Entrywise positivity preservers

Dominique Guillot

University of Delaware
Department of Mathematical Sciences

Complex Analysis and Spectral Theory
A conference in celebration of Thomas Ransford’s 60th birthday
Université Laval
May 24th, 2018

Joint work with Alexander Belton (Lancaster), Apoorva Khare (Indian Institute of Sciences, Bangalore), and Mihai Putinar (UCSB and Newcastle)
The psd cone: Let

$$\mathbb{P}_N := \{ A \in \mathbb{M}_N(\mathbb{R}) \text{ symmetric} : x^T A x \geq 0 \ \forall x \in \mathbb{R}^N \}$$

More generally, given $S \subset \mathbb{C}$, we let

$$\mathbb{P}_N(S) := \{ A \in \mathbb{M}_N(S) \text{ hermitian} : x^T A x \geq 0 \ \forall x \in \mathbb{C}^N \}$$
The psd cone: Let

$$\mathbb{P}_N := \{ A \in \mathbb{M}_N(\mathbb{R}) \text{ symmetric} : x^T A x \geq 0 \ \forall x \in \mathbb{R}^N \}$$

More generally, given $S \subset \mathbb{C}$, we let

$$\mathbb{P}_N(S) := \{ A \in \mathbb{M}_N(S) \text{ hermitian} : x^T A x \geq 0 \ \forall x \in \mathbb{C}^N \}$$

Problem: Given a function $f : \mathbb{R} \to \mathbb{R}$, when is it true that

$$f[A] := (f(a_{jk})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N?$$

What kind of functions have this property?
The psd cone: Let

\[\mathbb{P}_N := \{ A \in \mathbb{M}_N(\mathbb{R}) \text{ symmetric} : x^T A x \geq 0 \ \forall x \in \mathbb{R}^N \} \]

More generally, given \(S \subset \mathbb{C} \), we let

\[\mathbb{P}_N(S) := \{ A \in \mathbb{M}_N(S) \text{ hermitian} : x^T A x \geq 0 \ \forall x \in \mathbb{C}^N \} \]

Problem: Given a function \(f : \mathbb{R} \rightarrow \mathbb{R} \), when is it true that

\[f[A] := (f(a_{jk})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N? \]

What kind of functions have this property?

Main reference:
A. Belton, D. Guillot, A. Khare, M. Putinar,
Matrix positivity preservers in fixed dimension. I,
Outline

1. Motivation

2. Functions preserving positivity
 - Schoenberg’s theorem
 - Horn’s necessary condition

3. Results in fixed dimension
 - Polynomials preserving positivity
 - Main characterization
 - Sketch of proof: Schur polynomials

4. Structured matrices
 - Hankel matrices
 - Real powers
Motivation for entrywise calculus

Classical motivation:

- Schoenberg’s original motivation: invariant distances on homogeneous spaces which are isometrically equivalent to a Hilbert-space (see e.g. Bochner, Ann. Math. 1941).
- Functions operating on Fourier transforms (see e.g. Helson, Kahane, Katznelson, and Rudin, Acta Math. 1959).
Motivation for entrywise calculus

Classical motivation:
- Schoenberg’s original motivation: invariant distances on homogeneous spaces which are isometrically equivalent to a Hilbert-space (see e.g. Bochner, Ann. Math. 1941).
- Functions operating on Fourier transforms (see e.g. Helson, Kahane, Katznelson, and Rudin, Acta Math. 1959).

Recent interest:
- Applications to data science (e.g. covariance estimation).
- Interpolation problems involving positive definite kernels (climate science, machine learning; see e.g. Gneiting, 2013).
- Semidefinite programming.
- Construction of sparse probability models (see e.g. Bai and Zhang, SIAM J. Matrix Anal. 2007).
Covariance matrices

$$\Sigma = (\sigma_{j,k})_{j,k=1}^p.$$
- Random vector: $ (X_1, \ldots, X_p)
 \sigma_{j,k} = \text{Cov}(X_j, X_k)
 = E((X_j - E(X_j))(X_k - E(X_k)))$$

- Estimation: $x_1, \ldots, x_n \in \mathbb{R}^p$.

- Sample covariance matrix
 $$S = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})(x_j - \bar{x})^T, \quad \bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j.$$

Pancaldi et al., 2010.

Covariance matrices

\[\Sigma = (\sigma_{j,k})_{j,k=1}^p. \]

- Random vector: \((X_1, \ldots, X_p)\)
 \[\sigma_{j,k} = \text{Cov}(X_j, X_k) = E((X_j - E(X_j))(X_k - E(X_k))) \]

- Estimation: \(x_1, \ldots, x_n \in \mathbb{R}^p.\)

- Sample covariance matrix
 \[S = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})(x_j - \bar{x})^T, \quad \bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j. \]

- \(S\) is a \(p \times p\) matrix of rank \(\leq n.\)
Covariance matrices

\[\Sigma = (\sigma_{j,k})^{p}_{j,k=1}. \]

- Random vector: \((X_1, \ldots, X_p)\)
 \[\sigma_{j,k} = \text{Cov}(X_j, X_k) \]
 \[= E((X_j - E(X_j))(X_k - E(X_k))) \]

- Estimation: \(x_1, \ldots, x_n \in \mathbb{R}^p.\)

- Sample covariance matrix
 \[S = \frac{1}{n-1} \sum_{j=1}^{n} (x_j - \bar{x})(x_j - \bar{x})^T, \quad \bar{x} = \frac{1}{n} \sum_{j=1}^{n} x_j. \]

- \(S\) is a \(p \times p\) matrix of rank \(\leq n.\)

Typical modern setting: \(p \gg n.\)
Covariance matrices

\[\Sigma = (\sigma_{j,k})_{j,k=1}^p. \]

- Random vector: \((X_1, \ldots, X_p)\)
 \[\sigma_{j,k} = \text{Cov}(X_j, X_k) = E((X_j - E(X_j))(X_k - E(X_k))). \]

- Estimation: \(x_1, \ldots, x_n \in \mathbb{R}^p.\)

- Sample covariance matrix
 \[S = \frac{1}{n - 1} \sum_{j=1}^n (x_j - \bar{x})(x_j - \bar{x})^T, \quad \bar{x} = \frac{1}{n} \sum_{j=1}^n x_j. \]

- \(S\) is a \(p \times p\) matrix of rank \(\leq n.\)

Typical modern setting: \(p \gg n.\)
- Modern approach via compressed sensing (Daubechies, Donoho, Tao, Candes).
Motivation

Functions preserving positivity

Results in fixed dimension

Structured matrices

Covariance matrices

\[\Sigma = (\sigma_{j,k})_{j,k=1}^p. \]

- Random vector: \((X_1, \ldots, X_p)\)
 \[\sigma_{j,k} = \text{Cov}(X_j, X_k) \]
 \[= E((X_j - E(X_j))(X_k - E(X_k))) \]

- Estimation: \(x_1, \ldots, x_n \in \mathbb{R}^p.\)

- Sample covariance matrix
 \[S = \frac{1}{n - 1} \sum_{j=1}^n (x_j - \bar{x})(x_j - \bar{x})^T, \quad \bar{x} = \frac{1}{n} \sum_{j=1}^n x_j. \]

- \(S\) is a \(p \times p\) matrix of rank \(\leq n.\)

Typical modern setting: \(p \gg n.\)

- Modern approach via compressed sensing (Daubechies, Donoho, Tao, Candes).
- Uses convex optimization to obtain sparse estimates (of \(\Sigma\) or \(\Sigma^{-1}\)) – e.g. \(\ell_1\) penalized estimation.
- Works very well, but usually too computationally intensive in modern applications with 100,000+ variables (genomics, climate science, finance, etc.).
Thresholding and regularization

Thresholding covariance/correlation matrices

\[
\text{True } \Sigma = \begin{pmatrix}
1 & 0.2 & 0 \\
0.2 & 1 & 0.9 \\
0 & 0.9 & 1
\end{pmatrix}
\quad \quad
S = \begin{pmatrix}
0.95 & 0.18 & 0.02 \\
0.18 & 0.96 & 0.87 \\
0.02 & 0.87 & 0.98
\end{pmatrix}
\]
Thresholding and regularization

Thresholding covariance/correlation matrices

True $\Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.9 \\ 0 & 0.9 & 1 \end{pmatrix}$

$S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.87 \\ 0.02 & 0.87 & 0.98 \end{pmatrix}$

Natural to *threshold* small entries (thinking the variables are independent):

$\tilde{S} = \begin{pmatrix} 0.95 & 0.18 & 0 \\ 0.18 & 0.96 & 0.87 \\ 0 & 0.87 & 0.98 \end{pmatrix}$
Thresholding and regularization

Thresholding covariance/correlation matrices

\[
\text{True } \Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.9 \\ 0 & 0.9 & 1 \end{pmatrix} \quad S = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.87 \\ 0.02 & 0.87 & 0.98 \end{pmatrix}
\]

Natural to *threshold* small entries (thinking the variables are independent):

\[
\tilde{S} = \begin{pmatrix} 0.95 & 0.18 & 0 \\ 0.18 & 0.96 & 0.87 \\ 0 & 0.87 & 0.98 \end{pmatrix}
\]

- Can be significant if \(p = 1,000,000 \) and only, say, \(\sim 1\% \) of the entries of the true \(\Sigma \) are nonzero.
Thresholding and regularization

Thresholding covariance/correlation matrices

True $\Sigma = \begin{pmatrix} 1 & 0.2 & 0 \\ 0.2 & 1 & 0.9 \\ 0 & 0.9 & 1 \end{pmatrix}$

$\hat{S} = \begin{pmatrix} 0.95 & 0.18 & 0.02 \\ 0.18 & 0.96 & 0.87 \\ 0.02 & 0.87 & 0.98 \end{pmatrix}$

Natural to threshold small entries (thinking the variables are independent):

$\tilde{\Sigma} = \begin{pmatrix} 0.95 & 0.18 & 0 \\ 0.18 & 0.96 & 0.87 \\ 0 & 0.87 & 0.98 \end{pmatrix}$

- Can be significant if $p = 1,000,000$ and only, say, $\sim 1\%$ of the entries of the true Σ are nonzero.
- Resulting matrix typically have much better properties (e.g. non-singular).
Motivation

Functions preserving positivity
Results in fixed dimension
Structured matrices

Thresholding and regularization

Thresholding covariance/correlation matrices

\[
\text{True } \Sigma = \begin{pmatrix}
1 & 0.2 & 0 \\
0.2 & 1 & 0.9 \\
0 & 0.9 & 1
\end{pmatrix},
\]

\[
S = \begin{pmatrix}
0.95 & 0.18 & 0.02 \\
0.18 & 0.96 & 0.87 \\
0.02 & 0.87 & 0.98
\end{pmatrix}
\]

Natural to \textit{threshold} small entries (thinking the variables are independent):

\[
\tilde{S} = \begin{pmatrix}
0.95 & 0.18 & 0 \\
0.18 & 0.96 & 0.87 \\
0 & 0.87 & 0.98
\end{pmatrix}
\]

- Can be significant if \(p = 1,000,000 \) and only, say, \(\sim 1\% \) of the entries of the true \(\Sigma \) are nonzero.
- Resulting matrix typically have much better properties (e.g. non-singular).
- Thresholding is equivalent to applying the function

\[
f_\epsilon(x) = x \cdot 1_{|x|>\epsilon}
\]
to the entries of the matrix, for some \(\epsilon > 0 \)
More generally, can apply a function $f : \mathbb{R} \to \mathbb{R}$ to the elements of S

$$\hat{\Sigma} = f[S] := (f(\sigma_{j,k}))_{j,k=1}^p.$$
More generally, can apply a function $f : \mathbb{R} \rightarrow \mathbb{R}$ to the elements of S

$$\hat{\Sigma} = f[S] := (f(\sigma_{j,k}))^p_{j,k=1}.$$

- Highly scalable. Analysis on the cone - no optimization.
- Can be used in other procedures (PCA, CCA, MANOVA, etc.).
More generally, can apply a function $f : \mathbb{R} \to \mathbb{R}$ to the elements of S

$$\hat{\Sigma} = f[S] := (f(\sigma_{j,k}))_{j,k=1}^p.$$

- Highly scalable. Analysis on the cone - no optimization.
- Can be used in other procedures (PCA, CCA, MANOVA, etc.).

