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FACULTÉ DES SCIENCES ET DE GÉNIE
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Résumé

L’analyse des durées de vie étudie et modélise le temps avant que les événements ne

se produisent. Elle se concentre surtout sur la distribution des temps d’événements;

les données de survie sont en fait des données sur les temps d’événements, comme par

exemple le temps avant l’apparition d’une tumeur ou le retour d’une maladie. Les

modèles de régression pour les données de durées de vie sont traditionnellement basés

sur le modèle des risques proportionnels de Cox, le principal cheval de bataille pour

les analyses de régression en présence de données censurées. L’effet des covariables y

est supposé multiplicatif sur une fonction de risque de base arbitraire, ce qui rend la

modélisation des effets variants dans le temps difficile. Deuxièmement, si des covariables

sont enlevées du modèle ou mesurées avec erreur, l’hypothèse de proportionnalité des

risques peut s’avérer fausse. Ces failles du modèle de Cox ont généré de l’intérêt pour

d’autres modèles. Un de ces modèles est le modèle des risques additifs d’Aalen (1989).

Ce modèle suppose que les covariables agissent de façon additive sur une fonction de

risque de base arbitraire. Les coefficients de régression peuvent également y être fonction

du temps, ce qui permet de supposer que l’effet des covariables varie dans le temps. Le

modèle d’Aalen n’est tout-de-même pas communément utilisé. Une explication possible

est que le modèle ne peut être ajusté simplement aux données à partir de logiciels

communs comme SAS ou S-Plus. Dans ce mémoire, nous utilisons une macro SAS pour

ajuster le modèle aux risques additifs. Le but de ce mémoire est de comparer les modèles

aux risques proportionnels et additifs du point de vue théorique, par des exemples

d’application et par une étude de simulation. En plus d’énumérer les avantages et

inconvénients des modèles, nous donnons des instructions sur le choix d’un bon modèle

à ajuster dans une situation donnée.

Thierry Duchesne Huiling Cao

Directeur de recherche Étudiante



Abstract

Survival analysis examines and models the time it takes for events to occur. It focuses

on the distribution of survival times. Survival data is time-to-event data, such as time to

death, appearance of a tumor, or recurrence of a disease. Regression models for survival

data have traditionally been based on the proportional hazards model, proposed by Cox,

that has become the workhorse of regression analysis for censored data. The effect of

the covariates on survival is to act multiplicatively on some unknown baseline hazard

rate, which makes it difficult to model covariate effects that change over time. Secondly,

if covariates are deleted from a model or measured with a different level of precision, the

proportional hazards assumption is no longer valid. These weaknesses in the Cox model

have generated interest in alternative models. One such alternative model is Aalen’s

(1989) additive model. This model assumes that covariates act in an additive manner

on an unknown baseline hazard rate. The unknown risk coefficients are allowed to be

functions of time, so that the effect of a covariate may vary over time. Aalen’s additive

model is not yet widely used. One reason for this is that the model is not available in

any commonly used computer package, such as SAS or S-plus. In this thesis we use a

SAS macro that performs the additive hazards regression. The aim of this thesis is to

compare the proportional and additive hazards models through theory, application and

simulation. We also highlight their respective advantages and disadvantages, and give

guidelines as to which model to choose to fit given survival data.
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Chapter 1

Introduction

Survival analysis is a statistical method designed to study the amount of time an ex-

perimental unit survives, or the study of time between entry into observation and a

subsequent event. Originally, the event of interest was death and the analysis consisted

of following the subjects until death.

The term “survival data” has been used in a broad sense for data involving time

to the occurrence of a certain event. This event may be death, the appearance of a

tumor, the development of some disease, recurrence of a disease, conception, cessation

of smoking, and so forth. In the past, application of the statistical methods for survival

data analysis have been extended beyond biomedical and reliability research to other

fields, such as the social sciences and business. For example, we could look at the

duration of a first marriage (sociology), the length of subscription to a newspaper or a

magazine (marketing), and so on. The study of survival data was previously focused

on predicting the probability of survival or mean lifetime, and comparing the survival

distributions of experimental animals or of human patients under different conditions.

In recent years, the identification of risk and/or prognostic factors related to survival,

and the development of disease have become important applications of survival analysis.

A key characteristic that distinguishes survival analysis from other areas in statistics

is that survival data are usually censored. The defining feature of censored data is that

the event time of interest is not fully observed on all subjects under study. Censored

data arise in a broad range of application areas (finance, industrial life testing, biomed-

ical studies...). A major complication in analyzing such data is right censoring, where

the event of interest is known to occur only after a certain time point. Other types of

censoring, such as interval censoring or truncation often occur and present challenges

along with complicated data structures in the analysis of failure time data.
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1.1 Basic survival analysis definitions

In this chapter, we consider the basic parameters used in modeling survival data.

Let X denote the survival time. In fact, survival times measure the time to certain

events such as failure, death, divorce. X is a nonnegative random variable from a

homogeneous population. The distribution of X is usually described or characterized

by three functions, namely

1. the survival function;

2. the hazard rate function or risk function;

3. the probability density (or probability mass) function.

The three functions are mathematically equivalent – if one of them is given, the other

two can be derived.

Next, we briefly describe these three equivalent functions that can characterize the

distribution of X and discuss the relationship among the three functions (Lee, 1992).

1. Probability density function.

This function, denoted by f(x), is defined as the limit of the probability that an

individual fails in the short interval x to x+∆x per unit width ∆x, or simply the

probability of failure in a small interval per unit time:

f(x) = lim
∆x→0

P{an individual dying in the interval (x, x + ∆x)}

∆x

= lim
∆x→0

P [X ∈ (x, x + ∆x)]

∆x
.

The density function has the following two properties:

(1) f(x) is a nonnegative function, f(x) ≥ 0, ∀x ≥ 0.

(2) The area between the density curve and the x axis is equal to 1, i.e,
∫ ∞

0

f(x)dx = 1.

2. Survival function.
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This function, denoted by S(x), is defined as the probability that an individ-

ual survives longer than x:

S(x) = P (an individual survives longer than x)

= P (X > x)

=

∫ ∞

x

f(t)dt.

From the definition of the cumulative distribution function, F (x) = P (X ≤ x),

we have

S(x) = 1 − P (an individual fails before time x)

= 1 − F (x),

where S(x) = 1 for x = 0 and S(x) = 0 for x = ∞, that is, the probability of

surviving at least to time zero is 1 and that of surviving to infinite time is zero. If

X is a continuous random variable, then S(x) is a continuous, strictly decreasing

function.

The survival curve describes the relationship between the probability of sur-

vival and time. Many types of survival curves are observed in practice, but the

important point to note is that they all have the same basic properties: they are

monotone, non increasing functions equal to one at time zero and zero as the time

approaches infinity.

3. Hazard function.

This function, denoted by h(x), is defined as the probability of failure in a very

small time interval, assuming that the individual has survived to the beginning

of the interval, or as the limit of the probability that an individual fails in a very

short interval x to x + ∆x per unit time, given that the individual has survived

to time x:

h(x) = lim
∆x→0

P{an individual of age x fails in the time interval (x, x + ∆x)|alive at x}

∆x

= lim
∆x→0

P{x ≤ X < x + ∆x|X ≥ x}

∆x
.

If X is a continuous random variable, then

h(x) =
f(x)

S(x)
=

f(x)

1 − F (x)
= −

d

dx
ln[S(x)].

The cumulative hazard function, H(x), is defined as

H(x) =

∫ x

0

h(u)du = −ln[S(x)].
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Thus at x = 0, S(x) = 1, H(x) = 0 and at x = ∞, S(x) = 0 and H(x) = ∞.

The cumulative hazard function can take any value between zero and infinity.

There are many general shapes for the hazard rate, the only restriction on h(x)

being that it is nonnegative, i.e. h(x) ≥ 0. From many practical examples, we

may get that the hazard rate for the occurrence of a particular event is increasing,

decreasing, constant, bathtub-shaped, hump-shaped, and so on.

In fact, the hazard function is usually more informative about the underlying

mechanism of failure than the survival function. For this reason, consideration of

the hazard function may be the dominant method for summarizing survival data.

3. Relationship among the three functions.

The three functions defined above are mathematically equivalent. Given any

one of them, the other two can be derived:

S(x) =

∫ ∞

x

f(t)dt = exp

[

−

∫ x

0

h(u)du

]

= exp[−H(x)];

f(x) = −
d

dx
S(x) = h(x)S(x) = h(x)e−

∫ x

0 h(u)du;

h(x) = −
d

dx
ln[S(x)] =

f(x)

S(x)
=

f(x)
∫∞

x
f(u)du

.

1.2 Censoring and truncation

The analysis of survival data is complicated by censoring and/or truncation.

• Censored data arise when an individual’s life length is not known exactly, but

only known to occur in a certain interval of time. One possible type of censoring

is right censoring, where all that is known is that the individual is still alive at a

given time. Here, the period of observation expires, or an individual is removed

from the study, before the event occurs– for example, some individual may still

be alive at the end of a clinical trial, or may drop out of the study for various

reasons other than death, prior to its termination. In this case, we only have a

lower bound for the value of X for this individual. One type of right censoring

that is very common is type I censoring, where the event is observed only if it

occurs prior to some prespecified time, e.g, at the closing of a study. A second

type of right censoring is type II censoring, in which the study continues until the

failure of the first r individuals, where r is some predetermined integer.
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Left censoring is when all that is known is that the individual experienced

the event of interest prior to the start of the study, i.e., only an upper bound for

the value of X is available.

For interval censoring, the only information available is that the event occurs

within some interval of time.

• A second feature of many survival studies, sometimes confused with censoring,

is truncation. Truncation is a condition which screens certain subjects so that

the investigator will not be aware of their existence, i.e., only individuals whose

survival time X meets some condition are observed. Types of truncations are

(1) left truncation, where only individuals who survive a certain time before the

study starts are included; (2) right truncation, where only individuals who have

experienced the event by a certain time are included in the study.

• Most methods used in survival analysis are designed to handle right censored

data.

1.3 Likelihood construction for censored and trun-

cated data

• Likelihood construction for Type I right censoring

In this section, we construct the likelihood for fixed right-censored (Type I) data

and begin with a review of the notation.

Type I right censoring definition:

The survival variables X1,X2,X3....Xn are right-censored by fixed constants

c1, c2, c3, . . . , cn, if the observed sample consists of the ordered pairs (zi, δi), i =

1, 2, 3 · · ·n, where, for each i,

zi = min{Xi, ci}

δi =

{

1 if Xi ≤ ci (uncensored)

0 if Xi > ci (censored) ,

where ci is the fixed censoring time and δi is the censoring indicator for Xi.

Our assumptions here are that X1,X2,X3....Xn are independent of the c1, c2, c3,

· · · , cn, and identically distributed (iid) from a continuous distribution with p.d.f
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f(c|θ), where θ belongs to some parameter space. Here, θ could be either a real-

valued or vector-valued parameter. Our aim is to determine the joint density

of the observed data (zi, δi), i = 1, 2, 3 · · ·n, so that θ may be estimated by the

method of maximum likelilood.

Theorem 1 (Lee, 1992, Chapter 1)

Under type I right-censoring with fixed censoring times, the joint likelihood

L(θ) of the observed data (zi, δi), i = 1, 2, 3 · · · , is given by

L(θ) = c

n
∏

i=1

f(zi)
δiS(zi)

1−δi , where c is a constant . (1.1)

Equation (1.1) may be generalized further to accommodate other types of censor-

ing such as interval-censoring, left-censoring, · · · . We can generalize this equation

so that it has explicit terms for observed deaths, right-censoring, left-censoring,

interval-censoring. To construct a likelihood of this general form where censoring

times are independent of lifetimes, we take a product of terms of the following

form:

f(y) : for observed death at y;

S(t) : for right-censoring at t;

1 − S(l) : for left-censoring at l;

S(t1) − S(t2) : for interval-censoring in [t1, t2).

Therefore, equation (1.1) may be generalized to

L(θ) = c
∏

D

f(y)
∏

R

S(t)
∏

L

[1 − S(l)]
∏

I

[S(t1) − S(t2)], (1.2)

where

D : the set of observed deaths;

R : the set of right-censored observations;

L : the set of left-censored observations ;

I : the set of interval-censored observations.

• Likelihood construction under truncation

Definition:

Suppose a population of an unknown number N of possible observations. We

say that the dataset Y1,Y2,Y3....Yn of n < N elements is left-truncated by the fixed

truncation constants t1,t2,t3....tn if the observed sample consists of ordered pairs
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(yi, ti), where yi ≥ ti, so that yi is left-truncated by ti for each i = 1, 2, · · ·n. Right-

truncation is defined similarly, with the observed sample consisting of ordered

pairs (yi, ti) where yi ≤ ti. In other words, elements can be observed only if their

value falls in a specific interval.

Likelihood construction:

Under left-truncation, the observed data are ordered pairs (yi, ti), i = 1, 2, · · ·n

with yi ≥ ti. Assuming that the times of death are independent of the truncation

constants, we may write the conditional density as

f(y|y > t) =
f(y)

S(t)
.

Each ordered pair in the data makes such a contribution to the likelihood, so that

L(θ) = c
n
∏

i=1

f(yi)

S(ti)
.

Similar ideas apply for right-truncation. In this case, the observed data are

ordered pairs (yi, ti), i = 1, 2, · · ·n ,with yi ≤ ti. In this case, conditional densities

are of the form

f(y|y < t) =
f(y)

1 − S(t)
.

Each ordered pair in the data makes such a contribution to the likelihood, so that

L(θ) = c
n
∏

i=1

f(yi)

1 − S(ti)
.

For example:

We use the maximum likelihood estimation (MLE) theory above to estimate param-

eters. The SAS software is used to implement this method. We use the data listed in

Dataset 1.1 of the Appendix for 100 subjects:

TIME: The follow-up time is the number of months between the entry date and the

end date.

AGE: The age of the subject at the start of follow-up (in years).

CENSOR: Vital status at the end of the study (1=Death due to AIDS, 0=Lost to

follow-up or alive).
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For the moment, we only focus on how to use MLE theory to estimate parameters

(Hosmer and Lemeshow, 1999); we do not care about the model fit to the data yet.

If AGE is the only explanatory variable, that will be labeled z, then a model for

lifetime as a function of z may be expressed as follows:

X = eβ0+β1z × ε,

where

• X denotes survival time;

• ε follows the exponential distribution with parameter equal to one.

Note that this model is not linear in its parameters. However, it may be ‘linearized’ by

taking the natural log. This yields the following model:

Y = β0 + β1z + θ,

where
{

Y = ln(X)

θ = ln(ε).

Here θ ∼ G(0, 1), meaning θ follows a extreme value distribution. The density function

of the G(0, 1) is f(θ) = e[θ−exp(θ)], θ ∈ R, and the survival function is S(θ) = e− exp(θ).

Now we use MLE with an adaptation for censored data to estimate β0 and β1.

Here, two variables are used to characterize a subject’s time, the actual observed time,

X, and a censoring indicator variable δ (δ=1 or 0). We denote the density function

f(x, β, z), the cumulative distribution function F (x, β, z), and the survival function

S(x, β, z) = 1−F (x, β, z). Under the assumption of independent observations, the full

likelihood function is

L(β) =

n
∏

i=1

{[f(xi, β, zi)]
δi × [S(xi, β, zi)]

1−δi}, where δi =0 or 1.

