A new look at the KLMN theorem

Damir Kinzebulatov (Laval) and Yuli A. Semenov (Toronto)

May 25, 2018

The KLMN Theorem (Kato-Lions-Lax-Milgram-Nelson)

Part I: The existing results

Schrödinger operator $-\Delta - V$ Kolmogorov backward operator $-\Delta + b \cdot \nabla$

Schrödinger operator

$$-\Delta - V, \quad V \ge 0$$

on \mathbb{R}^d , $d \geq 3$

KLMN

If $V \in L^1_{\mathrm{loc}}$ is "small" relative to $-\Delta$, i.e. there exists $\delta < 1$ such that

$$\langle V^{\frac{1}{2}}\varphi, V^{\frac{1}{2}}\varphi \rangle \le \delta \langle \nabla \varphi, \nabla \varphi \rangle + c \langle \varphi, \varphi \rangle, \quad \varphi \in C_c^{\infty}$$
 (**F**_{\delta})

then $-\Delta - V$ has a self-adjoint operator realization in L^2

 $^{^{1}\}langle u\rangle := \int_{\mathbb{R}^{d}} u(x)dx, \quad \langle u, v\rangle := \langle u\bar{v}\rangle.$

Schrödinger operator

$$-\Delta - V$$
, $V \ge 0$

on \mathbb{R}^d , $d \geq 3$

KLMN

If $V \in L^1_{\mathrm{loc}}$ is "small" relative to $-\Delta$, i.e. there exists $\delta < 1$ such that

$$\langle V^{\frac{1}{2}}\varphi, V^{\frac{1}{2}}\varphi \rangle \le \delta \langle \nabla \varphi, \nabla \varphi \rangle + c \langle \varphi, \varphi \rangle, \quad \varphi \in C_c^{\infty}$$
 (**F**_{\delta})

then $-\Delta - V$ has a self-adjoint operator realization in L^2

 $\mathbf{F}_{\delta} \text{: the potential energy } \langle V\varphi, \varphi \rangle \text{ is dominated by the kinetic energy } \langle \nabla\varphi, \nabla\varphi \rangle$

 $(\Rightarrow$ the ground state energy of the quantum mechanical system is finite)

 $^{^{1}\}langle u\rangle := \int_{\mathbb{P}^{d}} u(x)dx, \quad \langle u, v\rangle := \langle u\bar{v}\rangle.$

Schrödinger operator

$$-\Delta - V$$
, $V \ge 0$

on \mathbb{R}^d , $d \geq 3$

KLMN

If $V \in L^1_{\mathrm{loc}}$ is "small" relative to $-\Delta$, i.e. there exists $\delta < 1$ such that

$$\langle V^{\frac{1}{2}}\varphi, V^{\frac{1}{2}}\varphi \rangle \le \delta \langle \nabla \varphi, \nabla \varphi \rangle + c \langle \varphi, \varphi \rangle, \quad \varphi \in C_c^{\infty}$$
 (**F**_{\delta})

then $-\Delta - V$ has a self-adjoint operator realization in L^2

$$V\in L^{rac{d}{2}} \quad \Rightarrow \quad V\in \mathbf{F}_{\delta} ext{ with arbitrarily small } \delta$$
 $V(x):=k|x|^{-2} \quad \Rightarrow^2 \quad V\in \mathbf{F}_{\delta} ext{ with } \delta=rac{4k}{(d-2)^2}$

²Hardy's inequality

²Hardy's inequality

Schrödinger operator

$$-\Delta - V$$
, $V \ge 0$

on \mathbb{R}^d , $d \geq 3$

KLMN

If $V \in L^1_{\mathrm{loc}}$ is "small" relative to $-\Delta$, i.e. there exists $\delta < 1$ such that

$$\langle V^{\frac{1}{2}}\varphi, V^{\frac{1}{2}}\varphi \rangle \le \delta \langle \nabla \varphi, \nabla \varphi \rangle + c \langle \varphi, \varphi \rangle, \quad \varphi \in C_c^{\infty}$$
 (**F**_{\delta})

then $-\Delta - V$ has a self-adjoint operator realization in L^2

$$V\in L^{rac{d}{2}} \quad \Rightarrow \quad V\in \mathbf{F}_{\delta} ext{ with arbitrarily small } \delta$$

$$V(x):=k|x|^{-2} \quad \Rightarrow^2 \quad V\in \mathbf{F}_{\delta} ext{ with } \delta=rac{4k}{(d-2)^2}$$