Question: When does this procedure preserve positive (semi)definiteness?

Critical for applications since $\Sigma \in \mathbb{P}_N$.

References:
More generally, can apply a function $f : \mathbb{R} \rightarrow \mathbb{R}$ to the elements of S

$$\hat{\Sigma} = f[S] := (f(\sigma_{j,k}))_{j,k=1}^p.$$

- Highly scalable. Analysis on the cone - no optimization.
- Can be used in other procedures (PCA, CCA, MANOVA, etc.).

Question: When does this procedure preserve positive (semi)definiteness?

Critical for applications since $\Sigma \in \mathbb{P}_N$.

Problem: For what functions $f : \mathbb{R} \rightarrow \mathbb{R}$, does $f[-]$ preserve \mathbb{P}_N?
More generally, can apply a function $f : \mathbb{R} \to \mathbb{R}$ to the elements of S

$$\hat{\Sigma} = f[S] := (f(\sigma_{j,k}))_{j,k=1}^{p}.$$

- Highly scalable. Analysis on the cone - no optimization.
- Can be used in other procedures (PCA, CCA, MANOVA, etc.).

Question: When does this procedure preserve positive (semi)definiteness?

Critical for applications since $\Sigma \in \mathbb{P}_N$.

Problem: For what functions $f : \mathbb{R} \to \mathbb{R}$, does $f[-]$ preserve \mathbb{P}_N?

References:
From Schur to Schoenberg

Problem: Given a function $f : \mathbb{R} \to \mathbb{R}$, when is it true that

$$f[A] := (f(a_{jk})) \in \mathbb{P}_N$$

for all $A \in \mathbb{P}_N$?

Can we find any such functions?
From Schur to Schoenberg

Problem: Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, when is it true that

$$f[A] := (f(a_{jk})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N?$$

Can we find any such functions?

- Clearly, $f(x) = c \cdot x$ works if $c \geq 0$. What else?
From Schur to Schoenberg

Problem: Given a function \(f : \mathbb{R} \rightarrow \mathbb{R} \), when is it true that
\[
 f[A] := (f(a_{jk})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N.
\]

Can we find any such functions?
- Clearly, \(f(x) = c \cdot x \) works if \(c \geq 0 \). What else?

The Hadamard product (or Schur, or entrywise product) of two matrices is given by: \(A \circ B = (a_{jk}b_{jk}) \).
From Schur to Schoenberg

Problem: Given a function \(f : \mathbb{R} \to \mathbb{R} \), when is it true that

\[
f[A] := (f(a_{jk})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N?
\]

Can we find any such functions?

- Clearly, \(f(x) = c \cdot x \) works if \(c \geq 0 \). What else?

The **Hadamard product** (or Schur, or entrywise product) of two matrices is given by: \(A \circ B = (a_{jk}b_{jk}) \).

Schur Product Theorem (Schur, J. Reine Angew. Math 1911)

If \(A, B \in \mathbb{P}_N \), then \(A \circ B \in \mathbb{P}_N \).
From Schur to Schoenberg

Problem: Given a function $f : \mathbb{R} \to \mathbb{R}$, when is it true that $f[A] := (f(a_{jk})) \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$?

Can we find any such functions?

- Clearly, $f(x) = c \cdot x$ works if $c \geq 0$. What else?

The *Hadamard product* (or Schur, or entrywise product) of two matrices is given by: $A \circ B = (a_{jk} b_{jk})$.

Schur Product Theorem (Schur, J. Reine Angew. Math 1911)

*If $A, B \in \mathbb{P}_N$, then $A \circ B \in \mathbb{P}_N$.***

Proof 1: $A \circ B$ is a principal submatrix of $A \otimes B$.
From Schur to Schoenberg

Problem: Given a function \(f : \mathbb{R} \rightarrow \mathbb{R} \), when is it true that
\[
f[A] := (f(a_{jk})) \in \mathbb{P}_N \text{ for all } A \in \mathbb{P}_N?
\]

Can we find any such functions?

- Clearly, \(f(x) = c \cdot x \) works if \(c \geq 0 \). What else?

The Hadamard product (or Schur, or entrywise product) of two matrices is given by: \(A \circ B = (a_{jk}b_{jk}) \).

Schur Product Theorem (Schur, J. Reine Angew. Math 1911)

If \(A, B \in \mathbb{P}_N \), then \(A \circ B \in \mathbb{P}_N \).

Proof 1: \(A \circ B \) is a principal submatrix of \(A \otimes B \).

Proof 2: If \(A = \sum_{j=1}^{n} \lambda_j v_j v_j^T \) and \(B = \sum_{k=1}^{n} \mu_k w_k w_k^T \), then
\[
A \circ B = \sum_{j,k=1}^{n} \lambda_j \mu_k (v_j v_j^T) \circ (w_k w_k^T) = \sum_{j,k=1}^{n} \lambda_j \mu_k (v_j \circ w_k)(v_j \circ w_k)^T.
\]
As a consequence of the Schur product theorem:

- \(f(x) = x^2, x^3, \ldots, x^n \) preserve positivity on \(\mathbb{P}_N \) for all \(n, N \).
As a consequence of the Schur product theorem:

- \(f(x) = x^2, x^3, \ldots, x^n \) preserve positivity on \(\mathbb{P}_N \) for all \(n, N \).
- \(f(x) = \sum_{k=0}^{l} c_k x^k \) preserves positivity if \(c_k \geq 0 \).
As a consequence of the Schur product theorem:

- $f(x) = x^2, x^3, \ldots, x^n$ preserve positivity on \mathbb{P}_N for all n, N.
- $f(x) = \sum_{k=0}^{l} c_k x^k$ preserves positivity if $c_k \geq 0$.
- Taking limits: if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \geq 0$, then $f[-]$ preserves positivity. (Absolutely monotonic functions)
As a consequence of the Schur product theorem:

- \(f(x) = x^2, x^3, \ldots, x^n \) preserve positivity on \(\mathbb{P}_N \) for all \(n, N \).
- \(f(x) = \sum_{k=0}^{l} c_k x^k \) preserves positivity if \(c_k \geq 0 \).
- Taking limits: if \(f(x) = \sum_{k=0}^{\infty} c_k x^k \) is convergent and \(c_k \geq 0 \), then \(f[-] \) preserves positivity. (Absolutely monotonic functions)

Important observation: The above functions preserve positivity on \(\mathbb{P}_N \) regardless of the dimension \(N \), i.e., on \(\cup_{N \geq 1} \mathbb{P}_N \).
As a consequence of the Schur product theorem:

- $f(x) = x^2, x^3, \ldots, x^n$ preserve positivity on \mathbb{P}_N for all n, N.
- $f(x) = \sum_{k=0}^{l} c_k x^k$ preserves positivity if $c_k \geq 0$.
- Taking limits: if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \geq 0$, then $f[-]$ preserves positivity. (Absolutely monotonic functions)

Important observation: The above functions preserve positivity on \mathbb{P}_N regardless of the dimension N, i.e., on $\bigcup_{N \geq 1} \mathbb{P}_N$.

Question (Pólya-Szegö, 1925): Anything else?
As a consequence of the Schur product theorem:

- $f(x) = x^2, x^3, \ldots, x^n$ preserve positivity on \mathbb{P}_N for all n, N.
- $f(x) = \sum_{k=0}^{l} c_k x^k$ preserves positivity if $c_k \geq 0$.
- Taking limits: if $f(x) = \sum_{k=0}^{\infty} c_k x^k$ is convergent and $c_k \geq 0$, then $f[-]$ preserves positivity. (Absolutely monotonic functions)

Important observation: The above functions preserve positivity on \mathbb{P}_N regardless of the dimension N, i.e., on $\bigcup_{N \geq 1} \mathbb{P}_N$.

Question (Pólya-Szegö, 1925): Anything else? Surprisingly, the answer is no, if we want to preserve positivity in all dimensions:
As a consequence of the Schur product theorem:

- \(f(x) = x^2, x^3, \ldots, x^n \) preserve positivity on \(\mathbb{P}_N \) for all \(n, N \).
- \(f(x) = \sum_{k=0}^{l} c_k x^k \) preserves positivity if \(c_k \geq 0 \).
- Taking limits: if \(f(x) = \sum_{k=0}^{\infty} c_k x^k \) is convergent and \(c_k \geq 0 \), then \(f[-] \) preserves positivity. (Absolutely monotonic functions)

Important observation: The above functions preserve positivity on \(\mathbb{P}_N \) regardless of the dimension \(N \), i.e., on \(\bigcup_{N \geq 1} \mathbb{P}_N \).

Question (Pólya-Szegö, 1925): Anything else? Surprisingly, the answer is **no**, if we want to preserve positivity in all dimensions:

Theorem (Schoenberg, Duke 1942; Rudin, Duke 1959)

Suppose \(I = (-1, 1) \) and \(f : I \to \mathbb{R} \). The following are equivalent:

1. \(f[A] \in \mathbb{P}_N \) for all \(A \in \mathbb{P}_N(I) \) and all \(N \).
2. \(f \) is analytic on \(I \) and has nonnegative Taylor coefficients.

In other words, \(f(x) = \sum_{k=0}^{\infty} c_k x^k \) on \((-1, 1) \) with all \(c_k \geq 0 \).
Preserving positivity in fixed dimension

- Schoenberg’s result characterizes functions preserving positivity entrywise on $\bigcup_{N \geq 1} \mathbb{P}_N$.
Preserving positivity in fixed dimension

- Schoenberg’s result characterizes functions preserving positivity entrywise on $\bigcup_{N \geq 1} \mathbb{P}_N$.
- **Question**: Which functions preserve positivity entrywise on \mathbb{P}_N for a fixed N?
Preserving positivity in fixed dimension

- Schoenberg’s result characterizes functions preserving positivity entrywise on \(\bigcup_{N \geq 1} \mathbb{P}_N \).

- **Question:** Which functions preserve positivity entrywise on \(\mathbb{P}_N \) for a fixed \(N \)?

In applications: dimension of the problem is known. Unnecessarily restrictive to preserve positivity in all dimensions.
Schoenberg’s result characterizes functions preserving positivity entrywise on $\bigcup_{N \geq 1} \mathbb{P}_N$.

Question: Which functions preserve positivity entrywise on \mathbb{P}_N for a fixed N?

In applications: dimension of the problem is known. Unnecessarily restrictive to preserve positivity in all dimensions.

Answer known for $N = 2$ (Vasudeva, IJPAM 1979).
Schoenberg’s result characterizes functions preserving positivity entrywise on $\bigcup_{N \geq 1} P_N$.

