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The KLMN Theorem ( )

Part I: The existing results

Schrodinger operator —A — V
Kolmogorov backward operator —A +b-V
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Introduction: KLMN Theorem for Schrodinger operator

Schrédinger operator
A=V, V>0
on R?, d >3

KLMN
If Ve Li,. is “small” relative to —A, i.e. there exists § < 1 such that’

1 1 o)
(V2p,V2p) <5(Vp, Vo) +clp,0), @ eC; (Fs)

then —A — V has a self-adjoint operator realization in L?

1 o - =
(u) = [pa w(@)dw, (u,v) = (uv).
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Introduction: KLMN Theorem for Schrodinger operator

Schrédinger operator
A=V, V>0

oan,dZS

KLMN
If Ve Li,. is “small” relative to —A, i.e. there exists § < 1 such that’

1 1 o)
(V2p,V2p) <5(Vp, Vo) +clp,0), @ eC; (Fs)

then —A — V has a self-adjoint operator realization in L?

Fs: the potential energy (Vp, ) is dominated by the kinetic energy (Vo, V)

(= the ground state energy of the quantum mechanical system is finite)

) = Jpa u(x)dz, (u,v) := (ub).
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Introduction: KLMN Theorem for Schrodinger operator

Schrédinger operator
A=V, V>0
on R?, d >3

KLMN
If Ve L. is “small’ relative to —A, i.e. there exists § < 1 such that

1 1 %)
(V2p,V2¢) <8(Vp, Vo) +clp, @), ¢eC;

then —A — V has a self-adjoint operator realization in L>

VeL? = VeF; with arbitrarily small §
Ak

V(z):=klz|> =2 VeFswithd= @

2Hardy’s inequality
2Hardy’s inequality
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Introduction: KLMN Theorem for Schrodinger operator

Schrédinger operator
-A-V, V>0

oan,dES

KLMN
If Ve L. is “small’ relative to —A, i.e. there exists § < 1 such that

1 1 %)
(V2p,V2¢) <8(Vp, Vo) +clp, @), ¢eC;

then —A — V has a self-adjoint operator realization in L>

VeL? = VeF; with arbitrarily small §
_ 4k
— =2 2 : _
V(z) := k|| =2 V &Fswith § = d—2y2
Note: for any € > 0 there exist V € Fs such that V ¢ L1t

loc

2Hardy’s inequality
2Hardy’s inequality
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Introduction: KLMN Theorem for Schrodinger operator

Schrodinger operator
-A-V, V>0

on RY, d >3
KLMN
If Ve L. is “small” relative to —A, i.e. there exists § < 1 such that

1 1 %)
(V2p,V2¢) <8(Vp, Vo) +clp, @), ¢eC; (Fs)

then —A — V has a self-adjoint operator realization in L?

We need to give up the arithmetic sum, i.e. —A — V of the domain
D(-A)NDWV)=W?*?n{uec L?:Vue L’}

since the latter may be not dense in L? (e.g.if V ¢ L?)...
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Introduction: KLMN Theorem for Schrodinger operator

Schrédinger operator
-A-V, V>0

on R?, d >3
KLMN
If Ve L. is “small” relative to —A, i.e. there exists § < 1 such that

1 1 oo
(V2p,V2¢) <8(Vp, Vo) +clp, @), ¢eC; (Fs)

then —A — V has a self-adjoint operator realization in L>

A proof of the KLMN via quadratic form
tfu] == (Vu, Vu) + (Vu,u), D(t) = Ww"?

(closed, symmetric, semi-bounded from below)
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Introduction: KLMN Theorem for Schrodinger operator

Schrédinger operator
A=V, V>0

on R?, d >3
KLMN
If Ve L. is “small” relative to —A, i.e. there exists § < 1 such that

1 1 oo
(V2p,V2¢) <8(Vp, Vo) +clp, @), ¢eC; (Fs)

then —A — V has a self-adjoint operator realization in L>

A proof of the KLMN via quadratic form
tfu] == (Vu, Vu) + (Vu,u), D(t) = Ww"?

(closed, symmetric, semi-bounded from below) = t is the quadratic form of a
self-adjoint operator A on L?:

D(A) C D(t), (Au,v) = tlu,v] (u€ D(A),v € D(t))
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Introduction: KLMN Theorem for the Schrodinger operator —A —V, V >0

: an example of V & L1 , ¢ > 0, such that the quadratic
forms method nevertheless works
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Introduction: KLMN Theorem for the Schrodinger operator —A —V, V >0

Another approach:

gave a different proof of the KLMN Theorem which is based on the
construction of (the standard triple of Hilbert spaces. .. )

(Will return to this in a moment)
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The next important operator (subject of this talk): the Kolmogorov backward
operator
~A+b-V, b:R*>R?