Note: for any $\varepsilon>0$ there exist $V\in\mathbf{F}_\delta$ such that $V\not\in L^{1+\varepsilon}_{\mathrm{loc}}$

²Hardy's inequality

²Hardy's inequality

Damir Kinzebulatov, Université Laval

Schrödinger operator

$$-\Delta - V$$
, $V \ge 0$

on \mathbb{R}^d , $d \geq 3$

KLMN

If $V \in L^1_{\mathrm{loc}}$ is "small" relative to $-\Delta$, i.e. there exists $\delta < 1$ such that

$$\langle V^{\frac{1}{2}}\varphi, V^{\frac{1}{2}}\varphi \rangle \le \delta \langle \nabla \varphi, \nabla \varphi \rangle + c \langle \varphi, \varphi \rangle, \quad \varphi \in C_c^{\infty}$$
 (**F**_{\delta})

then $-\Delta - V$ has a self-adjoint operator realization in L^2

We need to give up the arithmetic sum, i.e. $-\Delta-V$ of the domain

$$D(-\Delta) \cap D(V) \equiv W^{2,2} \cap \{u \in L^2 : Vu \in L^2\}$$

since the latter may be **not dense** in L^2 (e.g. if $V \not\in L^2$)...

Schrödinger operator

$$-\Delta - V$$
, $V \ge 0$

on \mathbb{R}^d , $d \geq 3$

KLMN

If $V \in L^1_{\mathrm{loc}}$ is "small" relative to $-\Delta$, i.e. there exists $\delta < 1$ such that

$$\langle V^{\frac{1}{2}}\varphi, V^{\frac{1}{2}}\varphi \rangle \le \delta \langle \nabla \varphi, \nabla \varphi \rangle + c \langle \varphi, \varphi \rangle, \quad \varphi \in C_c^{\infty}$$
 (F_{\delta})

then $-\Delta - V$ has a self-adjoint operator realization in L^2

A proof of the KLMN via quadratic form

$$\mathfrak{t}[u] := \langle \nabla u, \nabla u \rangle + \langle V u, u \rangle, \quad D(\mathfrak{t}) = W^{1,2}$$

(closed, symmetric, semi-bounded from below)

Schrödinger operator

$$-\Delta - V$$
, $V \ge 0$

on \mathbb{R}^d , $d \geq 3$

KLMN

If $V \in L^1_{\mathrm{loc}}$ is "small" relative to $-\Delta$, i.e. there exists $\delta < 1$ such that

$$\langle V^{\frac{1}{2}}\varphi, V^{\frac{1}{2}}\varphi \rangle \le \delta \langle \nabla \varphi, \nabla \varphi \rangle + c \langle \varphi, \varphi \rangle, \quad \varphi \in C_c^{\infty}$$
 (**F**_{\delta})

then $-\Delta - V$ has a self-adjoint operator realization in L^2

A proof of the KLMN via quadratic form

$$\mathfrak{t}[u] := \langle \nabla u, \nabla u \rangle + \langle V u, u \rangle, \quad D(\mathfrak{t}) = W^{1,2}$$

(closed, symmetric, semi-bounded from below) \Rightarrow t is the quadratic form of a self-adjoint operator Λ on L^2 :

$$D(\Lambda) \subset D(\mathfrak{t}), \qquad \langle \Lambda u, v \rangle = \mathfrak{t}[u, v] \quad (u \in D(\Lambda), v \in D(\mathfrak{t}))$$

Damir Kinzebulatov, Université Laval

P. Stollmann, J. Voigt: an example of $V \not\in L^q_{\mathrm{loc}}, \ q>0$, such that the quadratic forms method nevertheless works

Introduction: KLMN Theorem for the Schrödinger operator $-\Delta-V$, $V\geq 0$

Another approach:

E. Nelson gave a different proof of the KLMN Theorem which is based on the construction of J. L. Lions (the standard triple of Hilbert spaces...)