To obtain the maximized likelihood with respect to the parameter of interest, β, we

maximize the log-likelihood function

l(β) =
n
∑

i=1

{δiln[f(xi, β, zi)] + (1 − δi)ln[s(xi, β, zi)]}. (1.3)

Because y − (β0 + β1z) = θ and θ ∼ G(0, 1), we have f(θ) = e[θ−exp(θ)], S(θ) = e− exp[θ],

so that

S(y, β, z) = e− exp[y−(β0+β1z)], (1.4)
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f(y, β, z) = e{y−(β0+β1z)−exp[y−(β0+β1z)]}. (1.5)

Substituting the expressions (1.4) and (1.5) into (1.3) yields the following log-

likelihood:

l(β) =
n
∑

i=1

δiln(e{yi−(β0+β1zi)−exp[yi−(β0+β1zi)]}) + (1 − δi)ln(e− exp[yi−(β0+β1zi)])

=

n
∑

i=1

δi[yi − (β0 + β1zi)] − e[yi−(β0+β1zi)]. (1.6)

In order to obtain the MLE of β, we must take the derivatives of the log-likelihood

in (1.6) with respect to β0 and β1. The two score equations obtained to be solved are

n
∑

i=1

(δi − e[yi−(β0+β1zi)]) = 0 (1.7)

n
∑

i=1

zi(δi − e[yi−(β0+β1zi)]) = 0. (1.8)

The equations (1.7) and (1.8) are nonlinear in β0 and β1 and must be solved using

an iterative method. Many software packages can solve these equations numerically

with Newton-Raphson or Fisher scoring algorithms (Kalbfleisch and Prentice (2002)) .

Next we discuss how to get estimates of the standard error of the estimated parame-

ters in the column labeled “Std.err.” of Table 1.1. The negative of the second derivative

of the log likelihood in (1.6) is called the observed information, and we will denote it as

I(β) = −
∂2l(β)

∂β0∂β1

. (1.9)

The estimator of the variance of the estimated coefficient is the inverse of (1.9) evaluated

at β̂, i.e.,

ˆV ar(β̂) = I(β̂)−1. (1.10)

The estimator of the standard error, denoted ŜE(β̂) =

√

ˆV ar(β̂), is the positive square

root of the variance estimator in (1.10).
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We begin by presenting different tests to assess the significance of the coefficient:

the partial likelihood ratio test and the Wald test.

The partial likelihood ratio test, denoted G, is calculated as twice the difference

between the log partial likelihood of the model containing the covariate and the log

partial likelihood for the model not containing the covariate. Specifically,

G = 2{l(β̂) − l(0)}

Under the null hypothesis that the coefficient is equal to zero, this statistic will follow

a chi-square distribution with 1 degree-of-freedom. This distribution can be used to

obtain p-values to test the significance of the coefficient. Another test for significance

of the coefficient can be computed from the ratio of the estimated coefficient to its

estimated standard error. This ratio is commonly referred to as a Wald statistic. It

follows a standard normal distribution under the null hypothesis that the coefficient is

equal to zero. The equation for the Wald statistic is

z =
β̂

ŜE(β̂)
.

The endpoints of a 100(1-α) percent confidence interval for the coefficient are

β̂ ± z1−α/2ŜE(β̂).

Some statistical packages (SAS) report the square of the Wald statistic, which follows

a chi-square distribution with one degree-of-freedom.

Using SAS (SAS program is given in the Appendix), we get the results of Table 1.1

(Dataset 1.1).

Table 1.1: Estimators, standard errors, confidence intervals, Chi-Square, pr > ChiSq

variable coeff. std.err Chi-Square pr > ChiSq 95% conf.int

AGE -0.0941 0.0160 34.68 < .0001 -0.1254 -0.0628

constant 5.8607 0.5918 98.08 < .0001 4.7008 7.0206

The output in Table 1.1 shows that the maximum likelihood estimates of the two

parameters are β̂0 = 5.8607, ŜE(β̂0) = 0.5918, 95% confidence interval is (4.7008,

7.0206) and the estimate of variable AGE, β̂1 = −0.0941, ŜE(β̂1) = 0.0160, 95%

confidence interval is (-0.1254, -0.0628).



Chapter 2

Cox proportional hazards model

2.1 Proportional hazards regression model

The most common approach to model covariate effects on survival is the Cox propor-

tional hazards model (Cox, 1972), which can handle censored and/or truncated obser-

vations. The Cox proportional hazards model has been probably the most important

piece of work in the statistical analysis of survival data. We will look at it closely in

this chapter.

The data, based on a sample of size n, consists of (tj , δj, zj), j = 1, 2...n, where tj is

the time on study for the jth individual, δj is the event indicator (δj = 1 if the event has

occurred and δj = 0 if the lifetime is right-censored) and zj is the vector of covariates

or risk factors for the jth individual (zj may be also a function of time) that may affect

the distribution of X, the time to event.

Let h(t | z) be the hazard rate in the subpopulation with covariate value(s) z. The

Cox proportional hazards regression model relates covariates to the hazard function as

follows:

h(t|z) = h0(t)c(β
′z),

where h0(t)c(0) is the hazard function for the subpopulation with covariate value z = 0

and it is called the baseline hazard function, β = (β1, β2, ...βp) is a parameter vector

of regression coefficients, β ′z =
∑p

i=1 βkzk, and c(·) is a fixed, known scalar function.

This is a semi-parametric model in which the baseline hazard, h0(t), is estimated non

parametrically, while the covariate effect is constrained by the parametric representation
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c(β ′z). Most commonly, an exponential form is used for c(·):

c(β ′z) = exp(β ′z) = exp(

p
∑

k=1

βkzk) = e
∑p

k=1 βkzk ,

which assures that the hazard is non-negative and assumes that covariate effects on the

hazard are multiplicative. In this case, we have

h(t|z) = h0(t)c(β
′z) = h0(t)exp(β ′z) = h0(t)exp(

p
∑

k=1

βkzk).

The Cox model is often called a proportional hazards model because, if we look at

two individuals with covariate values z1 and z2, the ratio of their hazard functions at

time t is
h(t|z1)

h(t|z2)
=

h0(t)exp(β ′z1)

h0(t)exp(β ′z2)
= exp[(β ′(z1 − z2)],

which is a constant (does not vary over time), that is, the ratio does not depend on t

and the hazard rates are proportional, hence a proportional hazards model.

Recall that the hazard function at t given covariate z is h(t|z) = h0(t)e
(β′z). The

cumulative hazard function, p.d.f. and survival functions given z can respectively be

derived as follows:

H(t|z) =

∫ t

0

h(s|z)ds =

∫ t

0

h0(s)e
β′zds = H0(t)e

β′z,

S(t|z) = exp(−H(t|z)) = exp(−H0(t)e
β′z),

f(t|z) = h0(t)e
β′zexp(−H0(t)e

β′z).

2.2 The Cox proportional hazards partial likelihood

The contribution of Cox was to show how to efficiently estimate the parameters β when

the functional form of h0(t) is unknown. The Cox methodology can be extended to more

complicated models. For example, time dependent covariates z(t) can be included in

the model so that the characteristics of individuals are allowed to change through time.
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2.2.1 Full likelihood

The full likelihood for n observations of (Tj, δj , zj) under the proportional hazards model

can be written in the usual fashion (Kalbfleisch and Prentice, 2002, Section 3.5):

L =
n
∏

j=1

fx|zj
(Tj)

δjSx|zj
(Tj)

1−δj =
n
∏

j=1

hx|zj
(Tj)

δjSx|zj
(Tj),

where fx|z(t) = hx|z(t)Sx|z(t). This likelihood could be maximized simultaneously in

terms of the parameters β and h0(t). The Cox methodology uses a partial likelihood to

yield estimates of β that are consistent and efficient regardless of the form of h0(t).

2.2.2 Cox partial likelihood

A sample of n subjects yields data with D distinct failure times, t1 < t2 < ...tD, and

n−D censored times. Note that t(i) is an ordered event time, while Tj is the follow-up

time for subject j. The set of indices of subjects at risk (alive and on study) at time t−i
is denoted by Ri = R(ti). The covariate for the subject who has an event at time ti is

denoted by Z(i), to be distinguished from the covariate Zj for subject j. 1 This allows

the notation for all the subjects at risk at time ti:

{j ∈ Ri} = {j | Tj ≥ ti}

Cox proposed the following ‘partial likelihood’ for the parameter β:

L(β) =
D
∏

i=1

e(β′z(i))

∑

j∈Ri
e(β′zj)

,

where (i) denotes the subscript of the subject who dies at time t(i).

Remark 1

The Cox partial likelihood is a product over death times of

Pr(subject (i) dies | one subject dies at time t(i) among subjects j∈ Ri at risk)=

h(ti|z(i))
∑

j∈Ri
h(ti|zj)

= e
(β′z(i))

∑

j∈Ri
e(β′zj) .

1Here we assume no tied failure times to simplify the exposition. In the case of tied failure times,

the notation and likelihood can be adjusted (Klein & Moeschberger, 2003, Section 8.4).
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The log partial likelihood is

l(β) = ln L(β) =
D
∑

i=1

(

β ′z(i) − ln

(

∑

j∈Ri

eβ′zj

))

.

The score functions are the first partial derivatives

Uh(β) =
∂ ln L

∂βh
=

D
∑

i=1

(

z(i)h −

∑

j∈Ri
zjhe

β′zj

∑

j∈Ri
eβ′zj

)

,

for h = 1, 2 . . . p. The maximum likelihood estimates satisfy

Uh(β̂) = 0, h = 1, 2, ..., p.

The information matrix is the negative of the matrix of second derivatives of the log

partial likelihood:

Igh(β) =
−∂2 ln L

∂βg∂βh
=

D
∑

i=1

[

∑

j∈Ri
zjgzjhe

β′zj

∑

j∈Ri
eβ′zj

−
(
∑

j∈Ri
zjge

β′zj )(
∑

j∈Ri
zjhe

β′zj )

(
∑

j∈Ri
eβ′zj )2

]

.

This matrix for g = 1, 2 . . . p and h = 1, 2 . . . p is a sum over i = 1, 2 . . .D of weighted

covariance matrices for the z vector in the populations at risk at the time ti.

2.3 Asymptotic distribution

For the majority of inference procedures (hypothesis tests, confidence intervals, fore-

casts) in survival analysis, we use approximations based either on the asymptotic distri-

bution of U(β̂), or on the asymptotic distribution of β̂ (Duchesne, 2003, Section 0.2.3).

Let β0 be the true value of the parameter that we seek to estimate. In practice, we

suppose that the sample size is sufficiently large to assume that

U(β0) ≈ Nq(0, I(β0)), (2.1)

where Nq indicates a multivariate normal distribution of dimension q, and

I(β0) = −E

[

∂

∂β ′
U(β)

∣

∣

∣

∣

β=β0

]

, (2.2)
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The asymptotic distribution of β̂ is

β̂ ≈ Nq(β0, I
−1(β0)), (2.3)

or, equivalently,

β̂ − β0
√

I−1(β0)
∼ Nq(0, 1).

Since the value of β0 is not known in practice, formula (2.2) can sometimes be

difficult to be evaluated. In practice, we use the fact that β0 is well estimated by β̂

and that I(β0) is well estimated by I(β̂) in calculations, where I(β) is the observed

information matrix:

I(β̂) = −
∂2l(β)

∂β∂β ′

∣

∣

∣

∣

β=β̂

.

2.4 Hypothesis tests

The standard asymptotic likelihood inference tests, the Wald, score, and likelihood

ratio tests, are also valid under the Cox partial likelihood to test hypotheses about

β. Wald statistics are based on the asymptotic normality of the estimated regression

coefficients according to formula (2.3). Likelihood ratio statistics are based on the log

likelihood ratio for two nested models. Score statistics are based on the asymptotic

normal distribution of the score function according to formula (2.1).

We are often interested in a hypothesis about a subset of the covariates. Generally,

we partition the covariate vector β = (β1
′, β2

′)′ where β1 is the q × 1 subvector of

coefficients of interest and β2 is the (p − q) × 1 vector of other covariate coefficients.

Correspondingly, we get

I(β) = (Igh(β))(p×q) =

(

−
∂2logL

∂βg∂βh

)

(p×q)

=

(

I11(β) I12(β)

I21(β) I22(β)

)

and we let

I−1(β) =

(

I11(β) I12(β)

I21(β) I22(β)

)

be the partition of its inverse. (2.4)



Chapter 2. Cox proportional hazards model 16

Let b(p×1) = (b
′

1, b
′

2)
′

be the partitioned maximum partial likelihood estimate for β.

Consider tests about β1 of the form H0 : β1 = β01.

The estimator of the variance of the estimated coefficient is (2.4) evaluated at β̂ and

is ˆV ar(β̂) = I(β̂)
−1

. The estimator of the standard error, denoted ŜE(β̂) =

√

ˆV ar(β̂).

The Wald test statistic: Xw
2 = (b1 − β01)

′

[I11(b)]−1(b1 − β01).

Note that this statistic depends upon the entire vector b in the inverse information

calculation.

The likelihood ratio test statistic: XLR
2 = 2{l(b) − l[β01, b2(β01)]}, where b2(β01) is

the maximum partial likelihood estimate of β2 with β1 fixed at β01, l(b) is the log partial

likelihood function.

The score test statistic : Xsc
2 = U1[β01, b2(β01)]

′

[I11(β01, b2(β01))]U1[β01, b2(β01)], where

U1[β01, b2(β01)] is the (q × 1) subvector of the score statistic of first partial derivatives

of the log partial likelihood function.

Asymptotically, all three of these statistics have an approximate chi-square distri-

bution with q degrees of freedom when the null hypothesis is true.

2.5 Time-dependent covariates

We can model the hazard function for an individual as a function of covariates whose

values were fixed. These are explanatory variables recorded at the start of the study

whose values are fixed throughout the course of the study. As is typical in many survival

studies, individuals are monitored during the study, and other explanatory variables are

recorded whose values may change during the course of the study. Such variables that

change over time are called time-dependent variables (Klein and Moeschberger, 2003,

Section 9.2).

Let X denote the time to some event and z(t) = [z1(t), z2(t), · · · , zp(t)]
′ denote a

set of covariates or risk factors at time t. Here the zk(t)’s may be time-dependent

covariates, whose value changes over time or they may be constant (or fixed) values

known at time 0.
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The basic model due to Cox (1972) is as with z replaced by z(t), and for the

commonly used model,

h[t | z(s), 0 ≤ s ≤ t] = lim
ε→0

P{t ≤ X < t + ε|X ≥ t, z(s), 0 ≤ s ≤ t}

ε

= h0(t)e
β′z(t)

= h0(t)exp

[

p
∑

k=1

βkzk(t)

]

. (2.5)

In this section, our data, based on a sample of size n, consist of the triple

(Tj, δj , {zj(t), 0 ≤ t ≤ Tj}) j = 1, 2, · · · , n,

where

• Tj: the time on study for the jth patient

• δj: the event indicator for the jth patient (δj = 1 if event has occurred, 0 if the

lifetime is right-censored).

• zj(t) = [zj1(t), zj2(t), · · · , zjp(t)]
′

: the vector of covariates for the jth individual.

We assume that censoring is non informative: given zj(t), the event and censoring

times for the jth patient are independent.

If the event times are distinct and t1 < t2 < · · · < tD denotes the ordered event

times, we define

z(i)(ti): the covariate associated with the individual whose failure time is ti;

R(ti): the risk set at time ti.

The partial likelihood is given by

L(β) =

D
∏

i=1

exp[
∑p

h=1 βhz(i)h(ti)]
∑

j∈R(ti)
exp[

∑p
h=1 βhzjh(ti)]

,

based on the hazard formulation (2.2). Note that in order to evaluate the likelihood

contribution at ti, we need to know the values of the covariates at that time for everyone
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in R(ti). Estimation and testing may proceed with the appropriate alterations of z to

z(t) in the inference procedures described in sections 2.2 to 2.4.