(in Diffusion Processes ...)
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The next important operator (subject of this talk): the Kolmogorov backward
operator

~A+b-V, b:R*>R?
(in Diffusion Processes ...)
Next 5 min: Will consider a somewhat more general operator,
~A4+b-V4+V-b+V

and state the general KLMN Theorem
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Introduction: KLMN Theorem for —A +b6-V +V b+ V

Starting object: a densely defined, closed, sectorial sesquilinear form t on L?

Sectorial: The numerical range of the quadratic form t[u] := t[u, u]
Ot == {tlu] : lul =1} cC
is a subset of the sector

{CeC:larg(¢—7)| <6}, 0<0<Z, yER

(e.g. if t[u] is semi-bounded from below: t[u] > ~v||u||, v € R)
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Introduction: KLMN Theorem for —A +b6-V +V b+ V

Starting object: a densely defined, closed, sectorial sesquilinear form t on L?

Sectorial: The numerical range of the quadratic form t[u] := t[u, u]
O(t) := {tlu] : |Ju|| =1} cC
is a subset of the sector
{CeC:larg(¢—7)| <6}, 0<0<Z, yER
(e.g. if t[u] is semi-bounded from below: t[u] > ~v||u||, v € R)
Closed: For every {u,} C D(t)
If wn —u, tup—um] =0

= u€ D®), tupn—ul—0
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Introduction: KLMN Theorem for —A +b6-V +V b+ V

KLMN ( )
Let t[u,v] be a densely defined, closed, sectorial sesquilinear form on L?

Then there exists a m-accretive operator® A on L? such that
(i) D(A) € D(t) and t[u,v] = (Au,v) (u € D(A), v € D(t))
(i) If t <> A, then® ¢* < A*

3A is uniquely determined by (i)
4% [u, v] := tlv, u], D(t*) = D(t)
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Introduction: KLMN Theorem for —A +b6-V +V b+ V

KLMN ( )

Let t[u,v] be a densely defined, closed, sectorial sesquilinear form on L?

Then there exists a m-accretive operator® A on L? such that
(i) D(A) € D(t) and t[u,v] = (Au,v) (u € D(A), v € D(t))
(i) If t <> A, then® ¢* < A*

“A is m-accretive”: A is closed,
Re(Au,u) > vllull, ~€R, we D)

and [|(C+A) Ylz2oz2 < (Re¢) ™, Re¢ >

(= A is the generator of a contraction Cy semigroup on L?)

3A is uniquely determined by (i)
4% [u, v] := tlv, u], D(t*) = D(t)
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Introduction: KLMN Theorem

Example 1: The form associated to the operator —A +b-V +V-b—V,
t{u, v] := (Vu, Vo) + (Vu, bv) — (bu, Vo) + (Vu,v), D(t) = Wh?

satisfies conditions of the KLMN Theorem provided that |b|? € Fs,, |b|? € Fs,,
V eFs, withdr +d2+6 <1

In particular:

Example 2: The form associated to the operator —A —V, V >0,
t{u, v] := (Vu, Vo) — (Vu,v), D(t) =W"?
satisfies conditions of the KLMN Theorem provided that V € Fs, § < 1
Example 3: The form associated to the operator —A +b-V, b: R — R?,
t{u,v] == (Vu, Vo) + (Vu,bv), D(t) = W"?
satisfies conditions of the KLMN Theorem provided that |b]? € Fs, § < 1
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Introduction: KLMN Theorem

Example 1: The form associated to the operator —A +b-V +V-b—V,
t{u, v] := (Vu, Vo) + (Vu, bv) — (bu, Vo) + (Vu,v), D(t) = Wh?

satisfies conditions of the KLMN Theorem provided that |b|? € Fs,, |b]> € Fs,,
V € Fs, with 61 + 62+ <1

In particular:

Example 2: The form associated to the operator —A —V, V >0,
t{u, v] := (Vu, Vo) — (Vu,v), D(t) =W"?
satisfies conditions of the KLMN Theorem provided that V € Fs, § < 1
Example 3: The form associated to the operator —A +b-V, b: RY — R?,
t{u, v] == (Vu, Vo) + (Vu,bv), D(t) = W"?

satisfies conditions of the KLMN Theorem provided that |b|> € Fs, 6 < 1
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Part 1I: A new look at the KLMN Theorem
Kolmogorov backward operator —A +b-V, b: R — R?