(Will return to this in a moment)

The next important operator (subject of this talk): the Kolmogorov backward operator

$$-\Delta + b \cdot \nabla, \quad b : \mathbb{R}^d \to \mathbb{R}^d$$

(in Diffusion Processes ...)

The next important operator (subject of this talk): the Kolmogorov backward operator

$$-\Delta + b \cdot \nabla$$
, $b : \mathbb{R}^d \to \mathbb{R}^d$

(in Diffusion Processes ...)

Next 5 min: Will consider a somewhat more general operator,

$$-\Delta + b \cdot \nabla + \nabla \cdot \tilde{b} + V$$

and state the general KLMN Theorem

Introduction: KLMN Theorem for $-\Delta + b \cdot \nabla + \nabla \cdot \tilde{b} + V$

Starting object: a densely defined, closed, sectorial sesquilinear form $\mathfrak t$ on L^2

Sectorial: The numerical range of the quadratic form $\mathfrak{t}[u] := \mathfrak{t}[u,u]$

$$\Theta(\mathfrak{t}) := \{\mathfrak{t}[u] : ||u|| = 1\} \subset \mathbb{C}$$

is a subset of the sector

$$\{\zeta \in \mathbb{C} : |\arg(\zeta - \gamma)| \le \theta\}, \quad 0 \le \theta < \frac{\pi}{2}, \quad \gamma \in \mathbb{R}$$

(e.g. if $\mathfrak{t}[u]$ is semi-bounded from below: $\mathfrak{t}[u] \geq \gamma ||u||, \ \gamma \in \mathbb{R}$)

Introduction: KLMN Theorem for $-\Delta + b \cdot \nabla + \nabla \cdot \tilde{b} + V$

Starting object: a densely defined, closed, sectorial sesquilinear form $\mathfrak t$ on L^2

Sectorial: The numerical range of the quadratic form $\mathfrak{t}[u] := \mathfrak{t}[u,u]$

$$\Theta(\mathfrak{t}) := \{\mathfrak{t}[u] : ||u|| = 1\} \subset \mathbb{C}$$

is a subset of the sector

$$\{\zeta \in \mathbb{C} : |\arg(\zeta - \gamma)| \le \theta\}, \quad 0 \le \theta < \frac{\pi}{2}, \quad \gamma \in \mathbb{R}$$

(e.g. if $\mathfrak{t}[u]$ is semi-bounded from below: $\mathfrak{t}[u] \geq \gamma \|u\|$, $\gamma \in \mathbb{R}$)

Closed: For every $\{u_n\} \subset D(\mathfrak{t})$

If
$$u_n \to u$$
, $\mathfrak{t}[u_n - u_m] \to 0$
 $\Rightarrow u \in D(\mathfrak{t})$, $\mathfrak{t}[u_n - u] \to 0$

KLMN (T. Kato)

Let $\mathfrak{t}[u,v]$ be a densely defined, closed, sectorial sesquilinear form on L^2

Then there exists a m-accretive operator 3 Λ on L^2 such that

(i)
$$D(\Lambda)\subset D(\mathfrak{t})$$
 and $\mathfrak{t}[u,v]=\langle \Lambda u,v\rangle$ $(u\in D(\Lambda),\,v\in D(\mathfrak{t}))$

(ii) If
$$\mathfrak{t} \leftrightarrow \Lambda$$
, then⁴ $\mathfrak{t}^* \leftrightarrow \Lambda^*$

Damir Kinzebulatov, Université Laval

 $^{^3\}Lambda$ is uniquely determined by (i)

 $^{{}^{4}\}mathfrak{t}^{*}[u,v] := \overline{\mathfrak{t}[v,u]}, D(\mathfrak{t}^{*}) = D(\mathfrak{t})$

KLMN (T. Kato)

Let $\mathfrak{t}[u,v]$ be a densely defined, closed, sectorial sesquilinear form on L^2

Then there exists a m-accretive operator 3 Λ on L^2 such that

(i)
$$D(\Lambda) \subset D(\mathfrak{t})$$
 and $\mathfrak{t}[u,v] = \langle \Lambda u,v \rangle$ $(u \in D(\Lambda), v \in D(\mathfrak{t}))$