Example:

In the book by Klein and Moeschberger (2003, Section 9.2), a study of acute leukemia

patients being given a bone marrow transplant is presented. Bone marrow transplants

are a standard treatment for acute leukemia. Prediction for recovery may depend on risk

factors known at the time of transplantation, such as patient and/or donor age and sex,

the stage of initial disease, the time from diagnosis to transplantation, etc. The final

prediction may change as the patient’s post transplantation history develops with the

occurrence of events at random times during the recovery process, such as development

of acute or chronic graft-versus-host disease (GVHD), return of the platelet count to

normal levels, return of granulocytes to normal levels, or development of infections.

Transplantation can be considered a failure when a patient’s leukemia returns (relapse)

or when he or she dies while in remission (treatment related death). The variable time

t2 denotes the disease-free-survival time and the event indicator for disease-free-survival

is d3.

There are three risk groups: acute lymphoblastic leukemia (ALL), low-risk acute

myeloctic (AML low-risk), and high-risk acute myeloctic leukemia (AML high-risk).

We define two binary covariates (AMLL = 1 if AML low-risk, AMLH = 1 if AML

high-risk) for the factor of interest. There are many other fixed factors.

In addition to the covariates fixed at the time of transplant, there are three inter-

mediate events that occur during the transplant recovery process that may be related

to the disease-free survival time of a patient. These are the development of acute

graft-versus-host disease (aGVHD), the development of chronic graft-versus-host dis-

ease (cGVHD) and the return of the patients platelet count to a self-sustaining level

(platelet recovery). The timing of these events, if they occur, is random. In this ex-

ample, we shall examine their relationship to the disease-survival time and see how

the effects of the fixed covariates change when these intermediate events occur. Each

of these time-dependent variables may be coded as an indicator variable whose value

changes from 0 to 1 at the time of the occurrence of the intermediate event. We define

the covariates as follows:

ZA(t) =

{

0 if t < time at which acute graft-versus-host disease occurs,

1 if t >= time at which acute graft-versus-host disease occurs.
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ZP (t) =

{

0 if t < time at which the platelet recovered,

1 if t >= time at which the platelet recovered.

ZC(t) =

{

0 if t < time at which chronic graft-versus-host disease occurs,

1 if t >= time at which chronic graft-versus-host disease occurs.

Local tests may be performed to assess the significance for each time-dependent

covariate in a model that already has covariates for the two risk groups included (AMLL

and AMLH). We fit a separate Cox model for each of the three intermediate events which

includes the disease factor AMLL and AMLH, and form three Cox models: Model 1

(AMLL, AMLH, ZA(t)), Model 2 (AMLL, AMLH, ZC(t)), Model 3 (AMLL, AMLH,

ZP (t)). We use SAS (SAS program is given in Appendix 2.1) to get results from tables

2.1-2.3 below.

Table 2.1: Parameter Estimate, Standard Errors, Chi-Square, pr > ChiSq, Hazard

Ratio for model 1
variable coeff. std.err Chi-Square pr > ChiSq Hazard Ratio

AMLL -0.55164 0.28799 3.6690 0.0554 0.576

AMLH 0.43381 0.27222 2.5396 0.1110 1.543

ZA 0.31836 0.28514 1.2466 0.2642 1.375

Table 2.2: Parameter Estimate, Standard Errors, Chi-Square, pr > ChiSq, Hazard

Ratio for model 2
variable coeff. std.err Chi-Square pr > ChiSq Hazard Ratio

AMLL -0.62251 0.29622 4.4163 0.0356 0.537

AMLH 0.36567 0.26850 1.8548 0.1732 1.441

ZC -0.19478 0.28757 0.4587 0.4982 0.823

Table 2.3: Parameter Estimate, Standard Errors, Chi-Square, pr > ChiSq, Hazard

Ratio for model 3
variable coeff. std.err Chi-Square pr > ChiSq Hazard Ratio

AMLL -0.49624 0.28924 2.9435 0.0862 0.609

AMLH 0.38134 0.26761 2.0306 0.1542 1.464

ZP -1.12986 0.32800 11.8658 0.0006 0.323

Here, we see that only the return to a sustaining level of the platelets has a significant

impact on disease-free survival. The negative value of coefficients suggests that a patient
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who has the intermediate event (ZC(t) = 1 or ZP (t) = 1) has a better chance of survival

than a patient who, at that time, has yet to have these event.

2.6 Regression diagnostics

In this section, we will discuss methods to check the various assumptions of a propor-

tional hazards (PH) model.

2.6.1 Cox-Snell residuals for assessing the overall fit of a pro-

portional hazards model

Suppose X follows the Cox model with covariate z and the regression coefficient β is

known. Then the survival probability of X is

S(X) = exp(−H0(X)eβ
′

z).

Note that S(X) = 1 − F (X) ∼ U(0, 1), and H(X) = − ln S(X) = − ln(1 − F (X)), so

− ln S(X) ∼ Exp(1). Thus, H0(X)eβ
′

z ∼ Exp(1).

In practice, of course, we don’t know H0 and β, but they can be estimated. If the

estimates of the β’s from the postulated model are b = (b1, ...bp)
′, then, the Cox-Snell

residuals are defined as

rj = Ĥ0(Tj)exp(β̂ ′zj), j = 1, 2, · · ·n.

Here, Ĥ0(t) is Breslow’s estimator of the baseline hazard rate (Klein and Moeschberger,

2003, Section 8.8). Let t1 < t2 < · · · denote the distinct death times. Define

W (ti; b) =
∑

j∈R(ti)

exp(b′zj).

The estimator of the cumulative baseline hazard rate H0(t) =
∫ t

0
h0(u)du is given by

Ĥ0(t) =
∑

ti≤t

1

W (ti; b)
,

which is a step function with jumps at the observed death times.
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If the final PH model is correct and the β̂j ’s are close to the true values of the βj’s,

the rj ’s should resemble a censored sample from a unit exponential distribution. To

check whether the rj ’s resemble a censored sample from a unit exponential, the plot of

Ĥr(rj) against rj, where Ĥr is the Nelson-Aalen estimator, should roughly be a 45◦ line

through the origin. Ideally, the plot of Ĥr(rj) against rj should include a confidence

band so that significance can be addressed. Unfortunately, the rj are not exactly a

censored sample from a distribution. So this plot is generally used only as a rough

diagnostic.

2.6.2 Martingale residuals for identifying the best functional

form of a covariate

As before, X follows the Cox model with covariate z and the regression coefficient

β is known. We observe (tj , δj, zj), for j=1,2...n. Under the assumption that the

proportional hazards model is true, the process

Mj(t) = Nj(t) −

∫ t

0

Yj(s)e
zj(s)βdH0(s)

is a martingale for j = 1, 2...n, so we expect E[Mi(t)] = 0, t ≥ 0. Define the martingale

residuals

Mj = Nj(∞) −

∫ ∞

0

Yj(s)e
zj(s)βdH0(s), j = 1, 2...n

In practice, to compute the martingale residuals, β and H0 will be replaced with β̂ and

Ĥ0. We thus get

M̂j = Nj(∞) −

∫ ∞

0

Yj(s)e
zj(s)β̂d ˆH0(s) = δj − rj,

where rj is the Cox-Snell residual.

Now we shall use these martingale residuals to examine the best functional form for

a given covariate using an assumed Cox model for the remaining covariates. Suppose

that the covariate vector z is partitioned into a vector z∗, for which we know the proper

functional form of the Cox model, and a single covariate z1 for which we are unsure of

what functional form to use. Let f(z1) be the best function for z1 to explain its effect

on survival. Then

H(t | z∗, z1) = H0(t)exp(β∗z∗)exp[f(z1)].

To find f , we fit a Cox model to the data based on z∗ and compute the martingale

residuals, M̂j , j=1,2...n. These residuals are plotted against the values of z1. If the
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plot is linear, no transformation of z1 is needed. If there appears to be a threshold,

then, a discretized version of the covariate is indicated. If the plot is not linear nor

threshold, then we should use a transform such as log, squared root or power of the

variable z1.

2.6.3 Schoenfeld residuals to examine the fit and detect out-

lying covariate values.

The kth Schoenfeld residuals defined for the kth subject on the explanatory variable

x(j), j = 1, 2, · · · , p, is given by

rsjk
= δk{x

(j)
k − a

(j)
k }, k = 1, . . . n, j = 1, . . . p,

where

• δk is the kth subject’s censoring indicator,

• x
(j)
k is the value of the jth explanatory variable for the kth individual in the study,

• a
(j)
k =

∑

m∈R(yk) exp(x
′

mβ̂)x
(j)
m

∑

m∈R(yk) exp(x′

mβ̂)
and R(yk) is the risk set at time yk,

• the dimension of rsjk
is p × n.

If the assumption of proportional hazards holds, large Schoenfeld residuals are not

expected to appear at late failure times. It means if PH assumption is satisfied, a plot

of these residuals against ordered death times should look like a tied down random

walk. Starting at 0 at time 0 and ending at 0 at time τ .

2.6.4 Scaled Schoenfeld residuals to test proportional hazard

assumption.

The S-plus default for checking the proportional hazards assumption is a formal test and

plot of scaled Schoenfeld residuals. The Schoenfeld residual is the difference between

the covariate at the failure time and the expected value of the covariate at this time.

As an alternative to proportional hazards, Therneau and Grambsch (2000) consider

time-varying coefficients β(t) = β + θ ∗ g(t), for some smooth function g. The function
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g(t) used here is the S-plus default, g(t) = 1 − S(t). Given g(t), they develop a score

test for H0 : θ = 0 based on a generalized least squares estimator for θ.

Defining scaled Schoenfeld residuals by the product of the inverse of the estimated

variance-covariance matrix of the kth Schoenfeld residual and the kth Schoenfeld resid-

ual, they show the kth scaled Schoenfeld residual has approximately mean θg(tk) and

the kth Schoenfeld residual has an easily computable variance-covariance matrix. Mo-

tivated by these results, they also develop a graphical method. They show by Monte

Carlo simulation studies that a smoothed scatter plot of β̂(tk), the kth scaled Schoen-

feld residual plus β̂, versus tk reveals the functional form of β(t). Under H0, we expect

to see a constant function over time. Both of these can be easily done with the S func-

tions cox.zph and plot. When the proportional hazards assumption holds, a relatively

straight horizontal line is expected.

2.6.5 Dfbetas to assess influence of each observation

To investigate influence of observation j on the regression coefficient estimates, one can

estimate the difference in β with and without observation j, i.e., β̂ − ˆβ(j), where ˆβ(j) is

the estimate of β without observation j. If β̂ − ˆβ(j) is close to zero, the jth observation

has little influence on the estimate, whereas large deviations suggest a large influence.

2.7 Example 1: CNS Lymphoma

The CNS lymphoma data is listed in Appendix Dataset 2.1. In this example we check

the adequacy of the PH model (Tableman and Kim, 2004). The data result from an

observational clinical study. It contained 7 variables for each patient:

NUMBER: patient number;

GROUP: 1=prior radiation; 0=no prior radiation with respect to 1st blood brain-

barrier disruption (BBBD) procedure to deliver chemotherapy;

SEX: 1=female; 0=male;

AGE: at time of 1st BBBD, recorded in years;
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STATUS: 1=dead; 0=alive;

DEATHTIME: time from 1st BBBBD to death in year;

SCORE: Karnofsky performance score before 1st BBBD, numerical value 0-100.

The full model for DEATHTIME in this situation is

h(t|z) = h0(t)exp(β ′z) = h0(t)exp(β1SCORE + β2GROUP + β3SEX + β4AGE).

Next, we go through model diagnostics to confirm whether or not the Cox model

does fit the data.

1. Cox-Snell residuals (Splus program given in Appendix 2.2).
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Figure 2.1: Cox-Snell residuals to asses model fit

Result:

We see from the Cox-Snell residual plot (Figure 2.1) that the model gives a reason-

able fit to the data. Overall the residuals fall on a straight line with an intercept
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zero and a slope one. Further, there are no large departures from the straight line

and no large variation at the right-hand tail.

2. The martingale residual plot to check functional form of the covariate SCORE

follows (the Splus program is given in Appendix 2.3).

Suppose that the covariate vector z is partitioned into a vector z∗ (GROUP, SEX,

AGE), for which we know the functional form, and a single continuous covariate

z1 (SCORE) for which we are unsure of what functional form to use. Let f(z1)

denote the best function for z1 to explain its effect on survival. Then the model

fitted to obtain the martingale residuals is

H(t | z∗, z1) = H0(t)exp(β∗z∗)exp[f(z1)].
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Figure 2.2: Martingale residuals to check functional form of the continuous variable

SCORE

Result:

In the plot of the martingale residuals, there appears to be a bump for SCORE

between 80 and 90. The lines before and after the bump nearly coincide. There-

fore, a linear form seems appropriate for SCORE, but from Figure 2.2, we see that

there appears to be a discrete time point where the slope changes. A dichotomized



Chapter 2. Cox proportional hazards model 26

transformation of the variable SCORE may be indicated. Later we will consider

this option.

3. Schoenfeld residuals to examine the fit and detect outlying covariate values (Splus

program given in Appendix 2.4).
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Figure 2.3: Schoenfeld residuals for SCORE against ordered survival time

Result:

From the Schoenfeld residuals plot (Figure 2.3), we find that the subjects with

the large absolute valued Schoenfeld residuals for SCORE have very early failure

times. Thus, these residuals do not cause specific concern. Therefore, the PH

assumption seems to be appropriate.

4. The scaled Schoenfeld residuals and the Grambsch and Therneau’s test for time-

varying coefficients to assess PH assumption (Splus program given in Appendix

2.5).

The cox.zph tests for the proportional hazards assumption are obtained for each

covariate, along with a global test for the model as a whole.

Result:
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rcho chisq p

SCORE 0.0218 0.0126 0.911

GROUP 0.1446 0.7782 0.378

SEX 0.1999 1.5761 0.209

AGE -0.0486 0.0944 0.759

GLOBAL NA 2.8853 0.577
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Figure 2.4: Plots of scaled Schoenfeld residuals against ordered time for each covariate

in a model fit to the CNS lymphoma data.

The results from the test for constancy of the coefficients based on scaled Schoen-

feld residuals indicate the PH assumption is satisfied by all four covariates in the

model with all p-values being at least 0.209. Figure 2.4, also supports that the

PH assumption is satisfied for all the covariates in the model.

5. The dfbetas to assess influence of each observation (Splus program given in Ap-

pendix 2.6).

Result:

The plot of the dfbetas, Figure 2.5, shows that the change in the regression

coefficients are less than 0.4. Therefore, we conclude that there are no influential

subjects.
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Figure 2.5: The dfbetas to detect influential observations

Conclusion:

Through the model diagnostics, we find that the model considered fits the data

very well.

2.8 Example 2: Inmate data

The file name.txt (data listed in Appendix Dataset 2.2) contains information on 432

inmates who were released from state prisons in the early 1970s. The aim of this study

was to determine the efficacy of financial aid to released inmates as a means of reducing

recividism (Allison, 1995). Half the inmates were randomly assigned to receive financial

aid. They were followed for one year after their release and were interviewed monthly

during that period. The dataset used here contains the following 9 variables: week,

arrest, fin, age, race, wexp, mar, paro, prio:

• week is the week of first arrest, week has a value of 52 if not arrested;

• arrest has a value of 1 if arrested, otherwise arrest has a value of 0;
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• fin has a value of 1 if the inmate received financial aid after release, otherwise, fin

has a value of 0. fin is randomly assigned, with equal numbers in each category;

• age is the age in years at the time of release;

• race has a value of 1 if the inmate is black, otherwise race has a value of 0;

• wexp has a value of 1 if the inmate has full-time work experience before incarcer-

ation, otherwise wexp has a value of 0;

• mar has a value of 1 if the inmate was married at the time of release, otherwise

mar has a value of 0;

• paro has a value of 1 if released on parole, otherwise paro has a value of 0;

• prio is the number of convictions prior to current incarceration.