(“|b]* € Fs" misses the point)
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KLMN theorem for the Kolmogorov operator —A +b-V, b: RY — R?

Kato-Lax-Milgram approach (i.e. quadratic forms) requires |b|? € Fs, § < 1:

(b0, ) < 8(Vp, Vo) +c(p, ), @€ CE (Fs)

This talk®: significant gain in the admissible singularities of b
1 1 =)
(bl p) < (A= A)Tp, (A= A)Tg), pels
(write |b] € F;/?)

1/2
Fs C F5

F(I;/Q allows to handle hypersurface singularities of b (precisely: this class
contains the Kato class K1)

5 “On the theory of the Kolmogorov operator in the spaces L?
and C. I" arXiv:1709.08598 (2017)

Damir Kinzebulatov, Université Laval http://archimede.mat.ulaval.ca/pages/kinzebulatov 15 / 24



KLMN Theorem for —A +b-V

If [b] € F}/?, 6 < 1, then —A + b -V has an operator realization A on L?, the
generator of a quasi bounded holomorphic semigroup

(- representation of the resolvent, L”? — L smoothing estimates ... )°

Proof: Not clear how to apply quadratic forms

We develop an approach based on the old ideas of and

6 “On the theory of the Kolmogorov operator in the spaces L?
and C. I" arXiv:1709.08598 (2017)
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

First, an outline of the old approach based on the standard triple of Hilbert
spaces.
H=L?
. 1
Hy =W (with norm || f]|3 := Al fII3 + [(=2)2 f]13)
H_=H}

Hy CHEH CH-

is the standard triple of Hilbert spaces with respect to (, )»
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

... the standard triple of Hilbert spaces

Hy CHCH-

A = the extension of —A by continuity to the operator from H, to H_,

[ (C+ADI > NIfIIF, f€HMHe, ReC>A

Thus, ¢+ A € B(H,,H_) is a bijection ...
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

Consider now the perturbation term B=b-V : Hy — H_

If |b|*> € Fs, § < 1, then B € B(H,H_) and

1B i _ 26— \V3)
(FCHA+BN 2 A= VO(f(ut Af),  n= 2= v "

whenever Re( > A‘[

Then A := A+ B e B(H,,H_) is a bijection. This is the principal object in
the approach” (cf. quadratic forms in Kato-Lax-Milgram)

"We can have A = —V - a - V in place of —A
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

Consider now the perturbation term B=b-V : Hy — H_
If [b]> € F5, 6 < 1, then B € B(H4,H_) and

20-AVE _

(FCHA+BN 2 A= VO(f(ut Af),  n= T

whenever Re( > A‘[

Then A := A+ B e B(H,,H_) is a bijection. This is the principal object in
the approach” (cf. quadratic forms in Kato-Lax-Milgram)

We return to H using theory of pseudo-resolvents ...

"We can have A = —V - a - V in place of —A
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1/2

The (new) Hille-Lions approach for b € F;
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

Let Hp := L?
A:=X— A of domain D(A) = W*?

Hao = (D(A”), {f,9)na = (A", A%)) (@ >0)

Consider the following quintuplet of Hilbert spaces

H1C7‘[% CH% C/HoC'H_%.
Then H; — Hl-&-i’ l= ,%,07 %, %,% are bijections
By (f,g>%, fe ”H_%, g€ H% we denote the pairing between ”H_% and H%,

then
(f:9)3 = (f,9)n, whenever f €3,
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

By A we denote the extension by continuity of A — A to the operator from H%

into Hf% Then
HC+AL N2 1flB,  (F €Hs, ReC2N),
4
and so ( + A is a bijection; [|¢ + Al»y 2 , > 1. Clearly
R

D(A)={f€Hs | Af € Ho}and A" = (A +A)"" [ Ho
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

By |b| € F}/?, the operator B:=b-V : Hy = H_

1 is bounded:
b2V Hs = Ho, b2 : Ho — H_1,
so R A
BGB(HQ,H ;)With HBHHS.—VH 1 Sé
4 4 i -1

Damir Kinzebulatov, Université Laval
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