Question: Which functions preserve positivity entrywise on P_N for a fixed N?

In applications: dimension of the problem is known. Unnecessarily restrictive to preserve positivity in all dimensions.

- **Answer known for $N = 2$** (Vasudeva, IJPAM 1979).
- **Open** when $N \geq 3$.
Preserving positivity in fixed dimension

- Schoenberg’s result characterizes functions preserving positivity entrywise on $\bigcup_{N \geq 1} \mathbb{P}_N$.

- **Question:** Which functions preserve positivity entrywise on \mathbb{P}_N for a fixed N?

 In applications: dimension of the problem is known. Unnecessarily restrictive to preserve positivity in all dimensions.

- Answer known for $N = 2$ (Vasudeva, IJPAM 1979).

- **Open** when $N \geq 3$.

 For fixed $N \geq 3$, necessary condition known due to Horn (who attributes it to Loewner):

Fix $I = (0, \rho)$ for $0 < \rho \leq \infty$, and $f : I \rightarrow \mathbb{R}$ and $N \geq 3$.

Suppose $f[A] \in \mathbb{P}_N$ for $A = a1_{N\times N} + uu^T \in \mathbb{P}_N(I)$ with $a \in I$.

Fix $I = (0, \rho)$ for $0 < \rho \leq \infty$, and $f : I \to \mathbb{R}$ and $N \geq 3$. Suppose $f[A] \in \mathbb{P}_N$ for $A = a1_{N \times N} + uu^T \in \mathbb{P}_N(I)$ with $a \in I$. Then $f \in C^{N-3}(I)$, and
Horn’s thesis

Fix $I = (0, \rho)$ for $0 < \rho \leq \infty$, and $f : I \to \mathbb{R}$ and $N \geq 3$. Suppose $f[A] \in \mathbb{P}_N$ for $A = a1_{N \times N} + uu^T \in \mathbb{P}_N(I)$ with $a \in I$. Then $f \in C^{N-3}(I)$, and

$$f^{(k)}(x) \geq 0, \quad \forall 0 \leq k \leq N - 3, \ x \in I.$$
Horn’s thesis

Fix $I = (0, \rho)$ for $0 < \rho \leq \infty$, and $f : I \to \mathbb{R}$ and $N \geq 3$. Suppose $f[A] \in \mathbb{P}_N$ for $A = a1_{N \times N} + uu^T \in \mathbb{P}_N(I)$ with $a \in I$. Then $f \in C^{N-3}(I)$, and

$$f^{(k)}(x) \geq 0, \quad \forall 0 \leq k \leq N - 3, \ x \in I.$$

If $f \in C^{N-1}(I)$ then this holds for all $0 \leq k \leq N - 1$.

Implies Schoenberg’s theorem on $(0, \rho)$ via a result of Bernstein:

Theorem (Bernstein). Suppose $-\infty < a < b \leq \infty$. If $f : [a, b) \to \mathbb{R}$ is continuous at a and absolutely monotonic on (a, b), then f can be extended analytically to the complex disc $D(b - a)$.

Horn’s thesis

Fix $I = (0, \rho)$ for $0 < \rho \leq \infty$, and $f : I \to \mathbb{R}$ and $N \geq 3$. Suppose $f[A] \in P_N$ for $A = a1_{N \times N} + uu^T \in P_N(I)$ with $a \in I$.

Then $f \in C^{N-3}(I)$, and

$$f^{(k)}(x) \geq 0, \quad \forall 0 \leq k \leq N - 3, \quad x \in I.$$

If $f \in C^{N-1}(I)$ then this holds for all $0 \leq k \leq N - 1$.

Implies Schoenberg’s theorem on $(0, \rho)$ via a result of Bernstein:
Horn’s thesis

Fix $I = (0, \rho)$ for $0 < \rho \leq \infty$, and $f : I \to \mathbb{R}$ and $N \geq 3$.
Suppose $f[A] \in \mathbb{P}_N$ for $A = a1_{N \times N} + uu^T \in \mathbb{P}_N(I)$ with $a \in I$.
Then $f \in C^{N-3}(I)$, and

$$f^{(k)}(x) \geq 0, \quad \forall 0 \leq k \leq N - 3, \ x \in I.$$

If $f \in C^{N-1}(I)$ then this holds for all $0 \leq k \leq N - 1$.

Implies Schoenberg’s theorem on $(0, \rho)$ via a result of Bernstein:

Theorem (Bernstein). Suppose $-\infty < a < b \leq \infty$. If $f : [a, b) \to \mathbb{R}$ is continuous at a and absolutely monotonic on (a, b), then f can be extended analytically to the complex disc $D(a, b - a)$.
Obtaining a nice characterization of functions preserving positivity on \mathbb{P}_N for a fixed N has remained open for 76 years.
Obtaining a nice characterization of functions preserving positivity on \mathbb{P}_N for a fixed N has remained open for 76 years. What about specific classes of functions?
Obtaining a nice characterization of functions preserving positivity on \mathbb{P}_N for a fixed N has remained open for 76 years.

What about specific classes of functions?

Observation: By Horn’s theorem, if

$$f(x) = c_0 + c_1 x + \cdots + c_{N-1} x^{N-1} + c_N x^N$$

preserves positivity on $\mathbb{P}_N((0, \rho))$, then $c_0, \ldots, c_{N-1} \geq 0$.

Can c_N be negative? If so, how large can c_N be? Sharp bound?
Obtaining a nice characterization of functions preserving positivity on \mathbb{P}_N for a fixed N has remained open for 76 years.

What about specific classes of functions?

Observation: By Horn’s theorem, if

$$f(x) = c_0 + c_1 x + \cdots + c_{N-1} x^{N-1} + c_N x^N$$

preserves positivity on $\mathbb{P}_N((0, \rho))$, then $c_0, \ldots, c_{N-1} \geq 0$.

Can c_N be negative?
Obtaining a nice characterization of functions preserving positivity on \mathbb{P}_N for a fixed N has remained open for 76 years.

What about specific classes of functions?

Observation: By Horn’s theorem, if

$$f(x) = c_0 + c_1 x + \cdots + c_{N-1} x^{N-1} + c_N x^N$$

preserves positivity on $\mathbb{P}_N((0, \rho))$, then $c_0, \ldots, c_{N-1} \geq 0$.

- Can c_N be negative?
- If so, how large can c_N be? Sharp bound?
Theorem (Belton, Guillot, Khare, Putinar, Adv. Math, 2016)

Fix $\rho > 0$ and integers $M \geq N \geq 1$, and let

$$f(z) = \sum_{j=0}^{N-1} c_j z^j + c' z^M$$

be a polynomial with real coefficients.
Polynomials preserving positivity in fixed dimension

Theorem (Belton, Guillot, Khare, Putinar, Adv. Math, 2016)

Fix $\rho > 0$ and integers $M \geq N \geq 1$, and let $f(z) = \sum_{j=0}^{N-1} c_j z^j + c' z^M$ be a polynomial with real coefficients.

Then the following are equivalent.

1. $f[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0, \rho))$.
2. The coefficients c_j satisfy either $c_0, \ldots, c_{N-1}, c' \geq 0$,

\[
C(c; z^M; N, \rho) := N - 1 \sum_{j=0}^{N-1} (M - j - 1)^2 (N - j - 1) \rho^{M - j - 1} c_j.
\]
Theorem (Belton, Guillot, Khare, Putinar, Adv. Math, 2016)

Fix $\rho > 0$ and integers $M \geq N \geq 1$, and let

$$f(z) = \sum_{j=0}^{N-1} c_j z^j + c' z^M$$

be a polynomial with real coefficients. Then the following are equivalent.

1. $f[-]$ preserves positivity on $\mathbb{P}_N(\mathbb{D}(0, \rho))$.

2. The coefficients c_j satisfy either $c_0, \ldots, c_{N-1}, c' \geq 0$, or $c_0, \ldots, c_{N-1} > 0$ and $c' \geq -\mathcal{C}(c; z^M; N, \rho)^{-1}$, where $c := (c_0, \ldots, c_{N-1})$, and

$$\mathcal{C}(c; z^M; N, \rho) := \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M - j - 1}{N - j - 1}^2 \rho^{M-j} c_j.$$
Theorem (Belton, Guillot, Khare, Putinar, Adv. Math, 2016)

Fix \(\rho > 0 \) and integers \(M \geq N \geq 1 \), and let
\[f(z) = \sum_{j=0}^{N-1} c_j z^j + c' z^M \]
be a polynomial with real coefficients.

Then the following are equivalent.

1. \(f[\cdot] \) preserves positivity on \(\overline{P}_N(D(0, \rho)) \).

2. The coefficients \(c_j \) satisfy either \(c_0, \ldots, c_{N-1}, c' \geq 0 \),
or \(c_0, \ldots, c_{N-1} > 0 \) and \(c' \geq -\mathcal{C}(c; z^M; N, \rho)^{-1} \),
where \(c := (c_0, \ldots, c_{N-1}) \), and

\[
\mathcal{C}(c; z^M; N, \rho) := \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M - j - 1}{N - j - 1}^2 \frac{\rho^{M-j}}{c_j}.
\]

3. \(f[\cdot] \) preserves positivity on rank-one matrices in \(\overline{P}_N((0, \rho)) \).
Consequences

1. Quantitative version of Schoenberg’s theorem in fixed dimension for polynomials.
Consequences

1. Quantitative version of Schoenberg’s theorem in fixed dimension for polynomials.

2. The theorem provides an exact characterization of polynomials of degree N that preserve positivity on \mathbb{P}_N.
Consequences

1. Quantitative version of Schoenberg’s theorem in fixed dimension for polynomials.

2. The theorem provides an exact characterization of polynomials of degree N that preserve positivity on \mathbb{P}_N.

3. Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.
Consequences

1. Quantitative version of Schoenberg’s theorem in fixed dimension for polynomials.

2. The theorem provides an exact characterization of polynomials of degree N that preserve positivity on P_N.

3. Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.

4. Can be generalized to domains $(0, \rho) \subset K \subset \overline{D}(0, \rho)$.
Consequences

1. Quantitative version of Schoenberg’s theorem in fixed dimension for polynomials.

2. The theorem provides an exact characterization of polynomials of degree N that preserve positivity on \mathbb{P}_N.

3. Surprisingly, the sharp bound on the negative threshold is obtained on rank 1 matrices with positive entries.

4. Can be generalized to domains $(0, \rho) \subset K \subset \overline{D}(0, \rho)$.

5. Provides an example of an analytic functions that preserve positivity on \mathbb{P}_N, but not on \mathbb{P}_{N+1}.
Can use the theorem to obtain bounds on the coefficients of analytic functions preserving positivity.
6 Can use the theorem to obtain bounds on the coefficients of analytic functions preserving positivity.

7 The allowed signs in the coefficients of polynomials preserving positivity on \mathbb{P}_N were characterized by A. Khare and T. Tao.
Can use the theorem to obtain bounds on the coefficients of analytic functions preserving positivity.

The allowed signs in the coefficients of polynomials preserving positivity on \mathbb{P}_N were characterized by A. Khare and T. Tao.