Now we study a Cox regression of time to rearrest with the constant time covariates

specified as follows (Splus program is given in Appendix 2.7). The fitted model is

summarized as follows:

coef exp(coef) se(coef) z p lower .95 upper .95

fin -0.3794 0.684 0.1914 -1.983 0.0470 0.470 0.996

age -0.0574 0.944 0.0220 -2.611 0.0090 0.904 0.986

race 0.3139 1.369 0.3080 1.019 0.3100 0.748 2.503

wexp -0.1498 0.861 0.2122 -0.706 0.4800 0.568 1.305

mar -0.4337 0.648 0.3819 -1.136 0.2600 0.307 1.370

paro -0.0849 0.919 0.1958 -0.434 0.6600 0.626 1.348

prio 0.0915 1.096 0.0286 3.195 0.0014 1.036 1.159

Likelihood ratio test = 33.3 on 7 df, p=2.36e-05

Wald test = 32.1 on 7 df, p=3.86e-05

score (logrank) test = 33.5 on 7 df, p=2.11e-05

From the results, we see that:

1. The covariates age and prio have highly statistically significant coefficients, while

the coefficient for fin is marginally significant(p-value = 0.047). When we do a

backward elimination, we get the same result. So thereafter, we study the model

that only includes the three significant variables age, prio and fin.
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2. The exponentiated coefficients are interpretable as multiplicative effects on the

hazard. For example, holding the other covariates constant, an additional year

of age reduces the weekly hazard of rearrest by a factor of e−0.0574 = 0.0944 on

average, that is, by 5.6 percent. Similarly, each prior increases the hazard by a

factor of e0.0915 = 1.096, or 9.6 percent.

3. The likelihood-ratio, Wald and score tests are asymptotically equivalent tests of

the null hypothesis that all of the β’s are zero. In this example, the test statistics

are in close agreement, and the hypothesis is soundly rejected.

• Model diagnostics

As is the case for a linear or generalized linear model, it is desirable to determine

whether a fitted Cox regression model adequately describes the data. We will

briefly consider three kinds of diagnostics: checking proportional hazards, influ-

ential data, and nonlinearity (Therneau and Grambsch, 2000, Section 6 and 7).

All of these diagnostics use different types of the residuals.

1. Checking the proportional hazards assumption (Splus program is given in

Appendix 2.8).

Test and graphical diagnostics for the proportional hazards assumption

may be based on the scaled Schoenfeld residuals. More conveniently, the

cox.zph function, details are in 2.6.4 or (Therneau and Foundation, 1999)

calculates tests of the proportional hazards assumption for each covariate by

correlating the corresponding set of scaled Schoenfeld residuals with ordered

time. There is strong evidence for nonproportionality as shown by the large

global test statistic.

Now we eliminate the covariates whose coefficients were not statistically

significant.

coef exp(coef) se(coef) z p

fin -0.3469 0.707 0.1902 -1.82 0.06800

age -0.0671 0.935 0.0209 -3.22 0.00130

prio 0.0969 1.102 0.0273 3.56 0.00038

Likelihood ratio test = 29.1 on 3 df, p=2.19e-06 n=432

Note:

The coefficient for financial aid is the focus of the study. It now has

a two-sided p-value of 0.0608, so there is still marginal evidence for the
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effect of this covariate on the time of rearrest. The negative coefficient (-

0.3469) is what we expected, as financial aid is supposed to reduce the risk

of recidivism.

The cox.zph tests for the proportional hazards assumption are obtained

for each covariate, along with a global test for the model as a whole.

rho chisq p

fin -0.00657 0.00507 0.9432

age -0.20976 6.54118 0.0105

prio -0.08003 0.77263 0.3794

GLOBAL NA 7.12999 0.0679

Therefore, there is strong evidence of non-proportional hazard for age,

while the global test is not quite statistically significant. One way of accom-

modating non-proportional hazards is to build interactions between covari-

ates and time into the Cox regression model; such interactions are them-

selves time-dependent covariates, here we don’t study this case. Next we

plot graphs of the scaled Schoenfeld residuals (Figure 2.6) against ordered

time.
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Figure 2.6: Plots of scaled Shoenfeld residual against ordered time

Interpretation of these graphs is greatly facilitated by smoothing, for
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which cox.zph uses a smoothing spline, shown on each graph by a solid line.

The broken lines represent ±2-standard-error envelopes around the fit. Sys-

tematic departures from a horizontal line are indicative of non-proportional

hazards. The assumption of proportional hazards appears to be supported

for the covariates fin and prio, but there appears to be a little trend in the

plot for age, with the age effect declining with time. This effect was detected

in the test reported above.

2. Influential observations, for the model regressing time to rearrest on financial

aid, age and prior. (Splus program given in Appendix 2.9)
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Figure 2.7: Schoenfeld residuals for fin, age, prio against ordered survival time

Comparing the magnitudes of the largest dfbeta values to the regression

coefficients in Figure 2.7 suggests that none of the observations is terribly

influential individually (even though some of the dfbeta values for age are

large compared with the others).

3. Nonlinearity, that is, an incorrectly specified functional form in the para-

metric part of the model. The martingale residuals may be plotted against

covariates to detect nonlinearity. (Splus program is given in Appendix 2.10)

For the regression of time to rearrest on financial aid, age, and number

of prior arrests, let us examine the plots of martingale residuals against the

last two of these covariates: Nonlinearity is not an issue for financial aid,

because this covariate is dichotomous.

The resulting residual plots appear in Figure 2.8. The smooths in Figure

2.8 are produced by local linear regression (using the lowess function). There

is no evidence of nonlinearity here.
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Figure 2.8: Martingale residuals to check the functional form of the continuous variables

age and prio.



Chapter 3

Additive hazards regression models

One of the main purposes in survival analysis is to investigate the effects of risk factors

on disease occurrence or death. For this purpose, two models are predominantly con-

sidered, the proportional hazards model and the additive risk model. The log-linear (or

accelerated life) model is also widely used (Klein & Moeschberger, 2003, Section 12).

The proportional hazards model assumes multiplicative effects of risk factors on the

hazard function while the additive risk model assumes that the hazard function associ-

ated with a set of covariates is the sum of a baseline hazard function and a regression

function of covariates. The proportional hazards model has been more popular than the

additive risk model. As we showed in detail in the previous chapter, the multiplicative

model is the major framework for regression analysis of survival data, it is extremely

useful in practice since the estimated coefficients themselves or simple functions of them

can be used to provide estimates of hazard ratios. In addition, statistical software is

readily available and easy to use to fit models, check model assumptions and assess

model fit. However, the additive risk model is useful when risk difference, rather than

relative risk, is of main interest. Moreover, the additive risk model allows covariate

effects to vary with time.

The proportional hazards model has been studied by many authors since Cox

(1972), and the additive risk model has been considered by Aalen (1980, 1989). In this

thesis, we mainly study Aalen’s nonparametric additive hazards model, who discusses

issues of estimation, testing and assessment of model fit. His model is fully additive

and nonparametric and values of the regression coefficients are allowed to vary over

time. We present his model in more detail than the other additive models as it provides

the opportunity to not only fit an additive model, but the results of the fit can be

used to provide graphical descriptions that supplement fits of other models, such as

the proportional hazards model. Even though there are many advantages in using the
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additive hazards model, it is not widely used. One reason for this is that the model is not

available in any commonly used computer packages, such as SAS, S-PLUS. Presented

here is a SAS macro that fits the additive hazards regression.

In Chapter 2, we discussed the proportional hazards model, where the estimation

of the risk coefficients was based on the partial likelihood. In this model, these risk

coefficients were unknown constants whose value did not change over time. In this

chapter, we present an alternative model based on assuming that the covariates act in

an additive manner on an unknown baseline hazard rate. The unknown risk coefficients

in this model are allowed to be functions of time so that the effect of a covariate may

vary over time. As opposed to the proportional hazards model where likelihood based

estimation techniques are used, estimators of the risk coefficients are based on a least-

squares technique.

3.1 Description of Aalen’s additive regression model

A number of individuals are observed over time to see if a specified event occurs. The

individuals are assumed to be independent and any events happening to the individuals

are also assumed to be independent between individuals. The lifetime we observe may

be right-censored.

In this section, our data, based on a sample of size n, consist of the triple

[Tj , δj , [zj(t), 0 ≤ t ≤ Tj]], j = 1, 2, · · · , n,

where

• Tj: the time on study for the jth patient;

• δj: the event indicator for the jth patient (δj = 1 if event has occurred, 0 if the

lifetime is right-censored);

• zj(t) = [zj1(t), zj2(t), · · · , zjp(t)] is a p-vector of, possibly, time-dependent covari-

ates.

For the jth individual we define

Yj(t) =

{

1 if individual j is under observation (at risk) at time t−

0 if individual j is not under observation (not at risk) at time t−
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For right-censored data, Yj(t) is 1 if t ≤ Tj .

For the jth individual, the conditional hazard rate at time t, given zj(t), can be

modeled by the following linear model:

h[t|zj(t)] = β0(t) +

p
∑

k=1

βk(t)zjk(t).

The hazard at any time is thus a sum of a baseline hazard, β0(t), and a linear combina-

tion of the covariate values, zj(t). The coefficients βk(t), k = 1, 2, · · · , p, are unknown

regression functions to be estimated. These functions measure the influence of the re-

spective covariates. Because regression functions may vary with time, their analysis

may reveal changes in the influence of the covariates over time, which is one of the

main advantages of the additive model. This model is non-parametric in the sense that

no assumption is made about the functional forms of the regression functions.

Estimation of the risk coefficients is based on a least-squares technique (Huffler

and McKeague, 1991). This differs from estimation in the proportional hazards model

which is based on a partial or conditional likelihood. In fact, direct estimation of the

βk(t) is difficult. It is much easier to estimate the cumulative regression functions Bk(t)

(see equation (3.1) below) than the regression functions themselves. The column vector

B(t), with elements Bk(t), k = 1, 2, · · · , p, will be estimated, where

Bk(t) =

∫ t

0

βk(s)ds k = 0, 1, 2, · · · , p. (3.1)

To obtain the estimates, we first compute the n × (p + 1) matrix X(t) which is

defined as follows: for the ith row of X(t), we set Xi(t) = Yi(t)(1, Zj(t)). That is,

if the ith individual is a member of the risk set at time t (event has not happened

and the individual is not censored), then the ith row of X(t) is the vector Xi(t) =

(1, zj1(t), · · · , zjp(t)). If the ith individual is not in the risk set at time t, i.e, the

event of interest has already occurred or the individual has been censored, then the

corresponding row of X(t) contains only zeros.

Let T1 < T2 < · · · be the ordered observed times when at least one event occurs.

The least-squares estimate of the vector B(t) = (B0(t), B1(t), · · ·Bp(t))
′

, given in Klein

and Moeschberger (2003, section 10.2), is

B̂(t) =
∑

Ti≤t

[X
′

(Ti)X(Ti)]
−1X

′

(Ti)I(Ti) =
∑

Ti≤t

V (Ti)I(Ti), (3.2)
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where V (Ti) = [X
′

(Ti)X(Ti)]
−1X

′

(Ti) and I(Ti) is the n × 1 vector with ith element

equal to 1 if subject i experiences an event at time Ti and 0 otherwise.

It should be noted that the estimator B̂(t) is well defined as long as X(t) has full

rank and, therefore, X
′

X is invertible. Therefore, estimates are restricted to the time

interval where X is not singular. Also, the estimates of the baseline hazard rate are

not constrained to be non-negative.

From equation (3.1), we know that the estimators B̂k(t) estimate the integral of

the regression function βk(t). A crude estimate of βk(t) is given by the slope of our

estimate of Bk(t). Better estimates of βk(t) can be obtained by using a kernel-smoothing

technique, which we do not pursue here.

The main focus of the analysis in the additive risk model is on cumulative regression

plots; the cumulative regression functions are plotted against time and give a description

of how the covariates influence the survival over time. The slope of the plot of the

cumulative regression function against time gives information on whether the particular

covariate has a constant or time dependent effect. Positive slopes occur during periods

when increasing covariate values are associated with increases in the hazard function.

Negative slopes occur during periods when increasing covariate values are associated

with decreases in the hazard function. The cumulative regression function will have

roughly zero slope during periods when the covariate has no effect on the hazard.

The following estimator of the covariance matrix of B̂(t) is used:

COV = ˆvar(B̂(t)) =
∑

Ti≤t

[X
′

(Ti)X(Ti)]
−1X

′

(Ti)I
D(Ti)X(Ti){[X

′

(Ti)X(Ti)]
−1}

′

=
∑

Ti≤t

V (Ti)I
D(Ti)V (Ti)

′

,

where ID(Ti) is the diagonal matrix with diagonal elements equal to I(Ti). Confidence

intervals for B(t) can be constructed in the usual fashion:

B̂j(t) ± Z1−α/2[ ˆvar(B̂j(t))]
1/2.

3.2 Hypothesis tests

Hypothesis tests can be done with the additive hazards model. One primary question

may be whether a specific covariate has any influence on the distribution of lifetimes.
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We discuss testing the hypothesis of no regression effect for one or more covariates.

This corresponds to testing the following null hypothesis for some j = 1, 2, · · · , p:

H0j : βj(t) = 0, for all t

H1j : at least one of the βj(t)
′s is not 0 for some t (3.3)

Index (j) corresponds to the jth covariate in the analysis. Testing this hypothesis can

only be done in the range where X(t) has full rank. A test statistic for H0j is given by

the jth element Uj of the vector

U =
∑

Ti

W (Ti)[X
′

(Ti)X(Ti)]
−1X

′

(Ti)I(Ti) =
∑

Ti

W (Ti)V (Ti)I(Ti),

where V (Ti) = [X
′

(Ti)X(Ti)]
−1X

′

(Ti) and W (t) is a (p + 1) × (p + 1) diagonal matrix

of weight functions. Any weight function can be used in the calculation of the test

statistics. Here, we follow the suggestion of Aalen and use the weight matrix

W (t) = {diag[[X
′

(t)X(t)]−1]}−1.

The test statistic obtained is simply a weighted sum of the cumulative regression func-

tion estimator for all event times, because V (Ti)I(Ti) is recognized as the cumulative

regression function estimator B̂(t). The covariance matrix of U is estimated by the

formula

V =
∑

Ti

W (Ti)[X
′

(Ti)X(Ti)]
−1X

′

(Ti)I
D(Ti)X(Ti){[X

′

(Ti)X(Ti)]
−1}

′

W (Ti)

=
∑

Ti

W (Ti)V (Ti)I
D(Ti)V (Ti)

′

W (Ti).

To test an individual H0j , the test statistic UjV
−1/2
jj can be used. It has an asymp-

totic standard normal distribution under the null hypothesis. The global test statistic

for testing simultaneously H0j, for all j=1,2,...q, with q ≤ p, is obtained by constructing

the q-vector U∗
q = (U1, U2, · · · , Uq)

′

and the q×q matrix V ∗
q = ((Vge), g = 1, 2, · · · , q, e =

1, 2, · · · , q). The test statistic is the quadratic form

U
′

q

∗
V −1

q
∗
U∗

q ,

which has an asymptotic chi-square distribution with q degrees of freedom if the null

hypothesis is true.
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It is also possible to generalize testing to contrasts, or linear combinations of the

β’s. Let C be a r × (p + 1) matrix of r contrasts. The hypothesis tested will be

H0j : Cβ(t) = 0, for all t

H1j : Cβ(t) 6= 0, for some t.