By |b| € F}/?, the operator B:=b-V : Hy = H_

1 is bounded:

b%~v:H%—>Ho, |b|%:Ho—>’H_%,
SO R A
BGB(HQ,H ;)With HBHHS.—VH 1 Sé
4 4 i -1
Thus|<(C+A+E)f,f>%|2(1—6)\|f\|3{§,and so
4
(+A:=C+A+BeBHs H_1)

is a bijection
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

By |b| € F}/?, the operator B:=b-V : Hy = H_

1 is bounded:

b%~v:H%—>Ho, Ib]% : Ho — H_

1
E)
SO

BeB(Hs, H_1) with || Bllsy»n_, <6
g o

=

Thus [((C+ A+ B)f, f) 1] > (1= 8)| fll3,, , and so

C+A::C+A+EGB(H%7H

)

NG

is a bijection

Now, the problem is how to return to Ho
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

Set R := (¢ +A)~?
We have R A L
Re=Ry+(n—CQRRy (C,n€O) (p1)

and A 5 L

Rei=Re [ Ho=(¢—A) i(1+H"S) ' (¢—A)71, (p2)
where H := [b|2(( — A)™%, §:=b2 - V(C — A)"4, |[H*S|j252 < &
By (p1) that R¢ is a pseudo-resolvent, by (p2) its null-set is {0}. Therefore, R¢
is the resolvent of some closed operator A in Ho,

A=R;'—¢,  D(A) = R(R)

( )
So, D(A) = Ra\Ho, Af :=Af, f € D(A)
Now, Ho is dense in H*i = RyHo is dense in H_
= A is a densely defined closed operator

= R\Ho is dense in Ho

3
1
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

Finally, since

* 1
IH*S fllo < [Hl90-20 11612 TNV IE Flll340
< SIVIE flllao < 8Nl o> | € Ho,

it follows from (p2) that
1R l20->30 < (1=8)7H¢I™ (ps)

i.e. —A is the generator of a quasi bounded holomorphic semigroup on L? [

8
and C. I" arXiv:1709.08598 (2017)
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Outline of the proof of the KLMN Theorem for —A + b - V (Hille-Lions approach)

Finally, since

* 1
IH*S fllo < [Hl90-20 11612 TNV IE Flll340
< SIVIE flllao < 8Nl o> | € Ho,

it follows from (p2) that
1R l20->30 < (1=8)7H¢I™ (ps)

i.e. —A is the generator of a quasi bounded holomorphic semigroup on L? [

Remark: L*-theory (provided by the KLMN Theorem) is crucial for getting
into L” and Cs (Diffusion Processes etc)®

8
and C. I" arXiv:1709.08598 (2017)
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L? theory of —A +b-V
bl e Fy/?, 0<1

Hille-Trotter approach
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L? theory of —A +b-V, |b] € F}/?, § < 1: The Hille-Trotter approach

Set
O(C,b) = (C—A) T(1+P(b) (C—A)"#, C€O:={z:Rez> A},

where P.(b) := (€ — A)"3[b|2b2 - V(¢ — A)™4, b2 := [b|"2b
Since |b] € Fy'?,

_1 1 1 _3
[Pellrzrz < I(C—A) 26|22 p2][62 - V(¢ = A) 4|22 <6,
so ©(¢,b) € B(L?)
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L? theory of —A +b-V, |b] € F}/?, § < 1: The Hille-Trotter approach

Set
where Pc(b) := (C — A)" % |b|2b2 - V(¢ — A)™4, b2 = |b| " 2b
Since |b] € Fy'?,
_1 1 1 _3
IPcllr2re S I(C—A) 46|12 |2 262 - V(C = A) 41252 <6,
so ©(¢,b) € B(L?)

The operator-valued function ©((, b) is the principal object in this approach
(= a candidate for the resolvent of —A +b- V)
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L? theory of —A +b-V, |b] € F}/?, § < 1: The Hille-Trotter approach

Let
bn:=1,b, n=1,2...,

where 1,, is the indicator of {x € R? | || < n,|b(z)| < n}

lon - V(n— A) |22 < 1, 7 > n?, so by Miyadera's Perturbation Theorem,
—A(b,) := A — b, - V of domain W22 generates a Cy semigroup in L?

By iterating the resolvent identity,

O(n,bn) = M+ A(0a)"", n>n* VA (p1)
Direct calculations show:

O(C,bn) = O, bn) = (1 = €)O((, b2)O(n; bn), ¢ €O, (p2)

so ©(¢,br) is a pseudo-resolvent on O

By (p2), the range of ©((,b,) equals to the range of ©(n, b,) and hence by
(p1) is dense in L?