Theorem. (A. Khare, T. Tao, 2017)

Let $N > 0$ and $0 \leq n_0 < n_1 < \cdots < n_{N-1}$ be natural numbers, and for each $M > n_{N-1}$, let $\epsilon_M \in \{-1, 0, 1\}$ be a sign. Let $0 < \rho < \infty$, and let $c_{n_0}, \ldots, c_{n_{N-1}}$ be positive reals. Then there exists a convergent power series

$$f(x) = c_{n_0} x^{n_0} + c_{n_1} x^{n_1} + \cdots + c_{n_{N-1}} x^{n_{N-1}} + \sum_{M > n_{N-1}} c_M x^M$$

on $(0, \rho)$ that is an entrywise positivity preserver on $\mathbb{P}_N((0, \rho))$, such that for each $M > n_{N-1}$, c_M has the sign ϵ_M.
Let $c_0, \ldots, c_{N-1}, c' \in \mathbb{R}$ and $M \geq N \geq 1$. If $f(z) = \sum_j c_j z^j + c' z^M$, TFAE:

1. $f[-]$ preserves positivity on $\mathbb{P}_N(D(0, \rho))$.
2. Either $c_j, c' \geq 0$ or $c_0, \ldots, c_{N-1} > 0 > c' \geq -\mathcal{C}(c; z^M; N, \rho)^{-1}$.
3. $f[-]$ preserves positivity on $\mathbb{P}_{1_N}^1((0, \rho))$.

Sketch of the Proof of (3) \implies (2):
Motivation
Functions preserving positivity
Results in fixed dimension
Structured matrices

Polynomials preserving positivity
Main characterization
Sketch of proof: Schur polynomials

Sketch of the proof of the main result

Theorem (Belton, Guillot, Khare, Putinar, 2016)

Let $c_0, \ldots, c_{N-1}, c' \in \mathbb{R}$ and $M \geq N \geq 1$. If $f(z) = \sum_j c_j z^j + c' z^M$, TFAE:

1. $f[-]$ preserves positivity on $\mathbb{P}_N(D(0, \rho))$.
2. Either $c_j, c' \geq 0$ or $c_0, \ldots, c_{N-1} > 0 > c' \geq -\mathcal{C}(c; z^M; N, \rho)^{-1}$.
3. $f[-]$ preserves positivity on $\mathbb{P}^1_N((0, \rho))$.

Sketch of the Proof of (3) \implies (2):
Assume $c_0, \ldots, c_{N-1} > 0 > c'$.
Motivation
Functions preserving positivity
Results in fixed dimension
Structured matrices

Polynomials preserving positivity
Main characterization
Sketch of proof: Schur polynomials

Sketch of the proof of the main result

Theorem (Belton, Guillot, Khare, Putinar, 2016)

Let $c_0, \ldots, c_{N-1}, c' \in \mathbb{R}$ and $M \geq N \geq 1$. If $f(z) = \sum_j c_j z^j + c' z^M$, TFAE:

1. $f[-]$ preserves positivity on $\mathbb{P}_N(\overline{D}(0, \rho))$.
2. Either $c_j, c' \geq 0$ or $c_0, \ldots, c_{N-1} > 0 > c' \geq -c(c; z^M; N, \rho)^{-1}$.
3. $f[-] \text{ preserves positivity on } \mathbb{P}^1_N((0, \rho))$.

Sketch of the Proof of (3) \implies (2):
Assume $c_0, \ldots, c_{N-1} > 0 > c'$.

Notation: $A^o_k := (a^k_{i,j})$.
Motivation
Functions preserving positivity
Results in fixed dimension
Structured matrices

Polynomials preserving positivity
Main characterization
Sketch of proof: Schur polynomials

Sketch of the proof of the main result

Theorem (Belton, Guillot, Khare, Putinar, 2016)

Let \(c_0, \ldots, c_{N-1}, c' \in \mathbb{R} \) and \(M \geq N \geq 1 \). If \(f(z) = \sum_j c_j z^j + c' z^M \), TFAE:

1. \(f[-] \) preserves positivity on \(\mathbb{P}_N(\overline{D}(0, \rho)) \).
2. Either \(c_j, c' \geq 0 \) or \(c_0, \ldots, c_{N-1} > 0 > c' \geq -\mathcal{C}(c; z^M; N, \rho)^{-1} \).
3. \(f[-] \) preserves positivity on \(\mathbb{P}^1_N((0, \rho)) \).

Sketch of the Proof of (3) \(\implies \) (2):
Assume \(c_0, \ldots, c_{N-1} > 0 > c' \).

Notation: \(A^{\circ k} := (a_{i,j}^k) \).

Study the determinants of linear pencils

\[
p(t) = p_t[A] := \det \left(t(c_0 \mathbf{1}_{N \times N} + c_1 A + \cdots + c_{N-1} A^{\circ(N-1)}) - A^{\circ M} \right)
\]

for rank-one matrices \(A = uv^T \), with \(t = |c'|^{-1} \).
Motivation

Functions preserving positivity

Results in fixed dimension

Structured matrices

Polynomials preserving positivity

Main characterization

Sketch of proof: Schur polynomials

Sketch of the proof of the main result

Theorem (Belton, Guillot, Khare, Putinar, 2016)

Let $c_0, \ldots, c_{N-1}, c' \in \mathbb{R}$ and $M \geq N \geq 1$. If $f(z) = \sum_j c_j z^j + c' z^M$, TFAE:

1. $f[-]$ preserves positivity on $\mathbb{P}_N(D(0, \rho))$.
2. Either $c_j, c' \geq 0$ or $c_0, \ldots, c_{N-1} > 0 > c' \geq -\mathcal{C}(c; z^M; N, \rho)^{-1}$.
3. $f[-]$ preserves positivity on $\mathbb{P}_1^{1}(((0, \rho)))$.

Sketch of the Proof of (3) \implies (2):

Assume $c_0, \ldots, c_{N-1} > 0 > c'$.

Notation: $A^{\circ k} := (a_{i,j}^k)$.

Study the determinants of linear pencils

$$p(t) = p_t[A] := \det \left(t (c_0 \mathbf{1}_{N \times N} + c_1 A + \cdots + c_{N-1} A^{\circ(N-1)}) - A^{\circ M} \right)$$

for rank-one matrices $A = uu^T$, with $t = |c'|^{-1}$.

Problem: Find smallest t such that $p(t) \geq 0$ for all $A = uu^T$.
Schur polynomials

Given an integer partition (i.e., a non-increasing N-tuple of non-negative integers, $n_N \geq \cdots \geq n_1$), the corresponding Schur polynomial over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$S(n_N, \ldots, n_1)(x_1, \ldots, x_N) := \frac{\det(x_i^{n_j+j-1})}{\det(x_i^{j-1})}$$

for pairwise distinct $x_i \in \mathbb{F}$.
Schur polynomials

Given an integer partition (i.e., a non-increasing N-tuple of non-negative integers, $n_N \geq \cdots \geq n_1$), the corresponding **Schur polynomial** over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$S(n_N, \ldots, n_1)(x_1, \ldots, x_N) := \frac{\det(x_i^{n_j+j-1})}{\det(x_i^{j-1})}$$

for pairwise distinct $x_i \in \mathbb{F}$.

- The denominator is precisely the Vandermonde determinant

$$\Delta_N(x_1, \ldots, x_N) := \det(x_i^{j-1}) = \prod_{1 \leq i < j \leq N} (x_j - x_i).$$
Schur polynomials

Given an integer partition (i.e., a non-increasing N-tuple of non-negative integers, $n_N \geq \cdots \geq n_1$), the corresponding **Schur polynomial** over a field \mathbb{F} is the unique polynomial extension to \mathbb{F}^N of

$$s(n_N, \ldots, n_1)(x_1, \ldots, x_N) := \frac{\det(x_i^{n_j + j - 1})}{\det(x_i^{j - 1})}$$

for pairwise distinct $x_i \in \mathbb{F}$.

- The denominator is precisely the Vandermonde determinant
 $$\Delta_N(x_1, \ldots, x_N) := \det(x_i^{j - 1}) = \prod_{1 \leq i < j \leq N} (x_j - x_i).$$

- **Weyl Character Formula in Type A:**
 $$s(n_N, \ldots, n_1)(1, \ldots, 1) = \prod_{1 \leq i < j \leq N} \frac{n_j - n_i + j - i}{j - i}.$$
Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi-Trudi type identity for p_t.
Technical heart of the proof: Jacobi-Trudi type identity for p_t.

Theorem (Belton, Guillot, Khare, Putinar, 2016)

Let $M \geq N \geq 1$ be integers, and $c_0, \ldots, c_{N-1} \in \mathbb{F}^\times$ be non-zero scalars in any field \mathbb{F}. Define the polynomial

$$p_t(x) := t(c_0 + \cdots + c_{N-1}x^{N-1}) - x^M,$$

and the partition

$$\mu(M, N, j) := (M - N + 1, 1, \ldots, 1, 0, \ldots, 0).$$

($N - j - 1$ ones, j zeros).
Sketch of the proof of the main result (cont.)

Technical heart of the proof: Jacobi-Trudi type identity for p_t.

Theorem (Belton, Guillot, Khare, Putinar, 2016)

Let $M \geq N \geq 1$ be integers, and $c_0, \ldots, c_{N-1} \in \mathbb{F}^\times$ be non-zero scalars in any field \mathbb{F}. Define the polynomial

$$p_t(x) := t(c_0 + \cdots + c_{N-1}x^{N-1}) - x^M,$$

and the partition

$$\mu(M, N, j) := (M - N + 1, 1, \ldots, 1, 0, \ldots, 0).$$

$(N - j - 1$ ones, j zeros). The following identity holds for all $u, v \in \mathbb{F}^N$:

$$\det p_t[uv^T] =$$

$$t^{N-1} \Delta_N(u) \Delta_N(v) \prod_{j=0}^{N-1} c_j \times \left(t - \sum_{j=0}^{N-1} \frac{s_{\mu(M,N,j)}(u)s_{\mu(M,N,j)}(v)}{c_j} \right).$$
The negative threshold

Proof of (3) \implies (2).
Proof of (3) \implies (2).

- Suppose \(f[-] : \mathbb{P}_N^1((0, \rho)) \to \mathbb{P}_N \) and \(c_0, \ldots, c_{N-1} > 0 > c' \).
The negative threshold

Proof of (3) \implies (2).

- Suppose $f[-] : \mathbb{P}_N^1((0, \rho)) \to \mathbb{P}_N$ and $c_0, \ldots, c_{N-1} > 0 > c'$.
- With $p_t(x) := t(c_0 + \cdots + c_{N-1}x^{N-1}) - x^M$ and $t := |c'|^{-1}$,

$$0 \leq \frac{\det p_t[uu^T]}{t^{N-1} \Delta_N(u)^2 c_0 \cdots c_{N-1}} = t \sum_{j=0}^{N-1} \frac{s_{\mu(M,N,j)}(u)^2}{c_j}.$$
The negative threshold

Proof of (3) \(\implies\) (2).

- Suppose \(f[-] : \mathbb{P}^1_N((0, \rho)) \to \mathbb{P}_N\) and \(c_0, \ldots, c_{N-1} > 0 > c'\).
- With \(p_t(x) := t(c_0 + \cdots + c_{N-1}x^{N-1}) - x^M\) and \(t := |c'|^{-1}\),

\[
0 \leq \frac{\det p_t[uu^T]}{t^{N-1} \Delta_N(u)^2c_0 \cdots c_{N-1}} = t - \sum_{j=0}^{N-1} \frac{s_{\mu(M,N,j)}(u)^2}{c_j}.
\]

- \(s_{\mu(M,N,j)}(u)\) is maximized on \([0, \alpha]^N\) at \(u = (\alpha, \ldots, \alpha)\).
The negative threshold

Proof of \((3) \implies (2)\).

