω0, E0) ∈ DC|I | ×C be such that L I (ω0, E0) ≥
γ > 0. Then

sup
θ∈Td

log‖MI (θ + η, ω, E)‖ ≤ |I |L I (ω0, E0) + C |I |1−σ ,C = C(V, d,DC, |E0|, γ )

for any (η, ω, E) ∈ C
d × C

d × C such that ‖η‖ ≤ ρ(V )/(1 + |I |) and

max(|a|, |b|)‖ω−ω0‖+|E−E0| ≤ exp(−C(log(1+|I |))2/σ ),C=C(V, d,DC, |E0|, γ ).

(3.4)



1158 I. Binder, D. Kinzebulatov, M. Voda

Proof. Let B(1)
η = B(1)

η,E0,ω0
be the set from Proposition 3.9 with � = C(log(1 + |I |))1/σ

and C = C(V, d,DC, |E0|, γ ) large enough so that mes(B(1)
η ) ≤ 1/|I |4d . Let B(2)

η =
B(2)

η,E0,ω0
be the exceptional set from Theorem 3.1. We define

B =
{
θ ∈ C

d : ‖Im θ‖ ≤ ρ(V ),Re θ ∈ B(1)
Im θ ∪ B(2)

Im θ

}
.

We clearly have mes(B) ≤ 2/|I |4d and if θ ∈ C
d\B, ‖Im θ‖ ≤ ρ(V )/(1 + |I |), then by

Theorem 3.1 and Lemma 3.5

log‖MI (θ, ω0, E0)‖ ≤ |I |L I (Im θ, ω0, E0) + |I |1−σ ≤ |I |L I (ω0, E0) + 2|I |1−σ ,

and by Proposition 3.9

log‖MI (θ, ω, E)‖ ≤ |I |L I (ω0, E0) + 3|I |1−σ (3.5)

for any ω, E satisfying (3.4).
Let θ0 ∈ T

d arbitrary and η, ω, E satisfying the needed assumptions. Let Br be
the ball centered at θ0 + η and of radius r = 1/|I |2. Using the submean property of
plurisubharmonic functions, (2.5), and (3.5), we have

log‖MI (θ0 + η, ω, E)‖ ≤ 1

mes(Br )

∫
Br

log‖MI (θ, ω, E)‖ dθ

≤ 1

mes(Br )

(
C mes(B) + (mes(Br ) − mes(B))(|I |L I (ω0, E0) + 3|I |1−σ )

)

≤ |I |L I (ω0, E0) + C |I |1−σ .

This concludes the proof.

Corollary 3.12. Let I = [a, b]. If (ω, E) ∈ DC×C are such that L(ω, E) ≥ γ > 0
then

sup
θ∈Td

log‖MI (θ, ω, E)‖ ≤ |I |L(ω, E) + C |I |1−σ

sup
θ∈Td

log‖MI (θ, ω, E)−1‖ ≤ |I |L(ω, E) + C |I |1−σ

with C = C(V, d,DC, |E |, γ ).

Proof. The first estimate follows from Proposition (3.11) and (3.2).
Since det MI = 1 we have

‖M−1
I ‖HS = ‖MI‖HS ≤ √

2‖MI ‖

and the second estimate follows (‖·‖HS denotes the Hilbert-Schmidt norm).
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4. Decay of Green’s Function

We consider Green’s function on a finite interval I = [a, b] with Dirichlet boundary
conditions:

GI (s, t) = GI (s, t; θ, ω, E) =

⎧⎪⎨
⎪⎩

va(s)vb(t)

W (va, vb)
, s ≤ t

va(t)vb(s)

W (va, vb)
, t ≤ s

. (4.1)

Recall that the functions v satisfy the initial conditions (2.2).
We will show that if a large deviations estimate holds on some interval, then we get

exponential decay for Green’s function on another interval of roughly the same size (this
is similar to what happens in the discrete case, see [Bou05a, Proposition7.19]). In fact,
due to Poisson’s formula we will need this result for the partials of Green’s function.
Recall that for any solution y of (2.1), on an interval containing I , the Poisson formula
reads

y(t) = y(b)∂sG I (b, t) − y(a)∂sG I (a, t).

Proposition 4.1 Let I = [a, b]. Let (ω, E) ∈ DC×C be such that L(ω, E) ≥ γ > 0. If

log‖MI (θ, ω, E)‖ ≥ |I |L(ω, E) − K ,

with
C(|I |1−σ + 1) ≤ K ≤ |I |1−,C = C(V, d,DC, |E |, γ )

(recall that σ is as in Theorem 3.1), then there exists an interval J = J (θ, ω, E) such
that

J ⊂ I, |I | − |J | ≤ 4K/γ

|GJ (s, t)|, |∂sG J (s, t)| ≤ exp(−|s − t |L(ω, E) + 2K ), s, t ∈ J.

Proof. By our assumption, at least one of the entries of MI has to be≥ 1
2 exp(|I |L−K ).

We treat each of the four possibilities separately.
(1) Suppose

|va(b)| ≥ 1

2
exp(|I |L − K ).

In this case we let J = I . Using Corollary 3.12 we have

|GI (s, t)| =
∣∣∣∣va(s)vb(t)va(b)

∣∣∣∣ ≤ 2 exp((s − a)L + (b − t)L + C |I |1−σ − (b − a)L + K )

≤ exp(−(t − s)L + 2K )

provided s ≤ t (it is enough to consider this case because GI (s, t) = GI (t, s)). We used
the fact that

W (va, vb) = va(b) = −vb(a). (4.2)

The bound on |∂sG I | is obtained in the same way, because the bounds from Corollary
3.12 apply to all the entries of the transfer matrix.
(2) Suppose

|v′
a(b)| ≥ 1

2
exp(|I |L − K ).
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For any t ∈ (a, b), there exists t̃ ∈ (t, b) such that

|v′
a(b) − v′

a(t)| = |v′′
a ( t̃ )(b − t)| = |va( t̃ )(V (t̃, θ + t̃ω) − E)(b − t)|. (4.3)

Using Corollary 3.12 and choosing t so that b − t = 2K/γ , it follows that

|va( t̃ )| ≥ 1

C(V, |E |)(b − t)
|v′

a(b) − v′
a(t)|

≥ 1

2C(b − t)
exp(|I |L − K )

[
1 − exp((t − a)L+C |I |1−σ − |I |L+K +log 2)

]

≥ 1

2C(b − t)
exp(|I |L − K )

[
1 − 1

2
exp(−(b − t)L + 2K )

]

≥ 1

4C(b − t)
exp(|I |L − K ) ≥ exp(|I |L − 3K/2).