Therefore, }
O bn) = (C+AMB)™, (€0, n>1
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L? theory of —A +b-V, |b] € F}/?, § < 1: The Hille-Trotter approach

By the Dominated Convergence Theorem,
O(¢,bn) = ©(¢, b)
By the definition of ©(¢,b),
10(¢,b)llz2sr2 < e¢™h ¢ €O,

and®
wO(u,by) >1  asp — oo

So, by the Trotter Approximation Theorem ©((,b) is indeed the resolvent of an

operator —A(b) that generates a quasi bounded holomorphic semigroup on L?
O

90(C.ba) = ((— A) " = ((— A TH (14 SH*)TS(¢ — A)7H, where
Hoi= b3 (C— A)" &, b5 = [b]"3b, S := b3 . V(¢ —A)"§
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L? theory of —A +b-V, |b] € F}/?, § < 1: The Hille-Trotter approach

By the Dominated Convergence Theorem,
O(¢,bn) = ©(¢, b)
By the definition of ©(¢,b),
10(¢,b)llz2sr2 < e¢™h ¢ €O,

and®
wO(u,by) >1  asp — oo
So, by the Trotter Approximation Theorem ©((,b) is indeed the resolvent of an

operator —A(b) that generates a quasi bounded holomorphic semigroup on L?
O

Remark: Both “holomorphic” and the approximation are crucial for this
approach

99(¢,bn) = (¢ —A)7! —(c—A)‘%H*(l+SH*)*IS(;—A)—i, where
Hoi= b3 (C— A)" &, b5 = [b]"3b, S := b3 . V(¢ —A)"§
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L? theory of —A +b-V

To summarize:

|b\2 cF Kato-Lax-Milgram approach
o Hille-Lions approach (new)

...and a significant gain in the admissible singularities of b:

Ib| € F1/2 A variant of the Hille-Lions approach (new)
g Hille-Trotter approach (new) = L?, Cs theory, SDEs
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Let Y be a (complex) Banach space. A pseudo-resolvent Ry is a function
defined on a subset O of the complex ¢-plane with values in B(Y") such that

R¢ = Ry = (n—=QRcRy, (neO.
Clearly, R; have common null-set.

THEOREM (E. Hille)

If the null-set of R¢ is {0}, then R¢ is the resolvent of a closed linear operator
A, the range of R¢ coincides with D(A), and A= R;' — (.

Proof: Put A := Rgl — (. Since R¢ is closed, so is Rgl and A. A
straightforward calculation shows that (( + A)R.f = f, f €Y, and
R:(¢C+ A)g=g, g € D(A), as needed.

THEOREM (E. Hille)

If there exists a sequence of numbers {yux} C O such that limy, |px| = co and
supy, ||k Ry, |ly -y < 00, then the set {y € Y : limy up Ry, y = y} is
contained in the closure of the range of Rc.

Proof: Indeed, let limg pux Ry, y = y. That is, for every € > 0, there exists k
such that ||y — ux Ry, y|| < €, so y belongs to the closure of the range of R..
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Consider a sequence of Cy semigroups e *4* on a (complex) Banach space Y.

THEOREM (H.F. Trotter)

Let
sup [|(p+ Ar) Hlyoy <pl o> w,
k

or

sup||(z+ Ax) 'llyoy < Clz|7!, Rez>w,
k

and let s-lim,, oo (g + Ax) ™" = 1 uniformly in k. Let s-limg (¢ + Ag) ™"
exist for some ¢ with Re¢ > w. Then there is a Cp semigroup e~*4 such that

(z4+ Ag) ' S (z+ A" for every Rez > w,

and

—tA B —tA
e "k Se

uniformly in any finite interval of ¢ > 0.
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THEOREM (Hille’s Pertrubation Theorem)

Let e~** be a symmetric Markov semigroup, K a linear operator in L" for
some 1 €]1, c0[. If for some A > 0

1

1K+ A or < 5,

then —A, := —A, — K of domain D(A,) is the generator of a quasi bounded
holomorphic semigroup on L".

THEOREM (Miyadera’s Pertrubation Theorem)

Let e~ ** be a symmetric Markov semigroup, K a linear operator in L" for
some 1 € [1, 00[. If for some A > 0

KO+ A lor < 1,

then —A, := —A, — K of domain D(A;) is the generator of a quasi bounded
Co semigroup on L".
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=

1F oo = (sup,sg #u{lf(@)] > t})"
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