- Suppose \(f[-] : \mathbb{P}_N^1((0, \rho)) \to \mathbb{P}_N\) and \(c_0, \ldots, c_{N-1} > 0 > c'\).
- With \(p_t(x) := t(c_0 + \cdots + c_{N-1}x^{N-1}) - x^M\) and \(t := |c'|^{-1}\),

\[
0 \leq \frac{\det p_t[uu^T]}{t^{N-1}\Delta_N(u)^2c_0 \cdots c_{N-1}} = t - \sum_{j=0}^{N-1} \frac{s_{\mu(M,N,j)}(u)^2}{c_j}.
\]

- \(s_{\mu(M,N,j)}(u)\) is maximized on \([0, \alpha]^N\) at \(u = (\alpha, \ldots, \alpha)\).
- Letting all (distinct) \(u_i \to \sqrt{\rho^-}\),

\[
t = |c'|^{-1} \geq \sum_{j=0}^{N-1} \frac{s_{\mu(M,N,j)}(\sqrt{\rho}, \ldots, \sqrt{\rho})^2}{c_j} = \mathcal{C}(c; z^M; N, \rho).
\]

Need Weyl Character Formula, Jacobi-Trudi identities, ...
The negative threshold

Proof of (3) \implies (2).

- Suppose $f[-] : \mathbb{P}_N^1((0, \rho)) \to \mathbb{P}_N$ and $c_0, \ldots, c_{N−1} > 0 > c'$.
- With $p_t(x) := t(c_0 + \cdots + c_{N−1}x^{N−1}) − x^M$ and $t := |c'|^{−1}$,

$$0 \leq \frac{\det p_t[uu^T]}{t^{N−1}\Delta_N(u)^2c_0 \cdots c_{N−1}} = t − \sum_{j=0}^{N−1} \frac{s_{\mu(M,N,j)}(u)^2}{c_j}.$$

- $s_{\mu(M,N,j)}(u)$ is maximized on $[0, \alpha]^N$ at $u = (\alpha, \ldots, \alpha)$.
- Letting all (distinct) $u_i \to \sqrt{\rho}^−$,

$$t = |c'|^{−1} ≥ \sum_{j=0}^{N−1} \frac{s_{\mu(M,N,j)}(\sqrt{\rho}, \ldots, \sqrt{\rho})^2}{c_j} = \mathcal{C}(c; z^M; N, \rho).$$

Need Weyl Character Formula, Jacobi-Trudi identities, ...

Reformulation: Linear matrix inequalities (LMI)

- For $A \in \mathbb{P}_N$ and f as in the Theorem, note:

$$f[A] = c_0 1_{N \times N} + \cdots + c_{N-1} A^{o(N-1)} - c_M A^{oM}, \quad A^o := (a^o_{ij}).$$
Reformulation: Linear matrix inequalities (LMI)

- For $A \in \mathbb{P}_N$ and f as in the Theorem, note:

 $$f[A] = c_0 \mathbf{1}_{N \times N} + \cdots + c_{N-1} A^{(N-1)} - c_M A^M, \quad A^k := (a_{ij}^k).$$

- $f[A]$ is positive semidefinite \iff linear matrix inequality

 $$c_M A^M \preceq c_0 \mathbf{1}_{N \times N} + c_1 A + \cdots + c_{N-1} A^{(N-1)},$$
Reformulation: Linear matrix inequalities (LMI)

- For $A \in \mathbb{P}_N$ and f as in the Theorem, note:

 $$
 f[A] = c_0 \mathbf{1}_{N \times N} + \cdots + c_{N-1} A^{\circ(N-1)} - c_M A^{\circ M}, \quad A^{\circ k} := (a_{ij}^k).
 $$

- $f[A]$ is positive semidefinite \iff linear matrix inequality

 $$
 c_M A^{\circ M} \leq c_0 \mathbf{1}_{N \times N} + c_1 A + \cdots + c_{N-1} A^{\circ(N-1)},
 $$

- Bound higher powers using lower ones. E.g.

 $$
 A^{\circ M} \leq c(\mathbf{1}_{N \times N} + A + \cdots + A^{\circ(N-1)})
 $$

 \iff

 $$
 c\mathbf{1}_{N \times N} + cA + \cdots + cA^{\circ(N-1)} - A^{\circ M} \geq 0
 $$

 \iff

 $$
 \mathbf{1}_{N \times N} + A + \cdots + A^{\circ(N-1)} - \frac{1}{c} A^{\circ M} \geq 0
 $$
Reformulation: Linear matrix inequalities (LMI)

- For $A \in \mathbb{P}_N$ and f as in the Theorem, note:

$$f[A] = c_0 \mathbf{1}_{N \times N} + \cdots + c_{N-1} A^\circ(N-1) - c_M A^\circ M,$$

where $A^\circ k := (a_{ij}^k)$.

- $f[A]$ is positive semidefinite \iff linear matrix inequality

$$c_M A^\circ M \leq c_0 \mathbf{1}_{N \times N} + c_1 A + \cdots + c_{N-1} A^\circ(N-1),$$

- Bound higher powers using lower ones. E.g.

$$A^\circ M \leq c(\mathbf{1}_{N \times N} + A + \cdots + A^\circ(N-1))$$

$$\iff c \mathbf{1}_{N \times N} + cA + \cdots + cA^\circ(N-1) - A^\circ M \geq 0$$

$$\iff \mathbf{1}_{N \times N} + A + \cdots + A^\circ(N-1) - \frac{1}{c} A^\circ M \geq 0$$

For $A \in \mathbb{P}_N(\overline{D}(0, 1))$, this holds with

$$c = \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M - j - 1}{N - j - 1}^2$$

(sharp bound).
Reformulation: Linear matrix inequalities (LMI)

- For $A \in \mathbb{P}_N$ and f as in the Theorem, note:

 $$f[A] = c_0 1_{N \times N} + \cdots + c_{N-1} A^{(N-1)} - c_M A^M, \quad A^k := (d_{i,j}^k).$$

- $f[A]$ is positive semidefinite \iff linear matrix inequality

 $$c_M A^M \leq c_0 1_{N \times N} + c_1 A + \cdots + c_{N-1} A^{(N-1)},$$

- Bound higher powers using lower ones. E.g.

 $$A^M \leq c(1_{N \times N} + A + \cdots + A^{(N-1)})$$

 $$\iff c 1_{N \times N} + cA + \cdots + cA^{(N-1)} - A^M \geq 0$$

 $$\iff 1_{N \times N} + A + \cdots + A^{(N-1)} - \frac{1}{c} A^M \geq 0$$

For $A \in \mathbb{P}_N(\mathcal{D}(0,1))$, this holds with

$$c = \sum_{j=0}^{N-1} \binom{M}{j}^2 \binom{M-j-1}{N-j-1}^2 \quad \text{(sharp bound)}.$$

Special Case $M = N$: $c = \sum_{j=0}^{N-1} \binom{N}{j}^2 = \binom{2N}{N} - 1 \sim \frac{4^N}{\sqrt{\pi N}}$.
Preserving positivity on Hankel matrices (of all dimensions).
Preserving positivity on Hankel matrices (of all dimensions).
Let μ a non-negative measure on \mathbb{R}, with moments of all orders

$$s_k(\mu) = s_k := \int_{\mathbb{R}} x^k \, d\mu, \quad s(\mu) := (s_k(\mu))_{k \geq 0}.$$
Preserving positivity on Hankel matrices (of all dimensions).
Let μ a non-negative measure on \mathbb{R}, with moments of all orders

$$s_k(\mu) = s_k := \int_{\mathbb{R}} x^k \, d\mu, \quad \mathbf{s}(\mu) := (s_k(\mu))_{k \geq 0}.$$

Consider the Hankel matrix associated to μ:

$$H_\mu := \begin{pmatrix} s_0 & s_1 & s_2 & \cdots \\ s_1 & s_2 & s_3 & \cdots \\ s_2 & s_3 & s_4 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$
Preserving positivity on Hankel matrices (of all dimensions).
Let μ a non-negative measure on \mathbb{R}, with moments of all orders

$$s_k(\mu) = s_k := \int_{\mathbb{R}} x^k \, d\mu, \quad s(\mu) := (s_k(\mu))_{k \geq 0}.$$

Consider the Hankel matrix associated to μ:

$$H_{\mu} := \begin{pmatrix} s_0 & s_1 & s_2 & \cdots \\ s_1 & s_2 & s_3 & \cdots \\ s_2 & s_3 & s_4 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

Theorem (Hamburger). A sequence $(s_k)_{k \geq 0}$ is the moment sequence of a positive Borel measure on \mathbb{R} if and only if its associated Hankel matrices are positive semidefinite.
Preserving positivity on Hankel matrices (of all dimensions).

Let μ a non-negative measure on \mathbb{R}, with moments of all orders

$$s_k(\mu) = s_k := \int_{\mathbb{R}} x^k \, d\mu, \quad s(\mu) := (s_k(\mu))_{k \geq 0}. $$

Consider the Hankel matrix associated to μ:

$$H_\mu := \begin{pmatrix}
 s_0 & s_1 & s_2 & \cdots \\
 s_1 & s_2 & s_3 & \cdots \\
 s_2 & s_3 & s_4 & \cdots \\
 \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.$$

Theorem (Hamburger). A sequence $(s_k)_{k \geq 0}$ is the moment sequence of a positive Borel measure on \mathbb{R} if and only if its associated Hankel matrices are positive semidefinite.

Interesting consequence: f preserve positivity (entrywise) on Hankel matrices iff it maps moment sequences to themselves:

$$f(s_k(\mu)) = s_k(\sigma_\mu) \quad (k \geq 0)$$

for some positive Borel measure s_μ.
Theorem (Belton, Guillot, Khare, Putinar; preprint). Let $f : \mathbb{R} \to \mathbb{R}$. The following are equivalent:
Theorem (Belton, Guillot, Khare, Putinar; preprint). Let $f : \mathbb{R} \to \mathbb{R}$. The following are equivalent:

1. f maps moment sequences of measures supported on $[-1, 1]$ into themselves.

Can prove several variants for measures with other supports.

To illustrate the techniques used in the proof, we will prove the following simpler result.

Proposition Suppose $f(s_k(\mu)) = s_k(\sigma \mu)$ for all $k \geq 0$ and all μ with $\text{supp} \mu \subseteq [-1, 1]$. Then f is continuous.
Theorem (Belton, Guillot, Khare, Putinar; preprint). Let \(f : \mathbb{R} \rightarrow \mathbb{R} \). The following are equivalent:

1. \(f \) maps moment sequences of measures supported on \([-1, 1]\) into themselves.

2. \(f[A] \in \mathcal{P}_N \) for all \(A \in \mathcal{P}_N \cap \text{Hankel} \) and all \(n \geq 1 \).
Theorem (Belton, Guillot, Khare, Putinar; preprint). Let \(f : \mathbb{R} \to \mathbb{R} \). The following are equivalent:

1. \(f \) maps moment sequences of measures supported on \([-1, 1]\) into themselves.
2. \(f[A] \in \mathbb{P}_N \) for all \(A \in \mathbb{P}_N \cap \text{Hankel} \) and all \(n \geq 1 \).
3. \(f[A] \in \mathbb{P}_N \) for all \(A \in \mathbb{P}_N \).
Theorem (Belton, Guillot, Khare, Putinar; preprint). Let $f : \mathbb{R} \to \mathbb{R}$. The following are equivalent:

1. f maps moment sequences of measures supported on $[-1, 1]$ into themselves.
2. $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N \cap \text{Hankel}$ and all $n \geq 1$.
3. $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$.
4. f is the restriction to \mathbb{R} of an entire function $f(z) = \sum_{j=0}^{\infty} c_j z^j$ with $c_j \geq 0$.