The conclusion follows by the reasoning from case (1) applied to J = [a, t̃ ].
(3) Suppose

|ua(b)| ≥ 1

2
exp(|I |L − K ).

Note that we have
W (ua, vb) = ua(b) = v′

b(a).

Then, by the reasoning from case (2), there exists t̃ ∈ I , t̃ − a ≤ 2K/γ such that

|vb( t̃ )| ≥ exp(|I |L − 3K/2).

Recall from (4.2) that we have |vb( t̃ )| = |v t̃ (b)| and so the conclusion follows by the
argument from case (1) applied on J = [ t̃, b].
(4) Suppose

|u′
a(b)| ≥ 1

2
exp(|I |L − K ).

By the argument from case (2), there exists t̃ , b − t̃ ≤ 2K/γ such that

|ua( t̃ )| ≥ exp(|I |L − 3K/2).

Following the reasoning from case (3) we get that there exists t̄ , t̄ − a ≤ 2K/γ such
that

|v t̄ ( t̃ )| ≥ exp(|I |L − 5K/4).

The conclusion follows as in case (1) by taking J = [ t̄, t̃ ].
Next we illustrate the well-known strategy of iterating Poisson’s formula to get the

exponential decay of solutions, provided that we have the decay of Green’s function.

Lemma 4.2. Let 0 < � � a � b and m > 0 such that m� 
 1. Suppose that for any
t ∈ [a, b] there exists an interval J = [ct , dt ], |J | ≤ �, such that t ∈ J , and

|∂sG J (ct , t)|, |∂sG J (dt , t)| ≤ exp(−m�).

Then any solution y of (2.1) satisfies

|y(t)| ≤ M exp(−mt/8), t ∈ [2a, b/2],
where M = sup[a,b] |y|.
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Proof. For any t ∈ [2a, b/2] we can iterate Poisson’s formula (on intervals J satisfying
the assumptions) at least

n = min ([(t − a)/�], [(b − t)/�]) ≥ t

4�

times to get

|y(t)| ≤ M2n exp(−nm�) ≤ M exp(−nm�/2) ≤ M exp(−mt/8).

5. Cartan Sets

We will use D(z, r) to denote the disk of radius r centered at z ∈ C.

Definition 5.1. Let H 
 1. For an arbitrary subset B ⊂ D(z0, 1) ⊂ C we say that
B ∈ Car1(H, K ) if B ⊂ ⋃ j0

j=1 D(z j , r j ) with j0 ≤ K , and

∑
j

r j < e−H . (5.1)

If d is a positive integer greater than one and B ⊂ ∏d
i=1 D(zi,0, 1) ⊂ C

d then we define
inductively that B ∈ Card(H, K ) if for any J ⊂ {1, . . . , d}, |J | < d, there exists

BJ ⊂
∏
j∈J

D(z j,0, 1) ⊂ C
|J |, BJ ∈ Car|J |(H, K )

so that BJ ′(z) ∈ Car|J ′|(H, K ) for any z ∈ C
|J |\BJ , where

BJ ′(z) = {wJ ′ : w ∈ B, wJ = z}.
We used J ′ to denote {1, . . . , d}\J and given z ∈ C

d , z J denotes the vector (z j ) j∈J .

The above definition is a simple extension of [GS08, Definition 2.12], where only
the case |J | = 1 is considered. The reason behind the definition of Cartan sets is the
following result, referred to as the Cartan estimate. The Cartan estimate from [GS08]
holds even with this slightly more general definition. The proof is essentially the same,
one only needs to use complete induction instead of the regular induction used in [GS08].

Lemma 5.2 ([GS08, Lemma 2.15]). Let ϕ(z1, . . . , zd) be an analytic function defined
in a polydisk P = ∏d

j=1 D(z j,0, 1), z j,0 ∈ C. Let M ≥ sup
z∈P

log |ϕ(z)|, m ≤ log
∣∣ϕ(z0)

∣∣,
z0 = (z1,0, . . . , zd,0). Given H 
 1, there exists a set B ⊂ P, B ∈ Card

(
H1/d , K

)
,

K = CdH(M − m), such that

log
∣∣ϕ(z)

∣∣ > M − CdH(M − m) (5.2)

for any z ∈ ∏d
j=1 D(z j,0, 1/6)\B.

Let us note that the definition of theCartan sets gives information about theirmeasure.

Lemma 5.3. For any B ⊂ ∏d
i=1 D(zi,0, 1) ⊂ C

d such that B ∈ Card(H, K ) we have

mesCd (B) � de−H and mesRd (B ∩ R
d) � de−H .
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Proof. The case d = 1 follows immediately from the definition of Car1. The case d > 1
follows by induction, using Fubini and the definition of Card .

We use Cartan’s estimate to argue that if the large deviations estimate fails then for
fixed phase and frequency the energy must be in a finite union of small intervals, with a
good bound on the number of intervals. This is only possible up to some small exceptional
sets of phases and frequencies. To be able to apply Cartan’s estimate effectively we need
to restrict ourselves to the case when the Lyapunov exponent is positive, so that we have
the uniform upper bound from Proposition 3.11.