The formulas for U , K, and V change slightly:

Wc(t) = {diag[C(X
′

(t)X(t))−1C
′

]}−1

U∗
c =

∑

Ti

Wc(Ti)C[X
′

(Ti)X(Ti)]
−1X

′

(Ti)I(Ti)

=
∑

Ti

Wc(Ti)CV (Ti)I(Ti)

V ∗
c =

∑

Ti

Wc(Ti)C[X
′

(Ti)X(Ti)]
−1X

′

(Ti)I
D(Ti)X(Ti){[X

′

(Ti)X(Ti)]
−1}

′

C
′

Wc(Ti)

=
∑

Ti

Wc(Ti)CV (Ti)I
D(Ti)V (Ti)

′

C
′

Wc(Ti).

The test statistic for H0 is U
′

c

∗
V −1

c
∗
U∗

c , which has a limiting chi-square distribution with

r degrees of freedom if the null hypothesis is true.

3.3 Assessing the fit of the additive model

One major question when applying the additive regression model, as well as other

statistical models, is whether it actually fits the data. Plotting methods for judging

goodness of fit, similar to those suggested for the Cox model, have been proposed. There

is a number of methods for checking the model fit for the Cox model, and several of

them can be extended to the additive model. Two such extensions are discussed below:

one is the Arjas plot, which simply compares the observed and expected number of

events as a function of time, for various subgroups of covariate values, and the other is

martingale residuals.

For the additive model at time t, when the covariate z(t) is time independent, the

estimated cumulative hazard rate, given in Klein and Moeschberger (1997, section 11.7)

is estimated by

Ĥ[t|z] = B̂0(t) +

p
∑

k=1

B̂k(t)zk,

where B̂k(t), k = 0, 1, · · ·p, are the least squares estimators given by (3.2).
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As before, let Nj(t) have a value 1 at time t if individual j has been observed to

experience the event of interest before or at t and 0 if the individual has yet to experience

the event of interest (until the event of interest has occurred); if the individual is

censored, Nj(t) will stay at 0.

The martingale residual for the jth individual at time t is given by the difference

between Nj(t) (the observed number of deaths) and Ĥ [t|zj(t)] (the expected number of

deaths under the additive model):

M̂j(t) = Nj(t) − Ĥ[t|zj(t)], j = 1, 2, · · · , n.

These residuals, which are defined for t ≤ τ , (τ is the maximal value of t for which the

matrix X(t) is a nonsingular matrix), are martingales and, at any event time, the sum

of these residuals over all n observations is zero.

To assess model fit, we pick groups of individuals who might be expected to show

deviation from the proposed model. Suppose there are q such groups. The first plot is

the Arjas plot. Here, we plot the sum of Nj(t) over the gth group against the values

of Ĥ[t|zj(t)] summed over this group. A point is generated for each group at each

event time, and the points are connected. Here, we are plotting the observed number

of deaths in a group against the expected number of deaths in a group. If the model

holds, this plot should look like a 45◦ line through the origin for each group.

In the second plot, we graph the martingale residuals (Kim and Lee, 1996). The

advantage of looking at the martingale residuals is that it gives a picture of how ac-

cumulated hazard compares to events occurred over time. The idea is to compare the

martingale residual for a subgroup (for example the gth group) within a data set with

different covariate values, to see if the model is valid for all subgroups. The martingale

residual at time t for a given group is the sum of the martingale residuals at time t over

the members of the group. These sums are then plotted against time. If the model

holds, the plotted curves should be close to zero. To determine if the martingale resid-

ual process is too far from zero for a model to be acceptable, we need to compute an

estimate of the variance of the martingale residual process. Let Q be the n × q matrix

which has as its jth row a 1 in the column of the group the jth observation belongs to

and 0 in other columns. Let M(t) be the vector [M̂1(t), · · · , M̂n(t)]
′

. The Q-vector of

martingale residuals summed over groups is given by

Mres(t) = Q
′

M
′

.

At an event time ti, let Di be the n × n matrix of all zeros except for the diagonal

elements corresponding to individuals who die at time ti, where the diagonal element
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has the value 1. Let Xi be the n × (p + 1) matrix whose jth row is zero if the jth

individual is not at risk at time ti and has the value (1, z1(ti), · · · , zp(ti)) if individual

j is at risk. Finally, let I be the n× n identity matrix. Then the covariance matrix for

Mres(t) is

Cov[Mres(t)] =
∑

ti≤t

Q
′

[I − Xi(X
′

iXi)
−1X

′

i ]Di[I − Xi(X
′

iXi)
−1X

′

i ]
′

Q. (3.4)

Note that the covariance matrix is singular when each individual are in one of the q

groups. Confidence intervals for Mres(t) can be constructed in the usual fashion:

Mres(t) ± Z1−α/2(Cov[Mres(t)])
1/2. (3.5)

A plot of Mres(t) against time for various groups with 95% pointwise confidence

intervals constructed using (3.5) is used to assess model fit.

We can use both types of plots to assess the fit of the additive model. The Arjas

plot gives a clearer indication of lack of model fit than the martingale residual plot, but

the martingale residual plot, which explicitly involves time, gives a clearer indication

where problems may be arising from in the fit of the model.

3.4 An illustration

In order to illustrate the use of the Aalen additive model, we fit it to some of the data

from the UIS study data set (data listed in Appendix Dataset 3.1) which contains 628

records. The variables represented in the dataset are as follows:

TIME: Time to Return to Drug Use (Measured from Admission);

CENSOR: Returned to Drug Use (1 = Returned to Drug Use, 0 = Otherwise);

AGE: Age at Enrollment years;

BECKTOTA: Beck DepressionScore (0.000 - 54.000);

NDRUGTX: Number of Prior Drug Treatment (0 - 40);
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IVHX: History of IV Drug Use ( 1 = Never, 2 = Previous, 3 = Recent);

RACE: Subject’s Race ( 0 = White, 1 = Non-White);

TREAT: Treatment Randomization ( 0 = Short, 1 = long);

SITE: Treatment Site ( 0 = A, 1 = B).

Where we fit a model for TIME containing seven main effect. We know that the

main focus of the analysis in the additive risk model is on cumulative regression plots

(Howell, 1996). The cumulative regression functions are plotted against time and give a

description of how the covariates influence the survival over time. The slope of the plot

of the cumulative regression function against time gives information on whether the

particular covariate has a constant or time dependent effect. Now we describe what the

plots of the cumulative regression coefficients are expected to look like under different

types of covariate effects. If a regression coefficient is constant over time, it follows that

the plot of the estimated cumulative regression coefficient should look like a straight

line through the origin, with slope equal to the value of the coefficient. Deviation

from a straight line in any time interval in the plot provides empirical evidence for a

time-varying effect in the covariate.

• Now we study cumulative regression functions plots for this data set.

Figures 3.1-3.8 contain eight separate plots, one for the baseline cumulative hazard

model, and one for each term in the fitted model. Each of the eight subfigures

contains the plot of an estimated cumulative regression coefficient, along with its

upper and lower 95 percent pointwise confidence limits.

Figure 3.1 presents the graph of the estimated baseline cumulative hazard func-

tion. We note that the function increases sharply in a nearly linear fashion over

the first 400 days, suggesting that the hazard for the baseline subject described

above is approximately constant. There is little or no further increase beyond 400

days.

Figure 3.2 presents the graph for AGE. The estimated cumulative regression coef-

ficient decreases nearly linearly over the entire 600-day interval. There is a slight

upwards bump in the plot between 300 and 400 days, but the plot continues to

decrease linearly after 400 days. Overall, the plot suggests that there is a decrease

in the hazard rate with increasing age that remains in effect over the entire time

period.

Figure 3.3 presents the graph for BECKTOTA (Beck Depression Score). The

plot is nearly linear with a positive slope for the first 200 days, at which point it
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decreases slowly toward zero. We also note that after about 200 days, a horizontal

line is contained within the band for the lower 95 percent confidence limit. This

plot suggests that increasing values of the BECKTOTA initially increase the

hazard rate and then have no effect.

Figure 3.4 presents the graph for NDRUGTX (Number of Prior Drug Treatments).

The plot is nearly linear, with a positive slope over the entire 500 days. This plot

suggests that the number of treatments increases the hazard over the entire time

period.

Figure 3.5 presents the graph for IVHX (History of IV Drug Use). The plot is

nearly linear with a slight positive slope over the first 400 days. However, in

this time period the zero line is contained within the lower 95 percent confidence

bands, which suggests that the covariate may not provide a significant additive

increase to the hazard rate during the first 400 days of follow-up.

Figure 3.6 presents the graph for RACE ( 0 = White, 1 = Non-White). The

plot decreases linearly for the first 100 days of follow-up, so it appears that, in

this time interval, non-white race is associated with a constant and significant

decrease in the hazard rate. After about 150 days, it appears that the covariate

no longer has any effect, as the upper confidence band contains a horizontal line.

This plot suggests that non-white race has only an early effect on the hazard rate.

Figure 3.7 presents the graph for TREAT (0 = short, 1 = long). Examining the

plot we see that during the first 150 days, the covariate has no significant effect.

This conclusion is based on the observation that the confidence bands contain a

horizontal line in this interval. For the next days the plot decreases sharply and

nearly linearly, and the confidence bands no longer include the zero line. This

suggests that assignment to the long treatment provides a significant decrease in

the hazard rate, starting after 150 days.

Figure 3.8 presents the graph for SITE. The plot shows no consistent trend in any

time interval, and a horizontal line is contained within the 95 percent confidence

bands. Thus, there appears to be no significant increase or decrease in the hazard

rate associated with SITE.

All the cumulative regression function plots above and outputs below were ob-

tained with a SAS macro program given in Appendix 3.1.

Output results:

Additive hazards model

575 observation used in analysis
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Estimates are restricted to the time interval 0 to 654

Global Test

Chi-Square d.f p-value

41.9600 7 0.0000

Table 3.1: Effect, Chi-Square, d.f, p-value
Effect Chi-Square d.f p-value

AGE 13.6903 1 0.0002

BECKTOTA 2.3413 1 0.1260

NDRUGTX 7.7907 1 0.0053

IVHX 7.6689 1 0.0056

RACE 3.9500 1 0.0469

TREATE 6.6554 1 0.0099

SITE 0.5295 1 0.4668

From the results of Table 3.1 above, we see that variables BECKTOTA and SITE

have no effect and after we do a backward elimination, we get similar results. We

also drew similar conclusions from the cumulative regression function plots.

• Model diagnostics

We shall use residual theory to examine the fit of the additive model to the

UIS dataset. To assess model fit, we shall focus on the AGE covariate, the only

continuous covariate with a significant effect. We divide subjects into two groups:

those with age less than 32.4 and those with age greater than or equal to 32.4.

Figure 3.9 shows the Arjas plot for the two groups. We see that both curves follow

a 45◦ line very well, and there is no indication of incorrect modeling of the age

covariate. Figure 3.10 shows the martingale residual process plot for the less than

32.4 age group and 95% pointwise confidence limits. We note that the confidence

intervals contain zero, so, again, there is no evidence of lack of model fit. The

conclusion is the same for the greater than 32.4 age group. Similar plots, where

the observations are grouped by other covariate, show very good fit of the model.

Since programs to make Arjas and martingale residual plots to examine the fit of

the additive model are not directly available in SAS, we use a MATLAB program

to plot them. The program is given in the Appendix 3.2.
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Figure 3.1: Baseline cumulative hazard function
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Figure 3.2: Cumulative regression coefficient for AGE
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Figure 3.3: Cumulative regression coefficient for BECKTOTA
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Figure 3.4: Cumulative regression coefficient for NDRUGTX
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Figure 3.5: Cumulative regression coefficient for IVHX
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Figure 3.6: Cumulative regression coefficient for RACE
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Figure 3.7: Cumulative regression coefficient for TREATE
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Figure 3.8: Cumulative regression coefficient for SITE
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Figure 3.9: Arjas plot to check the adequacy of the additive hazard model. Age less

than 32.4 (blue), age greater than 32.4 (green)
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Figure 3.10: Martingale residual process plot and 95% pointwise confidence limits for

the under 32.4 age group.



Chapter 4

A comparison between the

multiplicative and additive risk

models

The primary objective of this chapter is to investigate and compare the use of the Cox

proportional hazards model and Aalen’s additive model in the analysis of survival data

through application and simulation (Torner, 2004).

In sections 4.2 to 4.4, survival data from a study of 90 male laryngeal cancer patients

is investigated using the Cox proportional hazards model. The model is optimized by

examining different aspects and use of appropriate residual plots. After optimizing

the Cox model, the same data is used to fit an additive model. Plots of the martingale

residual process and Arjas plots are used to check model fit and optimize model options.

The information gained from fitting the two models is similar in some respects, but

also quite different in others. Both procedures result in the same covariates selected

to remain in the model. The Cox model yields easily interpreted estimates of the

covariate effects, but the assumption of proportional hazards is necessary to make these

estimates valid. The additive model and plots of the cumulative regression functions

give an appealing understanding of how the hazard profile evolves with time.

In section 4.5, the power and robustness of tests of significant covariate effects

based on the Cox and additive hazards model are compared through simulation.
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4.1 Introduction

Laryngeal cancer is the most common malignant disease for males in northern Europe

and North America. The data used is from Kardaun (1983) who reported data on

90 males diagnosed with cancer of the larynx during the period 1970-1978 at a Dutch

hospital. Times recorded are the intervals (in years) between first treatment and either

death or the end of the study (January 2, 1983). Also recorded are the patient’s age

at the time of diagnosis, the year of diagnosis, and the stage of the patient’s cancer.

The four stages of disease in the study were based on the T.N.M (primary tumor (T),

nodal involvement (N), and distant metastasis (M) grading) classification used by the

American Joint Committee for Cancer Staging (1972). The four groups are Stage 1,

T1N0M0 with 33 patients; Stage 2, T2N0M0 with 17 patients; Stage 3, T3N0M0 and

TxN1M0, with 27 patients; x=1,2, or 3; and Stage 4, all other TNM combinations with

13 patients. These stages are used internationally to classify the disease for treatment

decisions and prognosis. Since this classification system is truly international it is

convenient to compare different studies and regimes used in different countries. The

four groups are labeled Stage 1 through Stage 4, which is ordering the stages from least

serious to most serious. Now we describe this data set. The variables represented in

the dataset are as follows:

stage: Stage of disease (1=stage 1, 2=stage 2, 3=stage 3, 4=stage 4)

time: Time to death or on-study time, months

age: Age at diagnosis of larynx cancer

dyear: Year of diagnosis of larynx cancer

death: Death indicator (0=alive, 1=dead)

This present work aims to investigate the use of two statistical models to model

the survival of patients. The work is divided in the following parts:

• To build a traditional Cox proportional hazards model to describe which factors

influence the survival of these patients.

• To fit an additive regression model to the same data with the same purpose.

• To compare the results derived using the Cox proportional hazards model with

the results from fitting the additive model.
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Data from a clinical study have kindly been made available by Klein and Moeschberger

(2003).

4.2 Cox Proportional Hazard Regression Model

In Chapter 2, we have already studied in detail the Cox proportional hazards model.

4.2.1 Cox model with several covariates

A dataset of 90 males diagnosed with cancer of the larynx was described in Section

4.1. Here we code the variable “stage of disease” in preparation for performing a

proportional hazards regression test. Since stage has four levels, we adopt the usual

indicator variable coding methodology and construct the indicator variables as follows:

stage2 = 1, if the patient is in stage 2, 0 otherwise ;

stage3 = 1, if the patient is in stage 3, 0 otherwise ;

stage4 = 1, if the patient is in stage 4, 0 otherwise .

For a patient with Stage 1 cancer, we have stage2 = stage3 = stage4 =0.

The full model for this situation is

h(t|z) = h0(t)exp(β ′z) = h0(t)exp(β1age + β2stage2 + β3stage3 + β4stage4).

The initial fitting of this Cox proportional hazards model yielded the results of Table

4.1.