Can prove several variants for measure with other supports. To illustrate the techniques used in the proof, we will prove the following simpler result.

Proposition Suppose $f(s_k(\mu)) = s_k(\sigma \mu)$ for all $k \geq 0$ and all μ with sup $\mu \subseteq [-1, 1]$. Then f is continuous.
Theorem (Belton, Guillot, Khare, Putinar; preprint). Let $f : \mathbb{R} \rightarrow \mathbb{R}$. The following are equivalent:

1. f maps moment sequences of measures supported on $[-1, 1]$ into themselves.
2. $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N \cap \text{Hankel}$ and all $n \geq 1$.
3. $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$.
4. f is the restriction to \mathbb{R} of an entire function $f(z) = \sum_{j=0}^{\infty} c_j z^j$ with $c_j \geq 0$.

- Can prove several variants for measure with other supports.
Theorem (Belton, Guillot, Khare, Putinar; preprint). Let $f : \mathbb{R} \to \mathbb{R}$. The following are equivalent:

1. f maps moment sequences of measures supported on $[-1, 1]$ into themselves.
2. $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N \cap \text{Hankel}$ and all $n \geq 1$.
3. $f[A] \in \mathbb{P}_N$ for all $A \in \mathbb{P}_N$.
4. f is the restriction to \mathbb{R} of an entire function $f(z) = \sum_{j=0}^{\infty} c_j z^j$ with $c_j \geq 0$.

- Can prove several variants for measure with other supports.
- To illustrate the techniques used in the proof, we will prove the following simpler result.
Theorem (Belton, Guillot, Khare, Putinar; preprint). Let \(f : \mathbb{R} \to \mathbb{R} \). The following are equivalent:

1. \(f \) maps moment sequences of measures supported on \([-1, 1]\) into themselves.
2. \(f[A] \in \mathbb{P}_N \) for all \(A \in \mathbb{P}_N \cap \text{Hankel} \) and all \(n \geq 1 \).
3. \(f[A] \in \mathbb{P}_N \) for all \(A \in \mathbb{P}_N \).
4. \(f \) is the restriction to \(\mathbb{R} \) of an entire function \(f(z) = \sum_{j=0}^{\infty} c_j z^j \) with \(c_j \geq 0 \).

- Can prove several variants for measure with other supports.
- To illustrate the techniques used in the proof, we will prove the following simpler result.

Proposition Suppose \(f(s_k(\mu)) = s_k(\sigma_\mu) \) for all \(k \geq 0 \) and all \(\mu \) with \(\text{supp} \mu \subseteq [-1, 1] \). Then \(f \) is continuous.
Proof of the Proposition

Step 1. f is continuous on $(0, \infty)$. Let $0 < x \leq y$.

$$
\begin{pmatrix}
y & x \\
x & y \\
\end{pmatrix} \in \mathbb{P}_2 \implies \begin{pmatrix}
f(y) & f(x) \\
f(x) & f(y) \\
\end{pmatrix} \in \mathbb{P}_2 \implies f(x) \leq f(y).
$$
Proof of the Proposition

Step 1. f is continuous on $(0, \infty)$. Let $0 < x \leq y$.

\[
\begin{pmatrix} y & x \\ x & y \end{pmatrix} \in \mathbb{P}_2 \implies \begin{pmatrix} f(y) & f(x) \\ f(x) & f(y) \end{pmatrix} \in \mathbb{P}_2 \implies f(x) \leq f(y).
\]

Thus, f is monotone and so is Borel measurable.
Proof of the Proposition

Step 1. f is continuous on $(0, \infty)$. Let $0 < x \leq y$.

\[
\begin{pmatrix}
y & x \\
x & y \\
\end{pmatrix} \in P_2 \implies \begin{pmatrix}
f(y) & f(x) \\
f(x) & f(y) \\
\end{pmatrix} \in P_2 \implies f(x) \leq f(y).
\]

Thus, f is monotone and so is Borel measurable.
Next, for $a, b \in (0, \infty)$,

\[
\begin{pmatrix}
a & \sqrt{ab} \\
\sqrt{ab} & b \\
\end{pmatrix} \in P_2 \implies \begin{pmatrix}
f(a) & f(\sqrt{ab}) \\
f(\sqrt{ab}) & f(b) \\
\end{pmatrix} \in P_2 \implies f(\sqrt{ab})^2 \leq f(a)f(b),
\]

i.e., f is multiplicatively mid-convex.
Proof of the Proposition

Step 1. f is continuous on $(0, \infty)$. Let $0 < x \leq y$.

\[
\begin{pmatrix} y & x \\ x & y \end{pmatrix} \in \mathbb{P}_2 \implies \begin{pmatrix} f(y) & f(x) \\ f(x) & f(y) \end{pmatrix} \in \mathbb{P}_2 \implies f(x) \leq f(y).
\]

Thus, f is monotone and so is Borel measurable.

Next, for $a, b \in (0, \infty)$,

\[
\begin{pmatrix} a & \sqrt{ab} \\ \sqrt{ab} & b \end{pmatrix} \in \mathbb{P}_2 \implies \begin{pmatrix} f(a) & f(\sqrt{ab}) \\ f(\sqrt{ab}) & f(b) \end{pmatrix} \in \mathbb{P}_2 \implies f(\sqrt{ab})^2 \leq f(a)f(b),
\]

i.e., f is multiplicatively mid-convex.

Equivalently, we have shown that $\log f(e^x)$ is mid-convex and measurable.
Proof of the Proposition

Step 1. f is continuous on $(0, \infty)$. Let $0 < x \leq y$.

\[
\begin{pmatrix} y & x \\ x & y \end{pmatrix} \in \mathbb{P}_2 \implies \begin{pmatrix} f(y) & f(x) \\ f(x) & f(y) \end{pmatrix} \in \mathbb{P}_2 \implies f(x) \leq f(y).
\]

Thus, f is monotone and so is Borel measurable. Next, for $a, b \in (0, \infty)$,

\[
\begin{pmatrix} a & \sqrt{ab} \\ \sqrt{ab} & b \end{pmatrix} \in \mathbb{P}_2 \implies \begin{pmatrix} f(a) & f(\sqrt{ab}) \\ f(\sqrt{ab}) & f(b) \end{pmatrix} \in \mathbb{P}_2 \implies f(\sqrt{ab})^2 \leq f(a)f(b),
\]

i.e., f is multiplicatively mid-convex.

Equivalently, we have shown that $\log f(e^x)$ is mid-convex and measurable.

This implies $\log f(e^x)$ is convex and so f is continuous on $(0, \infty)$.
Step 2. \(f \) is continuous on \((-\infty, 0]\).
Step 2. f is continuous on $(-\infty, 0]$.

Key Idea: If $p(t) = a_0 + a_1 t + \cdots + a_d t^d \geq 0$ on $[-1, 1]$. Then

\[
0 \leq \int_{-1}^{1} p(t) d\sigma_\mu(t) = \sum_{k=0}^{d} a_k s_k(\sigma_\mu) = \sum_{k=0}^{d} a_k f(s_k(\mu)).
\]
Step 2. f is continuous on $(-\infty, 0]$.

Key Idea: If $p(t) = a_0 + a_1 t + \cdots + a_d t^d \geq 0$ on $[-1, 1]$. Then

$$0 \leq \int_{-1}^{1} p(t)d\sigma_{\mu}(t) = \sum_{k=0}^{d} a_k s_k(\sigma_{\mu})$$

$$= \sum_{k=0}^{d} a_k f(s_k(\mu)).$$

- We discover properties of f by applying the above identity for carefully chosen μ and p.

- Let $p_{\pm}(t) = (1 \pm t)(1 - t^2)$. Then $p_{\pm} \geq 0$ on $[-1, 1]$.
Step 2. f is continuous on $(-\infty, 0]$.

Key Idea: If $p(t) = a_0 + a_1 t + \cdots + a_d t^d \geq 0$ on $[-1, 1]$. Then

$$0 \leq \int_{-1}^{1} p(t) d\sigma_{\mu}(t) = \sum_{k=0}^{d} a_k s_k(\sigma_{\mu})$$

$$= \sum_{k=0}^{d} a_k f(s_k(\mu)).$$

- We discover properties of f by applying the above identity for carefully chosen μ and p.
- Let $p_{\pm}(t) = (1 \pm t)(1 - t^2)$. Then $p_{\pm} \geq 0$ on $[-1, 1]$.

Step 2. f is continuous on $(-\infty, 0]$.
Key Idea: If $p(t) = a_0 + a_1 t + \cdots + a_d t^d \geq 0$ on $[-1, 1]$. Then

$$0 \leq \int_{-1}^{1} p(t) d\sigma_\mu(t) = \sum_{k=0}^{d} a_k s_k(\sigma_\mu)$$

$$= \sum_{k=0}^{d} a_k f(s_k(\mu)).$$

- We discover properties of f by applying the above identity for carefully chosen μ and p.
- Let $p_{\pm}(t) = (1 \pm t)(1 - t^2)$. Then $p_{\pm} \geq 0$ on $[-1, 1]$.
- Fix $v_0 \in (0, 1)$, let $b, \beta \geq 0$ and define

$$a := \beta + bv_0, \quad \mu := a\delta_{-1} + b\delta_{v_0}.$$
Key identity: $0 \leq \sum_{k=0}^{d} a_k f(s_k(\mu))$.
Key identity: $0 \leq \sum_{k=0}^{d} a_k f(s_k(\mu))$.

We compute the first moments of μ:

<table>
<thead>
<tr>
<th>k</th>
<th>$s_k(\mu)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b$</td>
</tr>
<tr>
<td>1</td>
<td>$-a + bv_0$</td>
</tr>
<tr>
<td>2</td>
<td>$a + bv_0^2$</td>
</tr>
<tr>
<td>3</td>
<td>$-a + bv_0^3$</td>
</tr>
</tbody>
</table>
Key identity: \(0 \leq \sum_{k=0}^{d} a_k f(s_k(\mu)) \).

We compute the first moments of \(\mu \):

<table>
<thead>
<tr>
<th>(k)</th>
<th>(s_k(\mu))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(a + b)</td>
</tr>
<tr>
<td>1</td>
<td>(-a + bv_0)</td>
</tr>
<tr>
<td>2</td>
<td>(a + bv_0^2)</td>
</tr>
<tr>
<td>3</td>
<td>(-a + bv_0^3)</td>
</tr>
</tbody>
</table>

Using the Key identity, we obtain:

\[
f(a + b) - f(a + bv_0^2) \geq \pm (f(-a + bv_0) - f(-a + bv_0^3)) .
\]
Motivation

Functions preserving positivity

Results in fixed dimension

Structured matrices

Hankel matrices

Real powers

Key identity: \(0 \leq \sum_{k=0}^{d} a_k f(s_k(\mu)) \).