Proposition 5.4. Let I = [a, b]. Let [E ′, E ′′] ⊂ R, γ > 0 and

PI = {(ω, E) ∈ DC|I | ×[E ′, E ′′] : L I (ω, E) ≥ γ }.
Let

H ≥ C(log(1 + |I |))A, C = C(V, d,DC, E ′, E ′′, γ ), A = A(σ, d).

If |I | ≥ C(V, d,DC, E ′, E ′′, γ ) then there exists

�I ⊂ T
d , mes(�I ) ≤ exp(−H1/(2d+1)/2)

such that if θ ∈ T
d\�I and (ω, E) ∈ PI are such that

log‖MI (θ, ω, E)‖ ≤ |I |L I (ω, E) − CH |I |1−σ , C = C(V, d,DC, E ′, E ′′, γ )

then either ω ∈ �I,θ or E ∈ EI,θ,ω, where mes(�I,θ ) ≤ exp(−H1/(2d+1)/2) and EI,θ,ω

is the union of less than

H exp(C(log(1 + |I |))2/σ ), C = C(V, d,DC, E ′, E ′′, γ )

intervals, each of measure less than exp(−H1/(2d+1)).

Proof. Let r = exp(−C(log(1 + |I |))2/σ ) and let

P(θ j , r), 1 ≤ j � r−d

P(ωk, r/max(|a|, |b|)), 1 ≤ k � r−d max(|a|, |b|)d
D(El , r), 1 ≤ l � |E ′′ − E ′|, 1 ≤ l � r−1|E ′′ − E ′|

be covers of Td , DC|I |, and [E ′, E ′′] respectively (P(·, r) denotes a polydisk of radius
r ). Let

I = {( j, k, l) : (P(θ j , r) × P(ωk, r/max(|a|, |b|)) × D(El , r)) ∩ (Td × PI ) �= ∅}.
Let ι = ( j, k, l) ∈ I and

Pι(r) = P(θ j , r) × P(ωk, r/max(|a|, |b|)) × D(El , r).

By the definition of I and Theorem 3.1 there exists (θι, ωι, Eι) ∈ Pι(r) ∩ (Td × PI )

such that
log‖MI (θι, ωι, Eι)‖ ≥ |I |L I (ωι, Eι) − |I |1−σ .

Let
P̃ι(r) = P(θι, r) × P(ωι, r/max(|a|, |b|)) × D(Eι, r).
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Since L I (ωι, Eι) ≥ γ we can use Proposition 3.11 to guarantee that

sup{log‖MI (θ, ω, E)‖ : (θ, ω, E) ∈ P̃ι(12r)} ≤ |I |L I (ωι, Eι) + C |I |1−σ

with C = C(V, d,DC, E ′, E ′′, γ ) (we just need to take C from the definition of r to be
large enough).

Next we set things up to apply Lemma 5.2. Let

f I = ua(b)
2 + u′

a(b)
2 + va(b)

2 + v′
a(b)

2

Sι(θ, ω, E) = (θι + 12rθ, ωι + 12rω/max(|a|, |b|), Eι + 12r E)

φι(θ, ω, E) = f I (Sι(θ, ω, E)), (θ, ω, E) ∈ D(0, 1)2d+1.

Note that we have
| f I | ≤ ‖MI ‖2HS ≤ 2‖MI ‖2

and if (θ, ω, E) ∈ R
2d+1, then

| f I (θ, ω, E)| = ‖MI (θ, ω, E)‖2HS ≥ ‖MI (θ, ω, E)‖2
and therefore

log |φι(θι, ωι, Eι)| ≥ 2(|I |L I (ωι, Eι) − |I |1−σ ),

sup
D(0,1)2d+1

log |φι(θ, ω, E)| ≤ 2(|I |L I (ωι, Eι) + C |I |1−σ ).

By applying Cartan’s estimate to φι and by using Corollary 3.10 we get that

log‖MI (θ, ω, E)‖ ≥ |I |L I (ωι, Eι) − CH |I |1−σ ≥ |I |L I (ω, E) − 2CH |I |1−σ

for all
(θ, ω, E) ∈ Pι(r)\Sι(Bι) ⊂ P̃ι(2r)\Sι(Bι)

with Bι ∈ Car2d+1(H1/(2d+1), K ), K = CH |I |1−σ .
From the definition ofCartan setswe know that there exists a set�ι ∈Card(H1/(2d+1),

K ) such that if θ /∈ �ι, then Bι(θ) ∈ Card+1(H1/(2d+1), K ), with

Bι(θ) = {(ω, E) : (θ, ω, E) ∈ Bι}.
Applying the definition again we see that if (ω, E) ∈ Bι(θ) then either

ω ∈ �ι,θ , �ι,θ ∈ Card(H
1/(2d+1), K )

or
E ∈ Eι,θ,ω := Bι(θ, ω), Eι,θ,ω ∈ Car1(H

1/(2d+1), K ).

Note that by the definition of Car1 we have that Eι,θ,ω ∩ R is contained in the union of
at most K intervals, each of measure smaller than exp(−H1/(2d+1)).

Let

j0 = j0(θ) = min{ j : θ ∈ P(θ j , r)}
k0 = k0(θ, ω) = min{k : (θ, ω) ∈ P(θ j0 , r) × P(ωk, r/max(|a|, |b|))}.

Now the conclusion follows by setting

�I = ∪{(θ j + 12r�ι) ∩ P(θ j , r) : ι = ( j, k, l) ∈ I} ∩ R
d ,

�I,θ = ∪{(ωk + 12r/max(|a|, |b|)�ι,θ ) ∩ P(ωk, r/max(|a|, |b|)) :
ι = ( j0, k, l) ∈ I} ∩ R

d ,

EI,θ,ω = ∪{(El + 12rEι,θ,ω) ∩ D(El , r) : ι = ( j0, k0, l) ∈ I} ∩ R.