(ii) If
$$\mathfrak{t} \leftrightarrow \Lambda$$
, then⁴ $\mathfrak{t}^* \leftrightarrow \Lambda^*$

" Λ is m-accretive": Λ is closed,

$$\operatorname{Re}\langle \Lambda u, u \rangle \geq \gamma \|u\|, \quad \gamma \in \mathbb{R}, \quad u \in D(\Lambda)$$

and
$$\|(\zeta + \Lambda)^{-1}\|_{L^2 \to L^2} \le (\text{Re}\zeta)^{-1}$$
, $\text{Re}\zeta > \gamma$

 $(\Rightarrow \Lambda \text{ is the generator of a contraction } C_0 \text{ semigroup on } L^2)$

 $^{^{3}\}Lambda$ is uniquely determined by (i)

 $^{{}^{4}\}mathfrak{t}^{*}[u,v] := \overline{\mathfrak{t}[v,u]}, D(\mathfrak{t}^{*}) = D(\mathfrak{t})$

Example 1: The form associated to the operator $-\Delta + b \cdot \nabla + \nabla \cdot \tilde{b} - V$,

$$\mathfrak{t}[u,v] := \langle \nabla u, \nabla v \rangle + \langle \nabla u, bv \rangle - \langle \tilde{b}u, \nabla v \rangle + \langle Vu, v \rangle, \quad D(\mathfrak{t}) = W^{1,2}$$

satisfies conditions of the KLMN Theorem provided that $|b|^2 \in \mathbf{F}_{\delta_1}$, $|\tilde{b}|^2 \in \mathbf{F}_{\delta_2}$, $V \in \mathbf{F}_{\delta}$, with $\delta_1 + \delta_2 + \delta < 1$

In particular:

Example 2: The form associated to the operator $-\Delta - V$, $V \ge 0$,

$$\mathfrak{t}[u,v] := \langle \nabla u, \nabla v \rangle - \langle Vu, v \rangle, \quad D(\mathfrak{t}) = W^{1,2}$$

satisfies conditions of the KLMN Theorem provided that $V \in \mathbf{F}_{\delta}$, $\delta < 1$

Example 3: The form associated to the operator $-\Delta + b \cdot \nabla$, $b : \mathbb{R}^d \to \mathbb{R}^d$,

$$\mathfrak{t}[u,v] := \langle \nabla u, \nabla v \rangle + \langle \nabla u, bv \rangle, \quad D(\mathfrak{t}) = W^{1,2}$$

satisfies conditions of the KLMN Theorem provided that $|b|^2 \in \mathbf{F}_{\delta}, \, \delta < 1$

Example 1: The form associated to the operator $-\Delta + b \cdot \nabla + \nabla \cdot \tilde{b} - V$,

$$\mathfrak{t}[u,v] := \langle \nabla u, \nabla v \rangle + \langle \nabla u, bv \rangle - \langle \tilde{b}u, \nabla v \rangle + \langle Vu, v \rangle, \quad D(\mathfrak{t}) = W^{1,2}$$

satisfies conditions of the KLMN Theorem provided that $|b|^2 \in \mathbf{F}_{\delta_1}$, $|\tilde{b}|^2 \in \mathbf{F}_{\delta_2}$, $V \in \mathbf{F}_{\delta}$, with $\delta_1 + \delta_2 + \delta < 1$

In particular:

Example 2: The form associated to the operator $-\Delta - V$, $V \ge 0$,

$$\mathfrak{t}[u,v] := \langle \nabla u, \nabla v \rangle - \langle Vu, v \rangle, \quad D(\mathfrak{t}) = W^{1,2}$$

satisfies conditions of the KLMN Theorem provided that $V \in \mathbf{F}_{\delta}$, $\delta < 1$

Example 3: The form associated to the operator $-\Delta + b \cdot \nabla$, $b : \mathbb{R}^d \to \mathbb{R}^d$,

$$\mathfrak{t}[u,v] := \langle \nabla u, \nabla v \rangle + \langle \nabla u, bv \rangle, \quad D(\mathfrak{t}) = W^{1,2}$$

satisfies conditions of the KLMN Theorem provided that $|b|^2 \in \mathbf{F}_{\delta}, \, \delta < 1$