We compute the first moments of \(\mu \):

<table>
<thead>
<tr>
<th>(k)</th>
<th>(s_k(\mu))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(a + b)</td>
</tr>
<tr>
<td>1</td>
<td>(-a + bv_0)</td>
</tr>
<tr>
<td>2</td>
<td>(a + bv_0^2)</td>
</tr>
<tr>
<td>3</td>
<td>(-a + bv_0^3)</td>
</tr>
</tbody>
</table>

Using the Key identity, we obtain:

\[
f(a + b) - f(a + bv_0^2) \geq \pm (f(-a + bv_0) - f(-a + bv_0^3)) .
\]

Equivalently,

\[
f(\beta + b + bv_0) - f(\beta + bv_0 + bv_0^2) \geq \left| f(-\beta) - f(-\beta + b(v_0^3 - v_0)) \right| .
\]
Key identity: $0 \leq \sum_{k=0}^{d} a_k f(s_k(\mu))$.

We compute the first moments of μ:

<table>
<thead>
<tr>
<th>k</th>
<th>$s_k(\mu)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$a + b$</td>
</tr>
<tr>
<td>1</td>
<td>$-a + bv_0$</td>
</tr>
<tr>
<td>2</td>
<td>$a + bv_0^2$</td>
</tr>
<tr>
<td>3</td>
<td>$-a + bv_0^3$</td>
</tr>
</tbody>
</table>

Using the Key identity, we obtain:

$$f(a + b) - f(a + bv_0^2) \geq \pm \left(f(-a + bv_0) - f(-a + bv_0^3) \right).$$

Equivalently,

$$f(\beta + b + bv_0) - f(\beta + bv_0 + bv_0^2) \geq \left| f(-\beta) - f(-\beta + b(v_0^3 - v_0)) \right|.$$

Letting $b \to 0^+$ we obtain that f is left-continuous at $-\beta$.

Can use a similar argument to obtain right-continuity.
References:

Work partially supported by the Simons foundation, a University of Delaware Research Foundation grant, and a University of Delaware Research Foundation strategic initiative grant.

Happy Birthday Tom!!!
Recall that $f(x) = x^k$ preserves positivity on $\bigcup_{N \geq 1} \mathbb{P}_N$ when $k \in \mathbb{N}$.

What about other powers $f(x) = x^\alpha$ for $\alpha \in \mathbb{R}$?

Example. Suppose

$$A = \begin{pmatrix} 1 & 0.6 & 0.5 & 0 & 0 \\ 0.6 & 1 & 0.6 & 0.5 & 0 \\ 0.5 & 0.6 & 1 & 0.6 & 0.5 \\ 0 & 0.5 & 0.6 & 1 & 0.6 \\ 0 & 0 & 0.5 & 0.6 & 1 \end{pmatrix}.$$
Critical exponents

- Recall that $f(x) = x^k$ preserves positivity on $\bigcup_{N \geq 1} \mathbb{P}_N$ when $k \in \mathbb{N}$.
- What about other powers $f(x) = x^\alpha$ for $\alpha \in \mathbb{R}$?

Example. Suppose

$$A = \begin{pmatrix}
1 & 0.6 & 0.5 & 0 & 0 \\
0.6 & 1 & 0.6 & 0.5 & 0 \\
0.5 & 0.6 & 1 & 0.6 & 0.5 \\
0 & 0.5 & 0.6 & 1 & 0.6 \\
0 & 0 & 0.5 & 0.6 & 1
\end{pmatrix}.$$

Raise each entry to the αth power for some $\alpha > 0$.

When is the resulting matrix positive semidefinite?

Let $N \geq 2$. Then:

1. $f(x) = x^{\alpha}$ preserves positivity on $\mathbb{P}_N((0, \infty))$ if $\alpha \geq N - 2$.

Let $N \geq 2$. Then:

1. $f(x) = x^\alpha$ preserves positivity on $\mathbb{P}_N((0, \infty))$ if $\alpha \geq N - 2$.
2. If $\alpha < N - 2$ is not an integer, there is a matrix $A = (a_{jk}) \in \mathbb{P}_N$ such that $A^{\alpha} := (a_{jk}^\alpha) \not\in \mathbb{P}_N$.

Let $N \geq 2$. Then:

1. $f(x) = x^\alpha$ preserves positivity on $\mathbb{P}_N((0, \infty))$ if $\alpha \geq N - 2$.
2. If $\alpha < N - 2$ is not an integer, there is a matrix $A = (a_{jk}) \in \mathbb{P}_N$ such that $A^\alpha := (a_{jk}^\alpha) \not\in \mathbb{P}_N$.

In other words, $f(x) = x^\alpha$ preserves positivity on $\mathbb{P}_N((0, \infty))$ if and only if $\alpha \in \mathbb{N} \cup [N - 2, \infty)$.

Critical exponent: $N - 2 = \text{smallest } \alpha_0 \text{ such that } \alpha \geq \alpha_0$ preserves positivity on \mathbb{P}_N.

Let $N \geq 2$. Then:

1. $f(x) = x^\alpha$ preserves positivity on $\mathbb{P}_N((0, \infty))$ if $\alpha \geq N - 2$.

2. If $\alpha < N - 2$ is not an integer, there is a matrix $A = (a_{jk}) \in \mathbb{P}_N$ such that $A^{\alpha} := (a_{jk}^\alpha) \notin \mathbb{P}_N$.

In other words, $f(x) = x^\alpha$ preserves positivity on $\mathbb{P}_N((0, \infty))$ if and only if $\alpha \in \mathbb{N} \cup [N - 2, \infty)$.

Critical exponent: $N - 2 =$ smallest α_0 such that $\alpha \geq \alpha_0$

preserves positivity on \mathbb{P}_N.

So for $A = \begin{pmatrix}
1 & 0.6 & 0.5 & 0 & 0 \\
0.6 & 1 & 0.6 & 0.5 & 0 \\
0.5 & 0.6 & 1 & 0.6 & 0.5 \\
0 & 0.5 & 0.6 & 1 & 0.6 \\
0 & 0 & 0.5 & 0.6 & 1 \\
\end{pmatrix}$, all powers $\alpha \in \mathbb{N} \cup [3, \infty)$ work.

Can we do better?
FitzGerald and Horn’s result (Sketch of proof)

The proof of FitzGerald and Horn’s result is easy, but very ingenious.
FitzGerald and Horn’s result (Sketch of proof)

The proof of FitzGerald and Horn’s result is easy, but very ingenious.

Background: Let M be a block matrix. Let

$$M := \begin{pmatrix} A & B \\ C & D \end{pmatrix} \quad A \in \mathbb{M}_m, D \in \mathbb{M}_n$$
Motivation
Functions preserving positivity
Results in fixed dimension
Structured matrices

Hankel matrices
Real powers

FitzGerald and Horn’s result (Sketch of proof)

The proof of FitzGerald and Horn’s result is easy, but very ingenrous.

Background: Let M be a block matrix. Let

$$M := \begin{pmatrix} A & B \\ C & D \end{pmatrix} \quad A \in \mathbb{M}_m, D \in \mathbb{M}_n$$

Assuming D is invertible, the *Schur complement* of D in M is

$$M/D := A - BD^{-1}C.$$
FitzGerald and Horn’s result (Sketch of proof)

The proof of FitzGerald and Horn’s result is easy, but very ingenious.

Background: Let M be a block matrix. Let

$$M := \begin{pmatrix} A & B \\ C & D \end{pmatrix} \quad A \in \mathbb{M}_m, D \in \mathbb{M}_n$$

Assuming D is invertible, the *Schur complement* of D in M is

$$M/D := A - BD^{-1}C.$$

Important properties:

1. $\det M = \det D \cdot \det(M/D)$.

2. $M \in \mathbb{P}^m_n$ if and only if $D \in \mathbb{P}^n_m$ and $M/D \in \mathbb{P}^m_n$.

Proof:

$$M = \begin{pmatrix} I_m & BD^{-1} \\ 0 & I_n \end{pmatrix} \begin{pmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} I_m & 0 \\ D^{-1}C & I_n \end{pmatrix}.$$
FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn’s result is easy, but very ingenious.

Background: Let M be a block matrix. Let

$$M := \begin{pmatrix} A & B \\ C & D \end{pmatrix} \quad A \in \mathbb{M}_m, D \in \mathbb{M}_n$$

Assuming D is invertible, the *Schur complement* of D in M is

$$M/D := A - BD^{-1}C.$$

Important properties:

1. $\det M = \det D \cdot \det(M/D)$.
2. $M \in \mathbb{P}_{n+m}$ if and only if $D \in \mathbb{P}_n$ and $M/D \in \mathbb{P}_m$.
FitzGerald and Horn's result (Sketch of proof)

The proof of FitzGerald and Horn's result is easy, but very ingenious.

Background: Let M be a block matrix. Let

$$M := \begin{pmatrix} A & B \\ C & D \end{pmatrix} \quad A \in \mathbb{M}_m, D \in \mathbb{M}_n$$

Assuming D is invertible, the *Schur complement* of D in M is

$$M/D := A - BD^{-1}C.$$

Important properties:

1. $\det M = \det D \cdot \det(M/D)$.
2. $M \in \mathbb{P}_{n+m}$ if and only if $D \in \mathbb{P}_n$ and $M/D \in \mathbb{P}_m$.

Proof:

$$M = \begin{pmatrix} I_m & BD^{-1} \\ 0 & I_n \end{pmatrix} \begin{pmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} I_m & 0 \\ D^{-1}C & I_n \end{pmatrix}$$
FitzGerald and Horn’s result (Sketch of proof)

Theorem: (FitzGerald and Horn, 1977) Let $n \geq 2$. Then:

1. $f(x) = x^\alpha$ preserves positivity on $\mathbb{P}_n((0, \infty))$ if $\alpha \geq n - 2$.
2. If $\alpha < n - 2$ is not an integer, there is a matrix $A \in \mathbb{P}_n$ such that $A^{\circ \alpha} \not\in \mathbb{P}_n$.

Use Induction. $n = 2$ is easy.

Now,

$$A = \begin{pmatrix} B & \xi \\ \xi^T & a_{nn} \end{pmatrix} \quad \zeta := \frac{1}{\sqrt{a_{nn}}} \xi.$$
FitzGerald and Horn’s result (Sketch of proof)

Theorem: (FitzGerald and Horn, 1977) Let $n \geq 2$. Then:

1. $f(x) = x^\alpha$ preserves positivity on $\mathbb{P}_n((0, \infty))$ if $\alpha \geq n - 2$.
2. If $\alpha < n - 2$ is not an integer, there is a matrix $A \in \mathbb{P}_n$ such that $A^{\circ \alpha} \not\in \mathbb{P}_n$.

Use Induction. $n = 2$ is easy.

Now,

$$A = \begin{pmatrix} B & \xi \\ \xi^T & a_{nn} \end{pmatrix} \quad \zeta := \frac{1}{\sqrt{a_{nn}}} \xi.$$

Note that

$$A/a_{nn} = B - \zeta \zeta^T \in \mathbb{P}_{n-1}.$$
FitzGerald and Horn’s result (Sketch of proof)

Theorem: (FitzGerald and Horn, 1977) Let $n \geq 2$. Then:
1. $f(x) = x^\alpha$ preserves positivity on $\mathbb{P}_n((0, \infty))$ if $\alpha \geq n - 2$.
2. If $\alpha < n - 2$ is not an integer, there is a matrix $A \in \mathbb{P}_n$ such that $A^{\circ \alpha} \not\in \mathbb{P}_n$.

Use Induction. $n = 2$ is easy.