Note that for the measure estimates we use Lemma 5.3.
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6. Semialgebraic Sets

Recall that a set S ⊂ R
n is called semialgebraic if it is a finite union of sets defined by

a finite number of polynomial equalities and inequalities. So, a (closed) semialgebraic
set is given by an expression

S = ∪ j ∩�∈L j {P�s j�0},
where {P1, . . . , Ps} is a collection of polynomials of n variables, L j ⊂ {1, . . . , s} and
s jl ∈ {≥,≤,=}. If the degrees of the polynomials are bounded by d then we say that
the degree of S is bounded by sd. We refer to [Bou05a, Chapter 9] for more information
on semialgebraic sets.

The main result of this section is Lemma 6.7, in which we argue that the set of
(θ, ω, E) for which the large deviations estimate fails is contained in a semialgebraic
set of controlled size and degree. To this end we will need to approximate the entries of
MI by polynomials of controlled degree. Since V is complex analytic in a neighborhood
of Hd+1

ρ , ρ = ρ(V ) (recall (2.10)), and periodic in the real direction it follows that any
entry of MI is also complex analytic in a neighborhood of

H
2d
ρ′ × C, ρ′ = ρ

2(1 + max(|a|, |b|)) , (6.1)

and periodic in the real direction for the phase variables (we chose ρ′ such that θ + tω ∈
H

d
ρ for t ∈ I ). We can use Fourier series and Taylor series to obtain a polynomial

approximation in the phase and energy variables, but not in the frequency variables.
One could use Taylor series for the frequency variables, but only at the cost of getting
different approximating polynomials on different frequency intervals. We avoid this
inconvenience by using Faber series.

We recall the basic information we will need about Faber polynomials and Faber
series.We refer to [Sue98, Chapters 2, 3] for further information (see also [Mar67, Sects.
3.14–15]). Let K ⊂ C be a compact set such that its complement is simply connected (on
the Riemann sphere). Let ϕK be the conformal mapping of the complement of K onto
the complement of the unit disk, normalized such that ϕK (∞) = ∞ and ϕ′

K (∞) > 0.
Faber’s polynomials, denoted by �K ,n , n ≥ 0, are the polynomial parts of the Laurent
series expansion of ϕn

K at∞. It is clear from the definition that�K ,n has degree n. Given
R > 1 we let �K ,R = ϕ−1

K ({|z| = R}) and we denote by GK ,R the bounded domain
enclosed by �K ,R . It can be seen that

�K ,n(z) = 1

2π i

∫
�K ,R

ϕn
K (ζ )

ζ − z
dζ, z ∈ GK ,R . (6.2)

If f is an analytic function on GK ,R , then it can be expanded in a series with respect to
the Faber polynomials

f (z) =
∞∑
n=0

an�K ,n(z), z ∈ GK ,R

which converges absolutely and locally uniformly in GK ,R . The Faber coefficients are
given by

an = 1

2π i

∫
|t |=ρ

f (ϕ−1
K (t))

tn+1
dt
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for any ρ ∈ (1, R).
We are now ready to state our abstract approximation result for functions which are

analytic on product sets.

Proposition 6.1. Let K1, . . . , Km be compact sets inC such that their complements are
simply connected (on the Riemann sphere). Let R > 1 and let f be an analytic function
on a neighborhood of the closure of GK1,R×· · ·×GKm ,R. Given N ≥ 0 and R′ ∈ (1, R),
there exists a polynomial PN of degree at most N such that

sup{| f (z) − PN (z)| : z ∈ K1 × · · · × Km}

≤ C(m)

(
R′

R

)N
(

m∏
i=1

�(�Ki ,R′)

d(Ki , �Ki ,R′)

)
sup{| f (z)| : z ∈ GK1,R × · · · × GKm ,R},

where �(�Ki ,R′) denotes the length of �Ki ,R′ and d(Ki , �Ki ,R′) denotes the distance
between Ki and �Ki ,R′ .

Proof. If we take the Faber series expansion of f with respect to one of its variables, it
is clear that the coefficients will be analytic with respect to the other variables. Since the
Faber series converges absolutely we obtain through iteration the following expansion
for f on GK1,R × · · · × GKm ,R

f (z1, · · · , zm) =
∑
n

an�K1,n1(z1) · · · �Km ,nm (zm),

with the coefficients given by

an = 1

(2π i)m

∫
|tm |=R

· · ·
∫

|t1|=R

f (ϕ−1
K1

(t1), · · · , ϕ−1
Km

(tm))

tn1+11 · · · tnm+1m

dt1 · · · dtm .

Note that we have

|an| ≤ 1

(2π)m R|n| sup{| f (z)| : z ∈ GK1,R × · · · × GKm ,R},

where |n| = n1 + · · · + nm . Also, from (6.2) (with R′ instead of R) it follows that

sup{|�Ki ,ni (z)| : z ∈ Ki } ≤ (R′)ni �(�Ki ,R′)

2πd(Ki , �Ki ,R′)
.

Therefore the conclusion holds by taking

PN (z1, . . . , zm) =
∑

|n|≤N

an�K1,n1(z1) · · · �Km ,nm (zm).

Remark 6.2. The previous proposition is amore explicit version of the direct statement of
the so called Bernstein-Walsh theorem. Such results are also known for functions which
are not necessarily defined on a product set, see [Sic81,Lev06], but their statements are
not explicit enough for our purposes.



1166 I. Binder, D. Kinzebulatov, M. Voda

Lemma 6.3. Let I = [a, b], T ≥ 0, [E ′, E ′′] ⊂ R. There exists a polynomial PI (θ, ω, E)

of degree less than

C[(1 + max(|a|, |b|))(1 + |I |)(1 + T )]2, C = C(V, d, E ′, E ′′) (6.3)

such that ∣∣∣∣log‖MI (θ + tω,ω, E)‖ − 1

2
log |PI (θ + tω,ω, E)|

∣∣∣∣ � 1,

for any (θ, ω, E) ∈ T
d × T

d × [E ′, E ′′] and |t | ≤ T .