Table 4.1: Results of preliminary fitting of Cox model

Variable DF Parameter Standard Chi-Square pr > ChiSq Hazard

Estimate Error Ratio

AGE 1 0.01890 0.01425 1.7589 0.1848 1.019

stage2 1 0.13842 0.46232 0.0896 0.7646 1.148

stage3 1 0.63815 0.35609 3.2116 0.0731 1.893

stage4 1 1.69333 0.42218 16.0876 < .0001 5.438

The estimates of the parameters are obtained as

b1 = 0.0189 b2 = 0.13842 b3 = 0.63815 b4 = 1.69333.
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From Table 4.1, we find the variable AGE was not significant (p=0.1848), but

variable AGE has often been an important predictor in larynx cancer, so it will be kept

in the model with the other variables. Through model checking in section 4.2.2, we find

that the model considered fits the data very well.

The plot of the survival probabilities for the stage1, stage2, stage3, stage4 in Figure

4.1 at the end of this chapter shows that the curves are not equal but diverge. This is

also consistent with the general clinical perception of stage1-stage4, stage4 is a more

advanced stage of the disease and the progress of the disease is inevitable. For stage1,

the prognosis is more uncertain and some patients may have somewhat longer life

expectancy.

From Table 4.2, we see at six years the estimated survival probabilities for a 65-year-

old are 0.64235 for a stage1 patient, 0.60150 for a stage2 patient, 0.43263 for a stage3

patient, and 0.09010 for a stage4 patient. At 6 years, 95% confidence intervals for the

survival function, based on the log transformation, are (0.46668, 0.77332), (0.33486,

0.78963), (0.24430, 0.60767), (0.00887, 0.29349), for stage1, stage2, stage3, stage4,

respectively. (SAS programme is given in the Appendix 4.1)

Table 4.2: The estimated survival probabilities and 95% confidence limits

age stage2 stage3 stage4 time survival slower supper

65 0 0 0 6 0.64235 0.46668 0.77332

65 0 1 0 6 0.43263 0.24430 0.60767

65 0 0 1 6 0.09010 0.00887 0.29349

65 1 0 0 6 0.60150 0.33486 0.78963

4.2.2 Model checking

This initial model has been fitted without considering the best functional form of the

continuous variables (age) and without questioning the underlying assumption of pro-

portional hazard. The fit of this preliminary model was therefore investigated by ex-

amining the following residual plots.

• The overall fit of the Cox model was investigated by Cox-Snell residuals, as de-

scribed in section 2.6 (SAS program given in the Appendix 4.2).

Figure 4.2 is a plot of the residuals versus the estimated cumulative hazard of the

residuals. If the Cox model fits the data, the plot should follow the 45◦ line. The
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plot suggests that this model does not fit too badly.

• The functional form of the continuous variable AGE was investigated by examin-

ing martingale residuals.

We shall examine the problem of determining the functional form to be used for

a given covariate to best explain its effect on survival through a Cox proportional

hazards model. The best functional form may be a transform of the covariate,

such as lnZ, Z2, or ZlnZ, or it may be a discretized version of the covariate.

In fact, it is common practice in many medical studies to discretize continuous

covariates, and the residuals presented here are useful for determining cut points

for the covariates.

The functional form of the covariate AGE needs to be checked. We have

chosen to use martingale residuals to try to determine the correct functional form

of the AGE covariate. In Section 2.6, we have studied in detail its theory and

its formula. If the martingale plot is linear, no transformation is needed. Includ-

ing the untransformed covariate in the model together with the other covariates

yields an appropriate regression coefficient. If, however, there appears to be a

discrete time point where the slope changes, a dichotomized transformation of

the covariate may be indicated.

Looking at a martingale residual plot (Figure 4.3) for our data, for the AGE

covariate, the smoothed curve is roughly linear at all time interval, but from this

plot, we find at time 65 and at time 75, there might be a little bit of change. So

we might think that the AGE covariate may be coded as an indicator variable.

To verify, the indicator variable NEWAGE is thus defined as follows:

NEWAGE =

{

0 if AGE < Θ

1 if AGE ≥ Θ .

The cut-off value Θ is chosen from the values of AGE in the dataset. A profile

likelihood may be plotted for each AGE value in the data set and the Θ value

yielding the highest value of the log-likelihood is chosen (Klein and Moeschberger,

2003, Section 8.4). Here we found (from Table 4.3) that each AGE value yielded

the same log-likelihood value (-195.906), so we decide that the original covariate

AGE in the model does not need to be transformed (SAS program is shown in

the Appendix 4.3).

• The proportional hazards assumption was investigated by examining scaled Schoen-

feld residuals

The proportional hazards assumption was examined for the variables STAGE

and AGE. The S-plus default for checking the proportional hazards assumption
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Table 4.3: Log Partial Likelihood as a Function of Θ at the Failure Times

Value of AGE Log Partial Likelihood

41 -195.906

43 -195.906

45 -195.906

47 -195.906

48 -195.906

. -195.906

. -195.906

70 -195.906

71 -195.906

72 -195.906

is a formal test and plot of scaled Schoenfeld residuals. The Schoenfeld residual

is the difference between the covariate at the failure time and the expected value

of the covariate at this time. The results of the test of the proportional hazards

assumption is presented in Table 4.4. The scaled Schoenfeld residuals for the the

variables are plotted in Figure 4.4, together with a smooth. When the proportional

hazards assumption holds, a relatively straight horizontal line is expected. The

results from Table 4.4 and Figure 4.4 based on scaled Schoenfeld residuals indicate

the PH assumption is satisfied by all variables in the model.

Table 4.4: Test of proportional hazards assumption
covariate rho chisq p

stage -0.285 4.23 0.0897

age 0.133 1.14 0.2848

GLOBAL NA 5.21 0.0740

Overall, the residuals seem reasonable and no subjects will be considered for ex-

clusion from the analysis.

4.3 Additive Hazards Regression Model

In the Cox model the covariates are assumed to act multiplicatively on a baseline

hazard. The baseline hazard is the hazard for individuals with covariate values equal to
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zero and this hazard is a function of time. The model is semi-parametric in the sense

that constant proportional hazard throughout the study is assumed. In some cases this

assumption of constant proportional hazards may not always be valid.

An alternative to the Cox model, which does not assume constant proportional

hazards, is an additive model, proposed by Aalen (1989). In this model the covariates

are modeled as additive risks to a baseline hazard and the regression coefficients are

allowed to vary freely over time.

4.3.1 Fitting of the additive model

The data described above, with covariate formation for stage2, stage3, stage4 and age,

was fitted as an additive model. The results are presented graphically below with

time on the x-axis and cumulative regression functions on the y-axis. The dotted lines

indicate 95 percent pointwise confidence intervals.

Here, the estimated cumulative baseline hazard B̂0(t) (Figure 4.5) is an estimate of

the cumulative hazard rate of a stage 1 patient aged 64.11. B̂1(t), B̂2(t), B̂3(t) (Figure

4.6 - 4.8) show the cumulative excess risk due to stage 2, 3 or 4 patients of a given age

compared to stage 1 patients with a similar age. Here, it appears there is little excess

risk due to being a stage 2 patient, whereas stage 3 and stage 4 have an elevated risk in

the first two years following diagnosis where the slopes of the two cumulative hazards

are nonzero. Figure 4.9 shows the excess risk due to age.

All the cumulative regression function plots above and outputs below were obtained

with a SAS macro programme given in the Appendix 4.4. These results are summarized

below.

Output results:

Additive hazards model

Estimates are restricted to the time interval 0 to 4.30

Global Test
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Chi-Square d.f p-value

10.9613 4 0.0270

Table 4.5: Effect, Chi-Square, d.f, p-value

Effect Chi-Square d.f p-value

stage2 0.1456 1 0.7027

stage3 3.0062 1 0.0829

stage4 8.4655 1 0.0036

age 0.2333 1 0.6291

This table (Table 4.5) suggests that, adjusted for age, there is little difference

between the survival rates of Stage 2 or Stage 3 patients compared to Stage 1 patients

(p-values > 0.05), but that Stage 4 patients have a significantly different survival (p-

value of 0.0036).

4.3.2 Model Checking of Additive Model

Now, we use martingale residual plots and Arjas plots to check the initial fitting of the

additive model.

In our data set there is only one covariate with continuous values, AGE. Fitting

the Cox model it was shown that this covariate should not be transformed. Below we

investigate if and how well the untransformed AGE covariate fits in the additive model.

The concept behind Arjas plots is to plot the expected number of failures against

the actual number of failures in sub-groups with different covariate values. The sub-

groups chosen were the same sub-groups of AGE values as in the martingale residual

plot. These are the sub-groups relevant from a clinical perspective and it also gives an

opportunity to compare the model information from these two residual plots. An Arjas

plot is not a true residual plot, but deviations from the 45◦ slope will give essentially

the same information. We shall use these techniques to examine the initial fit of the

additive model to data on laryngeal cancer.

To assess model fit, we shall focus on the age covariate. We divide subjects into

two groups: those with ages less than 64.11 and those with ages greater than or equal

to 64.11. Figure 4.10 shows the Arjas plot for the two groups. We see that both curves

follow a 45◦ line quite well, and there is no indication of incorrect modeling of the AGE

covariate. The martingale residual plot was plotted for subgroups of Age in our data
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set. Figure 4.11 shows the martingale residual process plot for the less than 64.11 age

group and 95% point wise confidence limits. We note that the confidence intervals all

contain zero, so, again, there is no evidence of lack of model fit.

4.4 Concluding remarks of example

The data set examined in this comparative study is fairly small, 90 patients. The

comparison made here is very informal in nature and information gained from fitting

the Cox model has been used in optimizing choices for the additive model as well. The

Cox model and Aalen’s additive model give similar results with regard to covariates

selected to remain in the model. Even though we find that the variable AGE was not

significant (p=0.1848) under the Cox model and (p=0.6291) under the additive model,

the variable AGE is a very important predictor in larynx cancer, so it was kept in the

model with other variables.

Now, we summarize common characters between the Cox model and Aalen’s addi-

tive model.

1. These two models can both be used to investigate the effects of risk factors on

time to event. They can handle censored and/or truncated observations.

2. Using both models, we got almost the same initial p-value. Table 4.6 shows this

comparison of p-values for the Cox model and the additive model.

Table 4.6: Comparison of p-values for covariates under the Cox model and the additive

model
Covariate Cox p-value Additive p-value

AGE 0.1848 0.6291

stage2 0.7646 0.7027

stage3 0.0731 0.0829

stage4 < .0001 0.0036

3. They all use residual plots (martingale residual plot and Arjas plot) to check

initial fitting.

Next, we summarize different characters between the Cox model and Aalen’s ad-

ditive model.
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1. Even though these two models all can be used to investigate the effects of risk

factors on disease occurrence or death, the Cox model has been more popular than the

additive risk model. As we showed in detail in Chapter 2, the Cox model is established

as the major framework for regression analysis of survival data, it is extremely useful

in practice since the estimated coefficients themselves or simple functions of them can

be used to provide estimates of hazard ratios.

2. For the Cox model, the effect of the covariates on survival is to act multi-

plicatively on some unknown baseline hazard rate, which makes it difficult to model

covariate effects that change over time. An alternate model is Aalen’s additive model.

This model assumes that the covariates act in an additive manner on an unknown

baseline hazard rate. The unknown risk coefficients are allowed to be functions of time

so that the effect of a covariate may vary over time. It is an advantage of using the

additive hazards model.

3. For the Cox model, estimation of the risk coefficient was based on the partial

likelihood. For the additive model, estimators of the risk coefficients are based on a

least-squares technique. The estimates of the baseline hazard rate are not constrained

to be nonnegative by this least-squares estimation procedure. In fact, if continuous

covariates are not centered at their mean values, the estimator of β0(t) may be negative.

4. Aalen (1989) shows that if a covariate is independent of all the other covariates

in the model, then, the regression model with this covariate eliminated is the same as

the regression model with this variable included. Note that this is not true for the Cox

proportional hazards model.

5. The test procedure for the effect of covariates is similar but not equivalent. The

null hypothesis for the additive model:

H0 : βj(t) = 0 for all t

corresponds to the null hypothesis in the Cox model:

H0 : βj = 0.

The alternative hypotheses, in favor of which the null hypothesis may be rejected, are,

however, quite dissimilar for the two models. The alternative for the additive model

states

H1 : βj(t) 6= 0 for some t,
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which is a weaker alternative compared to the alternative hypothesis in the Cox model,

H1 : βj 6= 0,

which is valid for all t. This would imply that to reject the null hypothesis in the Cox

model, we would require that the best overall estimate of β, which is valid for all time

points, is different from 0. However, one must remember that the test statistic in the

additive model is designed as a weighted combination of all β(t), which means that the

null hypothesis may not be so easily rejected even if there are significant deviations

from the null hypothesis at a few time points.

6. In practice, we found that it is not appropriate to use Aalen’s additive hazards

model for all datasets, because when we estimate cumulative regression functions B(t),

they are restricted to the time interval where X (X has been defined in Chapter 3) is of

full rank, that means X
′

X is invertible. Sometimes we found that X is not of full rank,

which was not a problem with the Cox model.

7. In addition, for the Cox model, statistical software (SAS, SPLUS, R) is readily

available and easy to use to fit models, check model assumptions and assess model fit.

For Aalen’s additive model, the model is not available in any commonly used computer

packages, such as SAS, SPSS, SPLUS. In Chapter 3, we use a SAS macro that performs

the additive hazards regression. This macro calculates the parameter estimates and

respective standard deviations and confidence intervals. Line plots can be printed of

each parameter estimate versus time to view how the covariate effects may change over

time. But SAS macro is not publicly available to print the residual plots suggested by

Aalen (1989) to check the validity of the model, we had to write MATLAB programs

to create these plots.

An overall conclusion is that the two models give different pieces of information

and should not be viewed as alternatives to each other, but as complementary methods

that may be used together to give a fuller and more comprehensive understanding of

data.

4.5 A comparison by simulation

In this section, we want to assess robustness and power of tests based on the Cox model

and additive hazards model. We do so by generating random datasets. Here, the Monte

Carlo power of each test will be calculated to find which test is more powerful.
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Here is a quick description of the models that will be used in the simulation, with a

very quick explanation of how to simulate data from these models. We generate uncen-

sored random samples of the form (ti, zi), i = 1, 2...n, where z is a binary covariate and

ti, given zi, is simulated from three different models. The first model is a proportional

hazards model, the second model is an accelerated failure time model and the third

model is an additive hazards model. All models give the same log logistic distribution

at z = 0, but different distributions at z = 1 (see Figure 4.12). The parameters under

z = 1 have been chosen such that the probability of survival to 10 years is the same in

each model.

Model 1: Cox model with β = 0.6 and a log logistic baseline hazard with parame-

ters λ = 0.2 and γ = 4, i.e.,

h(x|z) =
0.2 · 4 · (0.2x)4−1

1 + (0.2x)4
e0.6z.

Model 2: Log linear model

ln X = β0 + β1z + σW,

where β0 = − ln 0.2, β1 = −0.568245, σ = 1/4 and W is logistic(0,1).

Model 3: Additive hazards model

H(x|z) = B0(x) + B1(x)z,

where B0(x) = ln(1 + (0.2x)4), B1(x) = ln(1 + (0.15874x)6) − ln(1 + (0.2x)4).

Model 0: Any of models 1 to 3 with z = 0, i.e.,

h(x|z = 0) =
0.2 · 4 · (0.2x)4−1

1 + (0.2x)4
.

We performed a series of simulation studies to assess the power and robustness of

the test of no effect of z with each of the proportional and additive hazards models.