Now,

$$A = \begin{pmatrix} B & \xi \\ \xi^T & a_{nn} \end{pmatrix} \quad \zeta := \frac{1}{\sqrt{a_{nn}}} \xi.$$

Note that

$$A/a_{nn} = B - \zeta \zeta^T \in \mathbb{P}_{n-1}.$$

Goal: Show that

$$A^{\circ \alpha}/a_{nn}^{\alpha} = B^{\circ \alpha} - \zeta^{\circ \alpha} \zeta^{\circ \alpha T}$$

$$= B^{\circ \alpha} - (\zeta \zeta^T)^{\circ \alpha} \in \mathbb{P}_{n-1}.$$
Theorem: (FitzGerald and Horn, 1977) Let \(n \geq 2 \). Then:

1. \(f(x) = x^\alpha \) preserves positivity on \(\mathbb{P}_n((0, \infty)) \) if \(\alpha \geq n - 2 \).
2. If \(\alpha < n - 2 \) is not an integer, there is a matrix \(A \in \mathbb{P}_n \) such that \(A^\alpha \notin \mathbb{P}_n \).

Proof of (1). By elementary calculus, for any \(x, y \in \mathbb{R} \),

\[
f(x) - f(y) = \int_0^1 (x - y)f'(\lambda x + (1 - \lambda)y) \, d\lambda.
\]
FitzGerald and Horn’s result (Sketch of proof)

Theorem: (FitzGerald and Horn, 1977) Let $n \geq 2$. Then:

1. $f(x) = x^\alpha$ preserves positivity on $\mathbb{P}_n((0, \infty))$ if $\alpha \geq n - 2$.

2. If $\alpha < n - 2$ is not an integer, there is a matrix $A \in \mathbb{P}_n$ such that $A^{\circ \alpha} \notin \mathbb{P}_n$.

Proof of (1). By elementary calculus, for any $x, y \in \mathbb{R}$,

$$f(x) - f(y) = \int_0^1 (x - y) f'(\lambda x + (1 - \lambda)y) \, d\lambda.$$

Apply the identity entrywise:

$$B^{\circ \alpha} - (\zeta \zeta^T)^{\circ \alpha} = \int_0^1 (B - \zeta \zeta^T) \circ (\lambda B + (1 - \lambda)\zeta \zeta^T)^{\circ (\alpha - 1)} \, d\lambda.$$

Done by induction.
Critical exponent of graphs

Given $G = (V, E)$ with $V = \{1, \ldots, N\}$, define a subset of \mathbb{P}_N by

$$\mathbb{P}_G := \{ A \in \mathbb{P}_N : a_{jk} = 0 \text{ if } (j, k) \not\in E \text{ and } j \neq k \}. $$
Given $G = (V, E)$ with $V = \{1, \ldots, N\}$, define a subset of \mathbb{P}_N by

$$\mathbb{P}_G := \{A \in \mathbb{P}_N : a_{jk} = 0 \text{ if } (j, k) \not\in E \text{ and } j \neq k\}.$$

Example:

$$\begin{pmatrix}
* & * & 0 & *\\
* & * & * & 0 \\
0 & * & * & * \\
* & 0 & * & *
\end{pmatrix}$$
Critical exponent of graphs

Given $G = (V, E)$ with $V = \{1, \ldots, N\}$, define a subset of \mathbb{P}_N by

$$\mathbb{P}_G := \{ A \in \mathbb{P}_N : a_{jk} = 0 \text{ if } (j, k) \notin E \text{ and } j \neq k \}.$$

Example:

$$\begin{pmatrix}
* & * & 0 & * \\
* & * & * & 0 \\
0 & * & * & * \\
* & 0 & * & *
\end{pmatrix}$$

Define the set of powers preserving positivity for G:

$$\mathcal{H}_G := \{ \alpha \geq 0 : A^{\alpha} \in \mathbb{P}_G \text{ for all } A \in \mathbb{P}_G([0, \infty)) \}$$

$$CE(G) := \text{smallest } \alpha_0 \text{ s.t. } x^\alpha \text{ preserves positivity on } \mathbb{P}_G, \forall \alpha \geq \alpha_0.$$
Critical exponent of graphs

Given $G = (V, E)$ with $V = \{1, \ldots, N\}$, define a subset of \mathbb{P}_N by

$$\mathbb{P}_G := \{A \in \mathbb{P}_N : a_{jk} = 0 \text{ if } (j, k) \not\in E \text{ and } j \neq k\}.$$

Example:

$$\begin{pmatrix} * & * & 0 & * \\ * & * & * & 0 \\ 0 & * & * & * \\ * & 0 & * & * \end{pmatrix}$$

Define the set of powers preserving positivity for G:

$$\mathcal{H}_G := \{\alpha \geq 0 : A^{\circ \alpha} \in \mathbb{P}_G \text{ for all } A \in \mathbb{P}_G([0, \infty))\}$$

$$CE(G) := \text{smallest } \alpha_0 \text{ s.t. } x^{\alpha} \text{ preserves positivity on } \mathbb{P}_G, \forall \alpha \geq \alpha_0.$$

Problem 1: Compute \mathcal{H}_G and $CE(G)$.

(FitzGerald-Horn studied the case $G = K_N$.)
Critical exponent of graphs

Given $G = (V, E)$ with $V = \{1, \ldots, N\}$, define a subset of \mathbb{P}_N by

$$\mathbb{P}_G := \{ A \in \mathbb{P}_N : a_{jk} = 0 \text{ if } (j, k) \notin E \text{ and } j \neq k \}.$$

Example:

$$\begin{pmatrix} * & * & 0 & * \\ * & * & * & 0 \\ 0 & * & * & * \\ * & 0 & * & * \end{pmatrix}$$

Define the set of powers preserving positivity for G:

$$\mathcal{H}_G := \{ \alpha \geq 0 : A^{\circ \alpha} \in \mathbb{P}_G \text{ for all } A \in \mathbb{P}_G([0, \infty)) \}$$

$$CE(G) := \text{smallest } \alpha_0 \text{ s.t. } x^{\alpha} \text{ preserves positivity on } \mathbb{P}_G, \forall \alpha \geq \alpha_0.$$

Problem 1: Compute \mathcal{H}_G and $CE(G)$.
(FitzGerald-Horn studied the case $G = K_N$.)

Problem 2: How does the structure of G relate to the set of powers preserving positivity?
Some preliminary observations:
Some preliminary observations:

1. If G has n vertices then $\alpha \geq n - 2$ preserves positivity.
Some preliminary observations:

1. If G has n vertices then $\alpha \geq n - 2$ preserves positivity.
2. If G contains K_m as an induced subgraph, then $\alpha < m - 2$ does not preserve positivity ($\alpha \not\in \mathbb{N}$).
Some preliminary observations:

1. If G has n vertices then $\alpha \geq n - 2$ preserves positivity.
2. If G contains K_m as an induced subgraph, then $\alpha < m - 2$ does not preserve positivity ($\alpha \not\in \mathbb{N}$).

Consequence: $m - 2 \leq CE(G) \leq n - 2$.

Question: Is the critical exponent of G equal to the clique number minus 2?
Some preliminary observations:

1. If G has n vertices then $\alpha \geq n - 2$ preserves positivity.
2. If G contains K_m as an induced subgraph, then $\alpha < m - 2$ does not preserve positivity ($\alpha \not\in \mathbb{N}$).

Consequence: $m - 2 \leq CE(G) \leq n - 2$.

Question: Is the critical exponent of G equal to the clique number minus 2?

Answer: No. Counterexample: $G = K_4^{(1)}$ (K_4 minus a chord).
Some preliminary observations:

1. If \(G \) has \(n \) vertices then \(\alpha \geq n - 2 \) preserves positivity.
2. If \(G \) contains \(K_m \) as an induced subgraph, then \(\alpha < m - 2 \) does not preserve positivity (\(\alpha \not\in \mathbb{N} \)).

Consequence: \(m - 2 \leq CE(G) \leq n - 2 \).

Question: Is the critical exponent of \(G \) equal to the clique number minus 2?

Answer: No. Counterexample: \(G = K_4^{(1)} \) (\(K_4 \) minus a chord).

Clearly, the maximal clique is \(K_3 \). However, we can show that \(\mathcal{H}_{K_4^{(1)}} = \{1\} \cup [2, \infty) \).
Theorem. (Guillot, Khare, Rajaratnam, 2016) $CE(T) = 1$ for any tree T.
Theorem. (Guillot, Khare, Rajaratnam, 2016) $CE(T) = 1$ for any tree T. Trees are graphs with no cycles of length $n \geq 3$.
Theorem. (Guillot, Khare, Rajaratnam, 2016) $CE(T) = 1$ for any tree T.

Trees are graphs with no cycles of length $n \geq 3$.

Definition: A graph is chordal if it does not contain an induced cycle of length $n \geq 4$.

![Chordal vs Not Chordal](chordal_not_chordal.png)
Theorem. (Guillot, Khare, Rajaratnam, 2016) $CE(T) = 1$ for any tree T.

Trees are graphs with no cycles of length $n \geq 3$.

Definition: A graph is *chordal* if it does not contain an induced cycle of length $n \geq 4$.

![Chordal vs. Not Chordal](image)

- Occur in many *applications*: positive definite completion problems, maximum likelihood estimation in graphical models, Gaussian elimination, etc.
Theorem. (Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let G be any chordal graph with at least 2 vertices and let r be the largest integer such that either K_r or $K_r^{(1)}$ is an induced subgraph of G. Then

$$\mathcal{H}_G = \mathbb{N} \cup [r - 2, \infty).$$

In particular, $CE(G) = r - 2$.
Theorem. (Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let G be any chordal graph with at least 2 vertices and let r be the largest integer such that either K_r or $K_r^{(1)}$ is an induced subgraph of G. Then

$$\mathcal{H}_G = \mathbb{N} \cup [r - 2, \infty).$$

In particular, $CE(G) = r - 2$.

Theorem. (Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let $G = C_n$ (cycle of length n) or G a bipartite graph. Then $\mathcal{H}_G = [1, \infty)$.
Theorem. (Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let G be any chordal graph with at least 2 vertices and let r be the largest integer such that either K_r or $K_r^{(1)}$ is an induced subgraph of G. Then

$$\mathcal{H}_G = \mathbb{N} \cup [r - 2, \infty).$$

In particular, $CE(G) = r - 2$.

Theorem. (Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let $G = C_n$ (cycle of length n) or G a bipartite graph. Then $\mathcal{H}_G = [1, \infty)$.

Theorem. (Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let G be any bipartite graph. Then $\mathcal{H}_G = [1, \infty)$.

Note: 1 is the largest integer such that K_r or $K_r^{(1)}$ is contained in C_n or in a bipartite graph.

Theorem. (Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let G be any chordal graph with at least 2 vertices and let r be the largest integer such that either K_r or $K_r^{(1)}$ is an induced subgraph of G. Then

$$\mathcal{H}_G = \mathbb{N} \cup [r - 2, \infty).$$

In particular, $CE(G) = r - 2$.

Theorem. (Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let $G = C_n$ (cycle of length n) or G a bipartite graph. Then $\mathcal{H}_G = [1, \infty)$.

Theorem. (Guillot, Khare, Rajaratnam, J. Combin. Theory Ser. A, 2016) Let G be any bipartite graph. Then $\mathcal{H}_G = [1, \infty)$.

Note: 1 is the largest integer such that K_r or $K_r^{(1)}$ is contained in C_n or in a bipartite!