Proof. Let f (θ, ω, E) denote one of the entries of MI (θ, ω, E). We already noted that
f is analytic on H

2d
ρ′ × C (see (6.1)). Let Ki = [−Li , Li ], where

Li =

⎧⎪⎨
⎪⎩
1 + T, i = 1, . . . , d
1, i = d + 1, . . . , 2d
max(|E ′|, |E ′′|), i = 2d + 1

.

We want to apply Proposition 6.1 to approximate f by a polynomial on
∏

i Ki . The
mappings needed for Proposition 6.1 are scaled versions of the Zhukowsky transform:

ϕKi (z) = z

Li
+

√(
z

Li

)2

− 1, ϕ−1
Ki

(w) = Li

2

(
w +

1

w

)
.

If we let R = 1 + ε, with ε � ρ′/(maxi Li ), then
∏

i GKi ,R ⊂ H
2d
ρ′ × C. We choose

R′ = (1 + R)/2. It is elementary to see that

�(�Ki ,R′) ≤ πLi

(
R′ + 1

R′

)
, d(�Ki ,R′ , Ki ) = Li

2

(
R′ + 1

R′ − 2

)
.

By Proposition 6.1, for any N ≥ 0, there exists a polynomial PN of degree less than N
such that on

∏
i Ki we have

| f − PN | ≤ C(d)

(
R′

R

)N (
(R′)2 + 1

(R′ − 1)2

)2d+1

‖ f ‖∞

≤ C exp(−cNε) exp(−2(2d + 1) log ε) exp(C |I |),
provided ε � 1.Clearly, ifwe choose N as in (6.3)weget that | f −PN | ≤ exp(−cNε/2).

By approximating each entry of MI in this way we obtain a 2 × 2 matrix with
polynomial entries with the desired degree bounds and such that

‖MI (θ + tω,ω, E) − M̃I (θ + tω,ω, E)‖ � 1

for any (θ, ω, E) ∈ T
d × T

d × [E ′, E ′′] and |t | ≤ T . Therefore, the conclusion holds
with PI = ‖M̃I‖2HS.

Wewill also need away to approximate the Lyapunov exponent L I (ω, E).We use the
same strategy of averaging over the phase shifts of log‖MI ‖ as in [BG00, Lemma9.1],
but we give a different proof. We base our proof on the following fact.
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Lemma 6.4. ([Bou05a, Corolarry 9.7]) Let S ⊂ [0, 1]d be semialgebraic of degree B
and mesS < η. Let N be an integer such that

log B � log N < log
1

η
.

Then, for any θ0 ∈ T
d , ω ∈ DCN

#{n = 1, . . . , N : θ0 + nω ∈ S(mod 1)} < N 1−δ

for some δ = δ(DC).

In order to apply Lemma 6.4 we will need a semialgebraic approximation of the set
where the large deviations estimate fails, but only in the phase variable.

Lemma 6.5. Let I = [a, b], ω ∈ T
d , E ∈ [E ′, E ′′], and

BI (H) = BI (H, ω, E) := {θ ∈ T
d : | log‖MI (θ, ω, E)‖ − |I |L I (ω, E)| ≥ H}.

There exists a semialgebraic set SI (H) = SI (H, ω, E) of degree less than

C(1 + max(|a|, |b|))(1 + |I |), C = C(V, d, E ′, E ′′)

such that

BI (H) ⊂ SI (H) ⊂ BI (H/2),

provided H 
 1.

Proof. Let PI be the polynomial from Lemma 6.3 with T = 1. Then

∣∣∣∣log‖MI (θ, ω, E)‖ − 1

2
log |PI (θ, ω, E)|

∣∣∣∣ ≤ C0

and the conclusion follows by taking

SI (H) =
{
θ :

∣∣∣∣12 log |PI (θ, ω, E)| − |I |L I (ω, E)

∣∣∣∣ ≥ H − C0

}
.

Now we can prove the estimate that will let us approximate L I .

Lemma 6.6. Let I = [a, b], ω ∈ DC|I |, E ∈ [E ′, E ′′] such that L I (ω, E) ≥ γ > 0. If
|I | ≥ C(V, d,DC, E ′, E ′′) then

∣∣∣∣∣
1

N

N∑
n=1

log‖MI (θ + nω,ω, E)‖ − |I |L I (ω, E)

∣∣∣∣∣ ≤ 2|I |1−σ

for any integer N such that

C(V, d,DC, E ′, E ′′) logmax(|a|, |b|, |I |) ≤ log N < c(V, d,DC, E ′, E ′′)|I |1−σ .
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Proof. Let

B = {θ ∈ T
d : | log‖MI (θ, ω, E)‖ − |I |L I (ω, E)| ≥ |I |1−σ }.

By Lemma 6.5 and Theorem 3.1, there exists a semi-algebraic set S such that

B ⊂ S, degS ≤ C max(|a|, |b|)|I |, mesS ≤ exp(−c|I |1−σ ),

provided |I | ≥ C(V, d,DC, E ′, E ′′).
For any θ ∈ T

d\S we have

|I |L I (ω, E) − |I |1−σ ≤ log‖MI (θ, ω, E)‖ ≤ |I |L I (ω, E) + |I |1−σ ,

whereas for θ ∈ S we have

0 ≤ log‖MI (θ, ω, E)‖ ≤ C |I |.

From the above and Lemma 6.4 we get

2|I |1−σ ≥ N − N 1−δ

N
|I |1−σ +

N 1−δ

N
C |I |

≥ 1

N

N∑
n=1

log‖MI (θ + nω,ω, E)‖ − |I |L I (ω, E)

≥ N − N 1−δ

N
(−|I |1−σ ) +

N 1−δ

N
(−|I |L I (ω, E)) ≥ −2|I |1−σ

provided

C(V, d,DC, E ′, E ′′) logmax(|a|, |b|, |I |) ≤ log N < c(V, d,DC, E ′, E ′′)|I |1−σ .