Sample sizes of 50 and 200 were considered. At first, we simulated datasets from all 3

models with R and SAS, with 50 observations (25 with z = 0 and 25 with z = 1) and

fitted the Cox and the additive hazards model. We tested for no covariate effect using
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the score test under the Cox model and the test of (3.3) under the additive hazards

model. We have repeated this procedure with samples of 200 observations (100 with

z = 0 and 100 with z = 1). For each model and each sample size, 1000 samples were

simulated.

For each sample simulated, the test statistics under both models were saved and

each simulation was classified as a “success” or a “failure”, depending on whether the

corresponding p-value was less than or greater than 0.05, respectively. We know that

for both models, the test statistic follows a chi-square with 1 degree of freedom under

H0. The 95th percentile of that distribution being 3.841, we reject H0 when the test

statistic is >= 3.841, and we do not reject H0 when the test statistic is < 3.841.

The simulation results are summarized in Table 4.7 (the programs are given in the

Appendix).

Table 4.7: Proportions of rejections of H0: no covariate effect

N=1000 Cox model Additive hazards model

Model 0: n=50 0.053 0.045

n=200 0.048 0.044

Model 1: n=50 0.556 0.515

n=200 0.993 0.99

Model 2: n=50 0.971 0.959

n=200 1 1

Model 3: n=50 0.28 0.308

n=200 0.707 0.939

From Table 4.7, we find that for model 0, both the Cox and additive hazard models

accept H0 in a proportion very close to the nominal 0.05 level.

For Model 1, both models reject H0 often, as expected, but we find that the test

statistic based on the Cox model has slightly greater power than the test statistic based

on the additive hazards model. This had to be expected since Model 1 is a Cox model.

However, we must admit that the additive hazards model is surprisingly powerful here.

For Model 2, both models reject H0 often. Though Model 2 is neither a Cox nor

an additive hazards model, both tests seem to be roughly as powerful in this case.

For Model 3, both models reject H0 as often, but we find that the test statistic

based on the additive hazards model has greater power than the test statistic based

on Cox model (especially when n=200). This had to be expected since Model 3 is an
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additive hazards model.

From this small study, we can see that when testing for the effect of a binary co-

variate on survival, both tests exhibit good robustness properties. The additive hazards

model proved to be surprisingly powerful under non additive alternatives.
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Figure 4.1: Estimated survival functions for a 65 year old larynx cancer patient. Stage1

cancer (red) stage2 (green) stage3 (blue) stage4 (black).
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Figure 4.2: Cox-Snell residual plot
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Figure 4.3: Martingale residuals plot
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Figure 4.4: Scaled Schoenfeld Residuals
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Figure 4.5: Baseline cumulative hazard function
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Figure 4.6: Cumulative regression coefficient for stage2
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Figure 4.7: Cumulative regression coefficient for stage3
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Figure 4.8: Cumulative regression coefficient for stage4
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Figure 4.9: Cumulative regression coefficient for age
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Figure 4.10: Arjas plot to check the adequacy of the additive hazard model. Age less

than 64.11 (blue), age greater than 64.11 (green)
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Figure 4.11: Martingale residual process plot and 95% pointwise confidence limits for

the under 64.11 age group.
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Chapter 5

Conclusion

A problem frequently faced by applied statisticians is the analysis of time to event

data. Survival analysis is just another name for time to event analysis. It is being

extensively used in clinical trials, biological and epidemiological studies, engineering,

finance and social sciences. The analysis of survival experiments is complicated by

issues of censoring. In this thesis, we focused on right censored data since this type of

data is most frequently encountered in applications.

In Chapter 1, we briefly introduced basic concepts and terminology of survival

analysis and how to construct likelihood functions for censored and truncated data.

These formed the theoretical basis for following chapters.

In Chapter 2, we presented a detailed discussion of the Cox proportional hazards

model through theory and application. It included the Cox model partial likelihood

construction, hypothesis tests, and discussions of a variety of residual plots one can

make to check the fit of the Cox model.

In Chapter 3, we presented a detailed discussion of Aalen’s additive hazards re-

gression model, which may be the model of choice in situations where the proportional

hazards model is not available. It included estimation of the cumulative regression func-

tions as well as standard deviations and confidence intervals. Testing the hypothesis of

no regression effect for one or more covariates can be done as well as tests of contrasts,

and we showed how to assess model fit by using Arjas plots and martingale residual

plots.

Chapter 4 was the main element in this thesis. Our interest was to investigate and

compare the use of the these two models, and draw some conclusions from this analysis.
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Survival data from a study of 90 male laryngeal cancer patients was analyzed using

these two models. We presented a detailed discussion of their common and different

characters in Section 4.4. We briefly restate their mainly different characters.

1. The Cox model assumes multiplicative effects of risk factors on the hazard

function. Covariate effects do not change over time. However, Aalen’s additive model

assumes that covariates act in an additive manner, risk coefficients are allowed to be

functions of time so that the effect of a covariate may vary over time.

2. For the Cox model, statistical software is available and easy to use to fit models,

check model assumptions and assess model fit. For Aalen’s additive model, standard

procedures is not available in any commonly used computer package, such as SAS or S-

plus. In this thesis, we used a SAS marco that performs the additive hazards regression.

It provides graphical summaries of the covariate effects and tests the hypothesis of no

covariate effect. We had to write MATLAB code to make residual plots to assess the

fit of the additive hazards model.

3. For the Cox model, if covariates are deleted from a model, regression coefficients

for other covariates may change. However, for the additive hazards model, the regression

model with this covariate eliminated is the same as the regression model with this

covariate included.

4. In practice, we found that it is not appropriate to use Aalen’s additive hazards

model for all datasets, but it is not a problem with the Cox model.

Finally, we used Monte Carlo simulation to study the power and robustness of tests

based on the Cox and additive hazards models. For a Cox model, we find that the test

statistic based on Cox model has slightly greater power than the test statistic based

on the additive hazards model. For an additive hazards model, we find that the test

statistic based on the additive hazards model has slightly greater power than the test

statistic based on Cox model. These had to be expected.
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Appendix A

Programs

Chapter 1:

SAS program shown below:

data exemple;

infile “/mat/usr/hcao/thesis/hmohiv.dat” firstobs=2;

input g TIME AGE CENSOR;

run;

proc lifereg data=exemple;

model TIME*CENSOR(0) = AGE;

run;

Chapter 2:

SAS program 2.1 shown below:

data exemple;

infile “/mat/usr/hcao/thesis2/bone.dat” firstobs=2;
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input g t1 t2 d1 d2 d3 tA dA tC dC tP dP z1 z2 z3 z4 z5 z6 z7 z8 z9 z10;

if g=2 then AMLL=1; Else AMLL=0;

if g=3 then AMLH=1; Else AMLH=0;

run;

proc phreg data=exemple;

model t2*d3(0) = AMLL AMLH zA;

if ( t2 >= tA and dA=1) then zA=1; else zA=0;

run;

proc phreg data=exemple;

model t2*d3(0) = AMLL AMLH zC;

if ( t2 >= tC and dC=1) then zC=1; else zC=0;

run;

proc phreg data=exemple;

model t2*d3(0) = AMLL AMLH zP;

if ( t2 >= tP and dP=1) then zP=1; else zP=0;

run;

Splus program 2.2 shown below:

lym < − read.table(‘/mat/usr/hcao/thesis2/true1.dat’, header=T,

col.names=c(‘NUMBER’,‘GROUP’,‘SEX’,‘AGE’,‘STATUS’,‘DEATHTIME’,

‘SCORE’))
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lym[1:5,1:7]

NUMBER GROUP SEX AGE STATUS DEATHTIME SCORE

1 1 0 41 1 0.73 75

2 1 1 61 1 1.06 50

3 1 0 43 1 2.48 90

4 1 0 18 1 3.38 100

5 1 0 37 0 8.81 95

attach(lym)

lym2 < − coxph(Surv(DEATHTIME,STATUS)∼ SCORE+GROUP+SEX+AGE)

rd < − abs(STATUS - lym2$residuals)

km.rd < − survfit(Surv(rd,STATUS) ∼ 1)

summary.km.rd < − summary(km.rd)

rcd < − summary.km.rd$time

surv.rc < − summary.km.rd$surv

plot(rcd, -log(surv.rc), type=‘p’, pch=‘.’, xlab=‘cox-snell residual rd’, ylab=‘cumulative

hazard on rd’)

Splus program 2.3 shown below:

lym2 < − coxph(Surv(DEATHTIME,STATUS)∼ SCORE+GROUP+SEX+AGE)

scatter.smooth(lym$SCORE,resid(lym2),type=‘P’,pch=‘.’, xlab=‘SCORE’,

ylab=‘martingale residual’)

Splus program 2.4 shown below:

detail < − coxph.detail(lym2)

time < − detail$y[,2]
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status < − detail$y[,3]

sch < − resid(lym2, type=‘schoenfeld’)

plot(time[status==1], sch[,1], xlab=‘ordered survival time’, ylab=‘schoenfeld resid-

uals for SCORE’)

Splus program 2.5 shown below:

lym2 < − coxph(Surv(DEATHTIME,STATUS)∼ SCORE+GROUP+SEX+AGE)

PH.test < − cox.zph(lym2)

PH.test

par(mfrow = c(3,2))

plot(PH.test)

Splus program 2.6 shown below:

par(mfrow = c(3,2))

bresid < − resid(lym2, type=‘dfbetas’)

index < − seq(1:58)

plot (index,bresid[,1],type=‘h’,ylab=‘scaled change in coef’,xlab=‘observation’)

plot (index,bresid[,2],type=‘h’,ylab=‘scaled change in coef’,xlab=‘observation’)

plot (index,bresid[,3],type=‘h’,ylab=‘scaled change in coef’,xlab=‘observation’)

plot (index,bresid[,4],type=‘h’,ylab=‘scaled change in coef’,xlab=‘observation’)

Splus program 2.7 shown below:

name < − read.table(‘/mat/usr/hcao/thesis2/name.txt’,

header=T, col.names=c(‘week’,‘arrest’,‘fin’,‘age’,‘race’,‘wexp’,‘mar’,‘paro’,‘prio’))
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name[1:5,1:9]

name2 < − coxph(Surv(week,arrest)∼ fin + age + race + wexp + mar + paro +

prio, data=name)

summary(name2)

Splus program 2.8 shown below:

name4 < − coxph(Surv(week,arrest) ∼ fin + age + prio, data=name)

name4

cox.zph(name4)

par(mfrow = c(2,2))

plot(cox.zph(name4))

Splus program 2.9 shown below:

dfbeta < − residuals(name4, type = ‘dfbeta’)

par(mfrow = c(2,2))

for (j in 1:3) { plot(dfbeta[, j], ylab = names(coef(name4))[j])

abline(h=0,lty=2)}

Splus program 2.10 shown below:

par(mfrow = c(2,2))

res < − residuals(name4, type = ‘martingale’)

x < − as.matrix(name[, c(‘age’,‘prio’)])

par(mfrow = c(2,2))

for (j in 1:2) { plot(X[,j], res, xlab = c(‘age’,‘prio’)[j], ylab = ‘residuals’)
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abline(h=0,lty=2) lines(lowess(X[,j], res, iter = 0))}

Chapter 3:

SAS macro program 3.1 shown below:

data exemple;

infile “/mat/usr/hcao/thesis2/uisnew.txt” firstobs=2;

input TIME CENSOR AGE BECKTOTA NDRUGTX IVHX RACE TREATE

SITE;

run;

%include ‘/mat/usr/hcao/thesis2/additive.sas’;

proc sort;

by TIME;

run;

proc iml;

option = { n, n, y, n, n };

effects ={‘AGE’, ‘BECKTOTA’, ‘NDRUGTX’, ‘IVHX’, ‘RACE’, ‘TREATE’, ‘SITE’};

timenuit = {‘Years’};

% additive (exemple, 0.05, timenuit, effects, option, dummy1, beta, dummy2);

quit;

filename gsasfile ‘graph1.ps’;

goptions reset=global gunit=pct htext=2.5 ftext=centb

gsfmode=replace device=ps gaccess=gsasfile
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gprolog=‘25210D0A’xgepilog=‘04’x;

symboll c=black v=none i=step1j;

symbol2 c=black v=none i=step1j l=3;

symbol3 c=black v=none i=step1j l=3;

axis1 label=(‘Baseline cumulative hazard function’);

axis2 label=(a=90 ‘cumulative regression coefficient’);

proc gplot data=beta;

footnote ‘Figure 1.1’;

plot col2*col1 col18*col1 col26*col1 /overlay haxis=asix1 vaxis=axis2;

run;

Note:

*col1 = time;

*col2 - col9 = estimate of AGE, BECKTOTA, NDRUGTX, IVHX, RACE, TREATE,

SITE over time;

*col10 - col7 = standard deviation of variables above over time;

*col18 -col25 = lower confidence limit of variables above over time;

*col26 -col33 = upper confidence limit of variables above over time;

The graph resulting from the program above is shown in Figure 3.1. It estimates

the baseline cumulative regression function. The parameter estimates for AGE, BECK-

TOTA, NDRUGTX, IVHX, RACE, TREATE, SITE were also graphed (see Figures 3.2

- 3.8). The SAS code for these graphs is similar to program above.

MATLAB program 3.2 shown below:
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Arjas plot:

• main program: data1

clear;

dataAge = sortrows(data111, 3);

data1Age = dataAge(1:292, :);

data2Age = dataAge(293:575, :);

data11 = sortrows(data1Age, 1);

data12 = sortrows(data2Age, 1);

NH = Aalen1(data11);

N = NH(1, :);

H = NH(2, :);

NH = Aalen1(data12);

N1 = NH(1, :);

H1 = NH(2, :);

plot(N, H, ‘-’, N1, H1, ‘–’);

• function program: Aalen1

function NH = Aalen1(lary11)

ti = lary11(:, 1);

sigma = lary11(:, 2);

z = lary11(:, 3:9);

b = zeros(size(z,2) + 1, 1);

flag = 1;

for i = 1:60;

N(i) = CalcuN(ti(i), ti, sigma);

if i == 1

x = xti(ti(i), ti, z);

b = inv(x’ * x) * x’ * Iti(ti(i), ti, sigma);

else

if ti(i) = ti(i-1)

x = xti(ti(i), ti, z);
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b = b + inv(x’ * x) * x’ * Iti(ti(i), ti, sigma);

end;

end;

h = b(1) + z * b(2: length(b));

H(i) = sum(h);

end;

N1 = [0 N];

H1 = [0 H];

NH = [N1;H1];

• function program: CalcuN

function N = CalcuN(t, ti, sigma)

N1 = t ≥ ti & sigma;

N = sum(N1);

• function program: xti

function matrixx = xti(t, ti, z)

[n1 n2] = size(z);

matrixx = [ ];

for i = 1: n1;

if t <= ti(i)

matrixx = [matrixx; [1 z(i,:)]];

else

matrixx = [matrixx; zeros(1, n2+1)];

end;

end;

• function program: Iti

function allayx = Iti(t, ti, sigma)

la = length(sigma);

for i = 1: la;

if t == ti(i) & sigma(i) == 1

allayx(i) = 1;
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else

allayx(i) = 0;

end;

end;

allayx = allayx’;

Martingale residual plot:

• main program: datacov

clear;

dataForCov1 = sortrows(data111, 1);

ti = dataForCov1(:, 1);

for i = 1: 60;

M = AalenCov(dataForCov1, i);

MM = M(1, :);

MM1(i) = MM;

CovMres = AalenCovMres(dataForCov1, i);

CC = CovMres(1, 1);

MT1(i) = MM + 1.96 * sqrt(CC);

MT2(i) = MM - 1.96 * sqrt(CC);

TT(i) = ti(i);

end;

plot(TT, MT1, ‘–’, TT, MT2, ‘–’, TT, MM1);

• function program: AalenCov

function Mres = AalenCov(lary11,t)

ti = lary11(:, 1);

sigma = lary11(:, 2);

z = lary11(:, 3:9);