Part II: A new look at the KLMN Theorem

Kolmogorov backward operator $-\Delta + b \cdot \nabla$, $b: \mathbb{R}^d \rightarrow \mathbb{R}^d$

(" $|b|^2 \in \mathbf{F}_{\delta}$ " misses the point)

Kato-Lax-Milgram approach (i.e. quadratic forms) requires $|b|^2 \in \mathbf{F}_{\delta}$, $\delta < 1$:

$$\langle |b|^2 \varphi, \varphi \rangle \le \delta \langle \nabla \varphi, \nabla \varphi \rangle + c \langle \varphi, \varphi \rangle, \quad \varphi \in C_c^{\infty}$$
 (**F**_{\delta})

This talk 5 : significant gain in the admissible singularities of b

$$\langle |b|\varphi,\varphi\rangle \le \delta\langle (\lambda-\Delta)^{\frac{1}{4}}\varphi, (\lambda-\Delta)^{\frac{1}{4}}\varphi\rangle, \quad \varphi \in C_c^{\infty}$$

(write
$$|b| \in \mathbf{F}_{\delta}^{1/2}$$
)

$$\mathbf{F}_{\delta} \subsetneq \mathbf{F}_{\delta}^{1/2}$$

 $\mathbf{F}_{\delta}^{1/2}$ allows to handle hypersurface singularities of b (precisely: this class contains the Kato class $\mathbf{K}_{\delta}^{d+1})$

Damir Kinzebulatov, Université Laval

 $^{^5}$ D. Kinzebulatov, Yu.A. Semenov "On the theory of the Kolmogorov operator in the spaces L^p and C_{∞} . I" arXiv:1709.08598 (2017)

KLMN Theorem for $-\Delta + b \cdot \nabla$

If $|b| \in \mathbf{F}_{\delta}^{1/2}$, $\delta < 1$, then $-\Delta + b \cdot \nabla$ has an operator realization Λ on L^2 , the generator of a quasi bounded holomorphic semigroup

 $(+ \text{ representation of the resolvent}, L^p \to L^q \text{ smoothing estimates } \dots)^6$

Proof: Not clear how to apply quadratic forms

We develop an approach based on the old ideas of J.L. Lions and E. Hille.

Damir Kinzebulatov, Université Laval

16 / 24

 $^{^6}$ D. Kinzebulatov, Yu.A. Semenov "On the theory of the Kolmogorov operator in the spaces L^p and C_{∞} . I" arXiv:1709.08598 (2017)

First, an outline of the **old approach** based on the **standard triple of Hilbert spaces**.

$$\begin{split} \mathcal{H} &= L^2 \\ \mathcal{H}_+ &= W^{1,2} \text{ (with norm } \|f\|_+^2 := \lambda \|f\|_2^2 + \|(-\Delta)^{\frac{1}{2}}f\|_2^2 \text{)} \\ \mathcal{H}_- &= \mathcal{H}_+^* \end{split}$$

$$\mathcal{H}_+ \subset \mathcal{H} \cong \mathcal{H}^* \subset \mathcal{H}_-$$

is the standard triple of Hilbert spaces with respect to $\langle \; , \; \rangle_{\mathcal{H}}$

... the standard triple of Hilbert spaces

$$\mathcal{H}_{+} \subset \mathcal{H} \subset \mathcal{H}_{-}$$

 $\hat{A}\equiv$ the extension of $-\Delta$ by continuity to the operator from \mathcal{H}_+ to \mathcal{H}_- ,

$$|\langle f, (\zeta + \hat{A})f \rangle| \ge ||f||_+^2, \quad f \in \mathcal{H}_+, \quad \text{Re}\zeta > \lambda$$

Thus, $\zeta + \hat{A} \in \mathcal{B}(\mathcal{H}_+, \mathcal{H}_-)$ is a bijection . . .