This concludes the proof.

Lemma 6.7. Let I = [a, b], [E ′, E ′′] ⊂ R, γ > 0. If |I | ≥ C(V, d,DC, E ′, E ′′, γ )

and

T =(max(|a|, |b|, |I |))C , C=C(V, d,DC, E ′, E ′′)
BI (H, γ ) :={(θ, ω, E)∈T

d×DCT×[E ′, E ′′] : log‖MI (θ, ω, E)‖≤|I |L I (ω, E)−H,

L I (ω, E) ≥ γ }

then there exists a semi-algebraic set SI = SI (H, γ ) of degree less than TC(d) such
that

BI (H, γ ) ⊂ SI (H, γ ) ⊂ BI (H/2, γ /2),

provided

H ≥ C |I |1−σ , C = C(V, d,DC, E ′, E ′′).
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Proof. Let PI be the polynomial from Lemma 6.3. Then∣∣∣∣log‖MI (θ + tω,ω, E)‖ − 1

2
log |PI (θ + tω,ω, E)|

∣∣∣∣ ≤ C0, |t | ≤ T

and the degree of PI is less than TC . If furthermore, the power in the definition of T
is large enough so that we can apply Lemma 6.6 with N = [T ], then the conclusion
follows by taking SI (H, γ ) to be the set of (θ, ω, E) ∈ T

d ×DCT ×[E ′, E ′′] such that
1

2
log |PI (θ, ω, E)| ≤ 1

N

N∑
n=1

1

2
log |PI (θ + nω,ω, E)| + 2C0 + C |I |1−σ − H

γ |I | ≤ 1

N

N∑
n=1

1

2
log |PI (θ + nω,ω, E)| + C0 + C |I |1−σ .

7. Elimination of Resonances

As in the discrete case, the elimination of resonances is based on the following result.

Lemma 7.1 ([Bou05a, Lemma 9.9]). Let S ⊂ [0, 1]2n be a semialgebraic set of degree
B and mes2n S < η, log B � log 1

η
. We denote (θ, ω) ∈ [0, 1]n × [0, 1]n the product

variable. Fix ε > η
1
2n . Then there is a decomposition

S = S1 ∪ S2

S1 satisfying
mesn(Projω S1) < BCε

and S2 satisfying the transversality property

mesn(S2 ∩ L) < BCε−1η
1
2n

for any n-dimensional hyperplane L s.t. max0≤ j≤n−1 |ProjL(e j )| < 1
100ε (we denote

by e0, . . . , en−1 the ω-coordinate vectors).

Our elimination result is as follows.

Proposition 7.2. Assume that L(ω, E) ≥ γ > 0 for all (ω, E) ∈ DC×[E ′, E ′′]. Let
I = [a, b], J = [a′, b′]. If

|J | � |I |A ≥ max(|a|, |b|, |a′|, |b′|), |I |, A ≥ C(V, d,DC, E ′, E ′′, γ ),

there exists a set

�J , mes�J ≤ exp(−c|J |α), c = c(V, d,DC, E ′, E ′′), α = α(d,DC),

and for each θ ∈ T
d\�J and B > 0 there exists a set

�I,J,θ,B , mes�I,J,θ,B ≤ |J |C−B, C = C(V, d,DC, E ′, E ′′),

such that the following holds. For any θ ∈ T
d\�J ,ω ∈ DC \�I,J,θ,B, and E ∈ [E ′, E ′′]

we have that if
log‖MJ (θ, ω, E)‖ ≤ |J |L(ω, E) − |J |1−σ/2,
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then
log‖MI (θ + nω,ω, E)‖ > |I |L(ω, E) − |I |1−σ

for any |J |B ≤ |n| ≤ exp(c|I |σ ), c = c(V, d,DC, E ′, E ′′, A, γ ) (recall that σ is as in
Theorem 3.1).

Proof. Let�J be the set fromProposition 5.4with H = |J |σ/2/C . Themeasure estimate
on �J holds with α = σ/(4d + 2).

Fix θ0 ∈ T
d\�J . Consider the set B of (θ, ω, E) ∈ T

d × DC×[E ′, E ′′] such that

L(ω, E) ≥ γ,

log‖MJ (θ0, ω, E)‖ ≤ |J |L(ω, E) − |J |1−σ/2,

log‖MI (θ, ω, E)‖ ≤ |I |L(ω, E) − |I |1−σ .

By Proposition 3.2 we have that B ⊂ B′ where B′ is defined by

(θ, ω, E) ∈ T
d × DC|J |C ×[E ′, E ′′]

L J (ω, E) ≥ γ /2,

log‖MJ (θ0, ω, E)‖ ≤ |J |L J (ω, E) − |J |1−σ/2/2,

log‖MI (θ, ω, E)‖ ≤ |I |L I (ω, E) − |I |1−σ /2.

By Lemma 6.7 we know that B′ ⊂ S ⊂ B′′ with S semialgebraic of degree less than
|J |C and B′′ defined by

(θ, ω, E) ∈ T
d × DC|J |C ×[E ′, E ′′]

L J (ω, E) ≥ γ /4,

log‖MJ (θ0, ω, E)‖ ≤ |J |L J (ω, E) − |J |1−σ/2/4,

log‖MI (θ, ω, E)‖ ≤ |I |L I (ω, E) − |I |1−σ /4.

To get the conclusion we want ({θ0 + nω}, ω, E) /∈ B for ω outside an exceptional
set and all E ∈ [E ′, E ′′]. It is enough to argue that ({θ0 + nω}, ω) /∈ S ′ := Proj(θ,ω) S
for ω outside an exceptional set. We achieve this by invoking Lemma 7.1. By the Tarski-
Seidenberg principle (see [Bou05a, Proposition 9.2]) the set S ′ is known to be semial-
gebraic of degree less than |J |C . We need to estimate mes(S ′).