Q = FunctionQ(lary11,32);

b = zeros(size(z,2)+1,1);

flag = 1;
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N = ti(t) >= ti & sigma;

N1 = sum(ti(t) >= ti);

for i = 1:N1;

if i == 1

x = xti(ti(i), ti, z);

b = inv(x’ * x) * x’ * Iti(ti(i), ti, sigma);

else if ti(i) = ti(i-1)

x = xti(ti(i),ti,z);

b = b + inv(x’ * x) * x’ * Iti(ti(i),ti,sigma);

end;

end;

end;

h = b(1) + z * b(2: length(b));

M = N - h;

Mres = Q’ * M;

• function program: FunctionQ

function Q1 = FunctionQ(SetA,ValueAge)

[n1 n2] = size(SetA);

Q1 = [ ];

AgeSet = SetA(:,3);

for i = 1: n1;

if AgeSet(i) <= ValueAge

Q1 = [Q1; [1 0] ];

else

Q1 = [Q1; [0 1] ];

end;

end;

• function program: AalenCovMres

function CovMres = AalenCovMres(lary11,t)

[n1 n2] = size(lary11);

ti = lary11(:,1);
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sigma = lary11(:,2);

z = lary11(:,3:9);

Q = FunctionQ(lary11,32);

flag = 1;

N1 = sum(ti(t) >= ti);

for i = 1:N1;

if i == 1

x = xti(ti(i), ti, z);

y = eye(n1) - x * inv(x’ * x) * x’;

CovMres = Q’ * y * FunctionD(lary11,t) * y’ * Q;

else

if ti(i) = ti(i-1)

x = xti(ti(i), ti, z);

y = eye(n1) - x * inv(x’ * x) * x’;

CovMres = CovMres + Q’ * y * FunctionD(lary11,t) * y’ * Q;

end;

end;

end;

• function program: FunctionD

function D = FunctionD(lary11,t)

ti = lary11(:,1);

sigma = lary11(:,2);

z = lary11(:,3:9);

[n1 n2] = size(lary11);

D = zeros(n1);

for i = 1:n1;

if ti(t) == ti(i) & sigma(i) D(i,i) = 1; end;

end;

Chapter 4:
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SAS program 4.1 shown below:

data larynx;

infile “/mat/usr/hcao/thesis2/lary.dat” firstobs=2;

input stage time age dyear death;

stage2=0; if stage=2 then stage2=1;

stage3=0; if stage=3 then stage3=1;

stage4=0; if stage=4 then stage4=1;

RUN;

data age65;

input age stage2 stage3 stage4;

cards;

65 0 0 0

65 0 1 0

65 0 0 1

65 1 0 0

; run;

proc phreg data = larynx;

model time*death(0) = age stage2 stage3 stage4;

baseline out = surv65 survival = survival lower = slower upper = supper

covariates = age65 /method = ch nomean cltype = loglog ;
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run;

proc print data = surv65 noobs;

where time = 6;

run;

proc sort data= surv65;

by time;

run;

proc transpose data = surv65 out = fig8.2 (drop=.name. .label.) prefix = s;

by time;

var survival;

run;

symbol1 i = stepjl l = 1 c=red ;

symbol2 i = stepjl l = 4 c=blue ;

symbol3 i = stepjl l = 21 c=black ;

symbol4 i = stepjl l = 29 c=green ;

axis1 order = (0 to 1 by .2) label=(a= 90 ‘Estimated Survival Function, S(t)’)

minor = none;

axis2 order = (0 to 8 by 2) label = (‘Years’) minor = none;

proc gplot data = fig8.2;

plot s1*time s2*time s3*time s4*time /overlay vaxis = axis1 haxis = axis2;

run;
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quit;

SAS program 4.2 shown below:

data larynx;

infile “/mat/usr/hcao/thesis2/lary.dat” firstobs=2;

input stage time age dyear death;

stage2=0; if stage=2 then stage2=1;

stage3=0; if stage=3 then stage3=1;

stage4=0; if stage=4 then stage4=1;

run;

proc phreg data = larynx;

model time*death(0) = age stage2 stage3 stage4;

output out = figure11.1 LOGSURV = h;

run;

data figure11.1a;

set figure11.1;

h = -h;

cons = 1;

run;

proc phreg data = figure11.1a ;

model h*death(0) = cons;
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output out = figure11.1b logsurv = ls /method = ch;

run;

data figure11.1c;

set figure11.1b;

haz = - ls;

run;

proc sort data = figure11.1c;

by h;

run;

axis1 order = (0 to 3 by .5) minor = none;

axis2 order = (0 to 3 by .5) minor = none label = ( a=90);

symbol1 i = stepjl c= blue;

symbol2 i = join c = red l = 3;

proc gplot data = figure11.1c;

plot haz*h =1 h*h =2 /overlay haxis=axis1 vaxis= axis2;

label haz = “Estimated Cumulative Hazard Rates”;

label h = “Residual”;

run;

quit;

SAS program 4.3 shown below:
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1. Martingale residual plot

data larynx;

infile “/mat/usr/hcao/thesis2/lary.dat” firstobs=2;

input stage time age dyear death;

stage2=0; if stage=2 then stage2=1;

stage3=0; if stage=3 then stage3=1;

stage4=0; if stage=4 then stage4=1;

run;

proc phreg data = larynx;

model time*death(0) = age stage2 stage3 stage4;

output out = figure11.6 RESMART = mgale ;

run;

proc loess data=figure11.6;

ods output OutputStatistics=figure11.6a;

model mgale = age / smooth=0.6 direct;

run;

quit;

proc sort data = figure11.6a;

by age;

run;
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axis1 order = (-3.0 to 1 by .5) offset = (0, 2) label= (a = 90) minor = none;

axis2 order = (20 to 100 by 20) minor = none;

symbol1 i = none v = dot h = 1.5 c = blue;

symbol2 i = join v = none c = red;

proc gplot data = figure11.6a;

format depvar f4.1;

format age f4.1;

plot depvar* age = 1 pred* age = 2 /haxis = axis2 vaxis = axis1 overlay;

label depvar = “Martingle Residual”;

label age = “age”;

run;

quit;

2. Log Partial Likelihood

data larynx;

infile “/mat/usr/hcao/thesis2/lary.dat” firstobs=2;

input stage time age dyear death;

run;

proc sql noprint;

select distinct age into :event.time separated by ’ ’

from larynx;



Appendix A. Programs 101

quit;

ods listing close;

proc phreg data= & data;

model &time*&censor(0) = &var z2;

if &time ¿ &dep then z2 = &var;

else z2 = 0;

ods output FitStatistics = .temp&k;

run;

ods output close;

ods listing;

data whole;

set &whole;

if Criterion = ”-2 LOG L” ;

run;

data whole;

set whole;

e.time = scan(“&delta.list”, .n., ’ ’);

logp = - withcovariates/2;

run;

proc print data = whole noobs;
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var e.time logp;

run;

SAS program 4.4 shown below:

data exemple;

infile “/mat/usr/hcao/thesis2/larytry3.dat” firstobs=2;

input time death stage2 stage3 stage4 age;

age=age-64.11;

RUN;

proc sort;

by time;

run;

proc iml;

option={ n, n, y, n, n};

effects={‘stage2’,‘stage3’,‘stage4’,‘age’};

timeunit={‘Years’};

quit;

filename gsasfile ‘graph10.eps’;

goptions reset=global gunit=pct htext=2.5 ftext=centb

gsfmode=replace device=ps gaccess=gsasfile

gprolog=‘25210D0A’xgepilog=‘04’x;
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symbol1 c=black v=none i=steplj;

symbol2 c=black v=none i=steplj l=2;

symbol3 c=black v=none i=steplj l=2;

axis1 label=(‘Baseline cumulative hazard function’);

axis2 label=(a=90 ‘Cumulative regression coefficient’);

proc gplot data=beta;

plot col2*col1 col12*col1 col17*col1/overlay haxis=axis1 vaxis=axis2;

run;

* col1 = time;

* col2 - col6 = estimate of A0-A4 over time;

* col7 - col11 = standard deviation of A0-A4 over time;

* col12 - col16 = lower confidence limit of A0-A4 over time;

* col17 - col21 = upper confidence limit of A0-A4 over time;

Chapter 5:

1. The R code is as follows:

For model 0:(N=1000, n=50)

Simulate < −function ()

{

u < − runif(50)

z < − c(rep(0,25),rep(1,25))
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fail < − rep(1,50)

x < − ((1-u)−1 - 1)1/4/0.2

test.stat < − coxph(Surv(x,fail)∼ z)$score

return(test.stat)

}

model1.cox < − replicate(1000,Simulate())

sum(model1.cox >= 3.841)/1000

For model 1:(N=1000, n=50)

Simulate < −function ()

{

u < − runif(50)

z < − c(rep(0,25),rep(1,25))

fail < − rep(1,50)

x < − ((1-u)−exp(−0.6∗z)-1)1/4/0.2

test.stat < − coxph(Surv(x,fail)∼ z)$score

return(test.stat)

}

model1.cox < − replicate(1000,Simulate())

sum(model1.cox >= 3.841)/1000

For model 2:(N=1000, n=50)
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Simulate < −function ()

{

u < − runif(50)

z < − c(rep(0,25),rep(1,25))

fail < − rep(1,50)

x < − exp(-log(0.2)-0.568245*z+(1/4)*rlogis(50))

test.stat < − coxph(Surv(x,fail)∼ z)$score

return(test.stat)

}

For model 3:(N=1000, n=50)

Simulate < −function ()

{

u < − runif(50)

z < − c(rep(0,25),rep(1,25))

fail < − rep(1,50)

x1 < − ((1-u[1:25])−1-1)1/4/0.2

x2 < − ((1-u[26:50])−1-1)1/6/0.15874

x < − c(x1,x2)

test.stat < − coxph(Surv(x,fail)∼ z)$score

return(test.stat)
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}

2. The SAS code is as follows:

For model 0:(N=1000, n=200)

data exemple;

infile “/mat/usr/hcao/thesis2/larytry3.dat” firstobs=2;

input time death stage2 stage3 stage4 age;

age=age-64.11;

run;

%include “/mat/usr/hcao/thesis2/additive.sas”;

proc sort data=exemple; by time;

proc iml;

option={ n, n, y, n, n };

effects={‘stage2’,‘stage3’,‘stage4’,‘age’};

timeunit=’Years’;

%additive(exemple, 0.05, timeunit, effects, option, dummy1, beta, dummy2);

create stat from gltstat;

append from gltstat;

run; quit;

proc print data=stat; run;

%macro analyse(nsimul=,samplesize=);
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options nonotes; ods listing close;

proc datasets; delete final; run; quit;

% do i=1 % to & nsimul;

% put Simulation # &i;

data simul;

do i=1 to & samplesize;

u = ranuni(0);

if i <= (&samplesize/2) then zz=0; else zz=1;

time = ((1-u)−1-1)1/4/0.2;

death = 1;

z = zz;

keep time death z;

output;

end;

run;

proc sort data=simul; by time;

proc iml;

option={ n, n, y, n, n };

effects={‘z’};

timeunit={‘Years’};



Appendix A. Programs 108

%additive(simul, 0.05, timeunit, effects, option, dummy1, beta, dummy2);

create stat from gltstat;

append from gltstat;

quit;

proc append data=stat base=final;

run; quit;

%end;

options notes; ods listing;

%mend;

%analyse(nsimul=1000,samplesize=200);

proc print data=final;

run;

For model 1:(N=1000, n=200)

%macro analyse(nsimul=,samplesize=);

options nonotes; ods listing close;

proc datasets; delete final; run; quit;

% do i=1 % to & nsimul;

% put Simulation # &i;

data simul;

do i=1 to & samplesize;
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u = ranuni(0);

if i <= (&samplesize/2) then zz=0; else zz=1;

time = ((1-u)−exp(−0.6∗zz)-1)1/4/0.2;

death = 1;

z = zz;

keep time death z;

output;

end;

run;

For model 2:(N=1000, n=200)

%macro analyse(nsimul=,samplesize=);

options nonotes; ods listing close;

proc datasets; delete final; run; quit;

% do i=1 % to & nsimul;

% put Simulation # &i;

data simul;

do i=1 to & samplesize;

u = ranuni(0);

if i <= (&samplesize/2) then zz=0; else zz=1;

time = exp(-log(0.2)-0.568245*zz+(1/4)*log(u/(1-u)));
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death = 1;

z = zz;

keep time death z;

output;

end;

run;

For model 3:(N=1000, n=200)

%macro analyse(nsimul=,samplesize=);

options nonotes; ods listing close;

proc datasets; delete final; run; quit;

% do i=1 % to & nsimul;

% put Simulation # &i;

data simul;

do i=1 to & samplesize;

u = ranuni(0);

if i <= (&samplesize/2) then zz=0; else zz=1;

if i <=(&samplesize/2) then time = ((1-u)−1-1)1/4/0.2;

else time = ((1-u)−1-1)1/6/0.15874;

death = 1;

z = zz;
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keep time death z;

output;

end;

run;
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Datasets

Chapter 1:

dataset 1.1:

g TIME AGE CENSOR

1 5 46 1

2 6 35 0

3 8 30 1

4 3 30 1

5 22 36 1

6 1 32 0

7 7 36 1

8 9 31 1

9 3 48 1

10 12 47 1

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

Chapter 2:

dataset 2.1:
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NUMBER GROUP SEX AGE STATUS DEATHTIME SCORE

1 1 0 41 1 0.73 75

2 1 1 61 1 1.06 50

3 1 0 43 1 2.48 90

4 1 0 18 1 3.38 100

5 1 0 37 0 8.81 95

6 1 0 42 1 0.21 80

7 1 0 53 1 0.21 50

8 1 1 41 1 0.6 40

9 1 0 25 1 0.44 95

10 1 0 30 1 1.17 100

11 1 1 67 1 1.38 45

12 1 0 45 1 1.08 50

13 1 1 59 1 2.17 90

14 1 0 42 1 0.17 80

15 1 1 66 1 0.23 50

14 1 0 42 1 0.17 80

15 1 1 66 1 0.23 50

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .
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dataset 2.2:

week arrest fin age race wexp mar paro prio

20 1 0 27 1 0 0 1 3

17 1 0 18 1 0 0 1 8

25 1 0 19 0 1 0 1 13

52 0 1 23 1 1 1 1 1

52 0 0 19 0 1 0 1 3

52 0 0 24 1 1 0 0 2

23 1 0 25 1 1 1 1 0

52 0 1 21 1 1 0 1 4

52 0 0 22 1 0 0 0 6

52 0 0 20 1 1 0 0 0

52 0 1 26 1 0 0 1 3

52 0 0 40 1 1 0 0 2

37 1 0 17 1 1 0 1 5

52 0 0 37 1 1 0 0 2

25 1 0 20 1 0 0 1 3

46 1 1 22 1 1 0 1 2

28 1 0 19 1 0 0 0 7

. . . . . . . . .

. . . . . . . . .

Chapter 3:

dataset 3.1:
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TIME CENSOR AGE BECKTOTA NDRUGTX IVHX RACE TREAT SITE

188 1 39 9 1 3 0 1 0

26 1 33 34 8 2 0 1 0

207 1 33 10 3 3 0 1 0

144 1 32 20 1 3 0 0 0

551 0 24 5 5 1 1 1 0

32 1 30 32.55 1 3 0 1 0

459 1 39 19 34 3 0 1 0

22 1 27 10 2 3 0 1 0

210 1 40 29 3 3 0 1 0

184 1 36 25 7 3 0 1 0

5 1 35 . 12 . 1 1 0

212 1 38 18.9 8 3 0 1 0

87 1 29 16 1 1 0 1 0

. . . . . . . . .

. . . . . . . . .