We have
mes(S ′) ≤ mes(Proj(x,ω) B′′).

Let �J,θ0 , mes(�J,θ0) ≤ exp(−c|J |α) be the set from Proposition 5.4. Consider the set

�′′ = Projθ {(θ, ω, E) ∈ B′′ : ω /∈ �J,θ0}.
If (θ, ω, E) ∈ B′′ and ω /∈ �J,θ0 then by Proposition 5.4 we have that E ∈ EJ,θ0,ω
which is the union of less than exp(C(log |J |)2/σ ) intervals each having measure less
than exp(−c|J |α). If A is large enough so that |J |α ≥ |I |2 then Theorem 3.1 and Lemma
3.7 imply that

mes(�′′) ≤ exp(C(log |J |)2/σ ) exp(−c|I |σ ) ≤ exp(−c(A)|I |σ ).

We conclude that

mes(S ′) ≤ mes(Proj(x,ω) B′′) ≤ mes(�J,θ0) + mes(�′′) ≤ exp(−c|I |σ ).
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Let
S ′ = S ′

1 ∪ S ′
2

be the decomposition afforded by Lemma 7.1 with ε = 200/|J |B . The set of {θ0 + nω}
with ω ∈ [0, 1]d is contained in a union of hyperplanes Ln,α , α ≤ |n|d . The hyperplanes
Ln,α are parallel to the hyperplane (nω,ω), ω ∈ R

d , and therefore

|ProjLn,α
e j | ≤ 1

|n| <
ε

100
for all α, e j , |n| ≥ |J |B

(e j are as in Lemma 7.1). The conclusion follows by letting

�I,J,θ0,B = {ω : (ω, {θ0 + nω}) ∈ S ′ for some |J |B ≤ |n| ≤ exp(c|I |σ )}.
Note that by Lemma 7.1 we have

mes(�I,J,θ0,B) ≤ mes(Projω S ′
1) +

∑
α,n

mes(S ′
2 ∩ Ln,α)

� |J |C
|J |B +

∑
n

|n|d |J |C+B exp(−c|I |σ ) ≤ |J |C
|J |B

provided the constant c in the upper bound of |n| is small enough.

Remark 7.3. We assume the notation from the proof of the previous Proposition. Fol-
lowing the discrete case strategy (see [Bou05a, Chapter 10]) we could set things up so
that the set B used for elimination is determined by

va′(b′; θ0, ω, E) = 0,

log‖MI (θ, ω, E)‖ ≤ |I |L(ω, E) − |I |1−σ ,
(7.1)

where va′(b′; θ0, ω, E) plays the same role as the finite volume Dirichlet determinant
did in the discrete case. The benefit of this set-up is that the first equation restricts E to
a finite set of values (the eigenvalues in the interval [E ′, E ′′]), which lets us project onto
(θ, ω) and get a small set (of course, we would also need an estimate for the number
of eigenvalues in [E ′, E ′′]). The problem is that when we pass to the semialgebraic
approximation thefirst equality becomes an inequality and the previous reasoningbreaks.
In the discrete case one approximates the potential by a polynomial Ṽ and as a result
one gets a new operator H̃ to which one can apply the reasoning that leads to (7.1)
for the semialgebraic approximation in the same way as for H . This doesn’t work in
the continuous case because we are forced to approximate the solutions, rather than the
potential.

8. Proof of the Main Result

We are now ready to prove Theorem 1.1.
Let N0 = N0(V, d, E ′, E ′′, γ ) and C0 = C0(V, d, E ′, E ′′, γ ) be large enough and

define Nk = (Nk−1)
C0 , k ≥ 1. Let �k , �k,θ be the sets from Proposition 7.2 with

Jk = [−Nk+1, Nk+1], Ik = [−Nk, Nk] and B such that |Jk |B ∈ [Nk+2/4, Nk+2/2], Note
that we have

mes(�k) ≤ exp(−cNk+1), mes(�k,θ ) ≤ N−1/2
k+2 .
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Let

� =
∞⋂
k=0

⋃
k≥k

�k .

Given θ ∈ T
d\� there exists k0 such that θ ∈ T

d\�k , k ≥ k0. Let

�θ =
∞⋂

k=k0

⋃
k≥k

�k,θ .

By Borel-Cantelli we clearly have that mes(�) = mes(�θ ) = 0.
Let θ ∈ T

d\�, ω ∈ DC \�θ . It is well known that the energies with polynomially
bounded solutions are dense in the spectrum (see [Sim82, Corolarry C.5.5]). So, given
E ∈ [E ′, E ′′] so that there exists y �≡ 0 satisfying H(θ, ω)y = Ey and

|y(t)| ≤ (1 + |t |)C , (8.1)

it is enough to show that y decays exponentially.
If

log‖MJk (θ, ω, E)‖ > |Jk |L(ω, E) − |Jk |1−σ/2

for infinitely many k, then Proposition 4.1 together with Poisson’s formula and (8.1)
imply that y ≡ 0. Therefore, for k large enough we must have

log‖MJk (θ, ω, E)‖ ≤ |Jk |L(ω, E) − |Jk |1−σ/2

and by Proposition 7.2

log‖MIk (θ + nω,ω, E)‖ > |Ik |L(ω, E) − |Ik |1−σ , Nk+1/2 ≤ |n| ≤ 2Nk+2.

Using Proposition 4.1 we can iterate Poisson’s formula as in Lemma 4.2 and get that

|y(t)| ≤ (1 + |t |)C exp(−c|t |L(ω, E)) ≤ exp(−c|t |L(ω, E)/2), |t | ∈ [Nk+1, Nk+2].
This concludes the proof.

A. Appendix

Before we prove the large deviations estimate we need to recall the following result from
[GS01].

Theorem A.1 ([GS01, Theorem 8.5]). Let d be a positive number. Suppose u : D(0, 2)d

→ [−1, 1] is subharmonic in each variable. Given r ∈ (0, 1) there exists a polydisk

� = D(x (0)
1 , r) × · · · × D(x (0)

d , r) ⊂ C
d

with x (0)
1 , . . . , x (0)

d ∈ [−1, 1] and a Cartan set B ∈ Card(H), H = exp(−r−β) so that

|u(z) − u(z′)| � rβ for all z, z′ ∈ �\B. (A.1)

The constant β > 0 depends only on the dimension d.
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We will also need the following fact about the discrepancy of the sequence of shifts of
a Diophantine vector. Let R = ∏

i [ai , bi ] ⊂ [0, 1]d . It is known (see [Hla73]) that for
ω ∈ DCN we have

#{n : nω ∈ R, 1 ≤ n ≤ N } = N Vol(R) + C(d, DC)O(N 1−1/A log2 N ). (A.2)

Proof of Theorem 3.1. Let

u(θ) = log‖MI (θ0 + ρθ + iη, ω, E)‖
C |I | , v(θ) = log‖MI (θ + iη, ω, E)‖

C |I | ,

where θ0 = (1/2, . . . , 1/2) ∈ T
d . We choose ρ = ρ(V ) such that u is defined on

D(0, 2)d and C = C(V, |E |) such that

|u(θ)| ≤ 1, θ ∈ D(0, 2)d

and

|v(θ)| ≤ 1, |v(θ) − v(θ + ω)| ≤ 1

|I | , θ ∈ T
d (A.3)

(recall that we have (2.5) and (2.7)). Applying Theorem A.1 to u with r ∈ (0, 1) we get
that there exists R = x (0) + [−ρr, ρr ]d ⊂ [0, 1]d such that

|v(θ) − v(θ ′)| � rβ, θ, θ ′ ∈ R\B′, (A.4)

with mes(B′) � dρd exp(−r−β). Note that in terms of the notation of Theorem A.1 we
have R = � ∩R

d , B′ = B ∩R
d , and the measure estimate for B′ follows from Lemma

Lemma 5.3.
It follows from (A.2) that for any θ ∈ T

d there exists

k ≤ k0 := [C(V, d,DC)r−2d A] such that θ + kω ∈ R

(the factor of 2 in the exponent of r can be replaced by 1+ε). Therefore, as a consequence
of (A.3) and (A.4) we have

|v(θ) − v(θ ′)| < C(V, d,DC)

(
rβ +

r−2d A

|I |
)

, θ, θ ′ ∈ T
d\B̃

with
B̃ := ∪k0

k=0(B′ + kω), mes(B̃) ≤ C(V, d,DC)r−2d A exp(−r−β).

Taking

|I |− 1
2d A+β ≤ r ≤ c(V, d,DC) (A.5)

we have

|v(θ) − v(θ ′)| < Crβ, θ, θ ′ ∈ T
d\B̃, mes(B̃) ≤ exp(−r−β/2).

It is now straightforward to see that

mes{θ : | log‖MI (θ + iη, ω, E)‖ − |I |L I (η, ω, E)| > C |I |rβ}
≤ exp(−r−β/2),C = C(V, d,DC, |E |).

The conclusion follows immediately by choosing r so that

C |I |rβ = ε|I |1−σ .

Note that due to (A.5) we need to take σ < β/(2d A + β). ��
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We use the following simple result to pass from continuous time Lyapunov exponents
to discrete time Lyapunov exponents.

Lemma A.2. Let I = [a, b]. Then for any ω ∈ T
d , E ∈ C, η ∈ R

d , ‖η‖ ≤ ρ(V ),
n ∈ Z, n ≥ 1 we have

|L I (η, ω, E) − Ln(η, ω, E)| ≤ C(V, |E |)
|I | (|n − |I || + 2).

Proof. By (2.3) and the bounds on the transfer matrix and its inverse we have

| log‖MI‖ − log‖MJ‖| ≤ C |I ∪ J\(I ∩ J )| ,C = C(V, |E |)

for any other closed finite interval J . The conclusion follows by applying this fact with
J = [[a], [a] + n] and the definition of the finite scale Lyapunov exponents.

Proof of Proposition 3.2. With the same proof as that of [GS01, Lemma 10.1] we have

0 ≤ Ln(η, ω, E) − L(η, ω, E) ≤ C(V, d,DC, |E |) (log n)1/σ

n
. (A.6)

Note that in fact the proof of [GS01, Lemma10.1] only points out the adjustments that
need to be made to the proof of [GS01, Lemma 4.2]; up to these adjustments the proof
of [GS01, Lemma 4.2] works as is for our setting too. Furthermore, from the proof of
[GS01, Lemma4.2] we also have that

|Ln(η, ω, E) − L2n(η, ω, E)| ≤ C(V, d,DC, |E |) (log n)1/σ

n
. (A.7)

The proof of (A.7) only relies on the large deviations estimate at scale � � (log n)1/σ

and therefore it is enough to have ω ∈ DC� ⊃ DCn . Furthermore, one only needs that
L�(η, ω, E) � γ and to have this it is enough to assume Ln(η, ω, E) ≥ γ (due to
Lemma 3.3).
The conclusions follow from (A.7) and (A.6) together with Lemma A.2. ��
Proof of Lemma 3.3. Let m = [|I |] + 2, n = [|J |] + 1. We have m = kn + r and by
subadditivity

mLm ≤ knLn + r Lr .

It follows that

Ln ≥ Lm +
r(Lm − Lr )

kn
≥ Lm − rC(V, |E |)

kn
≥ Lm − nC(V, |E |)

m − n

≥ Lm − C(V, |E |) |J | + 1

|I | − |J | .

The conclusion follows from Lemma A.2. ��
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