Consider now the perturbation term $\hat{B} \equiv b \cdot \nabla : \mathcal{H}_+ \to \mathcal{H}_-$

If $|b|^2 \in \mathbf{F}_{\delta}$, $\delta < 1$, then $\hat{B} \in \mathcal{B}(\mathcal{H}_+, \mathcal{H}_-)$ and

$$|\langle f, (\zeta + \hat{A} + \hat{B})f \rangle| \ge (1 - \sqrt{\delta})\langle f, (\mu + \hat{A})f \rangle, \qquad \mu = \frac{|2\zeta - \lambda\sqrt{\delta}|}{2(1 - \sqrt{\delta})} > 0$$

whenever $\text{Re}\zeta > \frac{\lambda\sqrt{\delta}}{2}$.

Then $\hat{\Lambda} := \hat{A} + \hat{B} \in \mathcal{B}(\mathcal{H}_+, \mathcal{H}_-)$ is a bijection. This is the **principal object** in the J. Lions approach (cf. quadratic forms in Kato-Lax-Milgram)

Damir Kinzebulatov, Université Laval

19 / 24

⁷We can have $A \equiv -\nabla \cdot a \cdot \nabla$ in place of $-\Delta$

Consider now the perturbation term $\hat{B} \equiv b \cdot \nabla : \mathcal{H}_+ \to \mathcal{H}_-$

If $|b|^2 \in \mathbf{F}_{\delta}$, $\delta < 1$, then $\hat{B} \in \mathcal{B}(\mathcal{H}_+, \mathcal{H}_-)$ and

$$|\langle f, (\zeta + \hat{A} + \hat{B})f \rangle| \ge (1 - \sqrt{\delta})\langle f, (\mu + \hat{A})f \rangle, \qquad \mu = \frac{|2\zeta - \lambda\sqrt{\delta}|}{2(1 - \sqrt{\delta})} > 0$$

whenever $\text{Re}\zeta > \frac{\lambda\sqrt{\delta}}{2}$.

Then $\hat{\Lambda}:=\hat{A}+\hat{B}\in\mathcal{B}(\mathcal{H}_+,\mathcal{H}_-)$ is a bijection. This is the **principal object** in the J. Lions approach (cf. quadratic forms in Kato-Lax-Milgram)

We return to ${\mathcal H}$ using E. Hille's theory of pseudo-resolvents . . .

Damir Kinzebulatov, Université Laval

⁷We can have $A \equiv -\nabla \cdot a \cdot \nabla$ in place of $-\Delta$

The (new) Hille-Lions approach for $b \in \mathbf{F}_{\delta}^{1/2}$

Let $\mathcal{H}_0 := L^2$

$$A := \lambda - \Delta$$
 of domain $D(A) = W^{2,2}$

$$\mathcal{H}_{\alpha} := (D(A^{\alpha}), \langle f, g \rangle_{\mathcal{H}_{\alpha}} = \langle A^{\alpha} f, A^{\alpha} g \rangle) \quad (\alpha \ge 0)$$

Consider the following quintuplet of Hilbert spaces

$$\mathcal{H}_1 \subset \mathcal{H}_{\frac{3}{4}} \subset \mathcal{H}_{\frac{1}{4}} \subset \mathcal{H}_0 \subset \mathcal{H}_{-\frac{1}{4}}.$$

Then $\mathcal{H}_l o \mathcal{H}_{l+\frac{1}{4}}, \ l=-\frac{1}{4},0,\frac{1}{4},\frac{2}{4},\frac{3}{4}$ are bijections

By $\langle f,g \rangle_{\frac{1}{4}}, \ f \in \mathcal{H}_{-\frac{1}{4}}, \ g \in \mathcal{H}_{\frac{3}{4}}$ we denote the pairing between $\mathcal{H}_{-\frac{1}{4}}$ and $\mathcal{H}_{\frac{3}{4}}$, then

$$\langle f,g
angle_{rac{1}{4}} = \langle f,g
angle_{\mathcal{H}_{rac{1}{4}}}$$
 whenever $f \in \mathcal{H}_{rac{1}{4}}$

By \hat{A} we denote the extension by continuity of $A-\lambda$ to the operator from $\mathcal{H}_{\frac{3}{4}}$ into $\mathcal{H}_{-\frac{1}{4}}$. Then

$$|\langle (\zeta+\hat{A})f,f\rangle_{\frac{1}{4}}|\geq \|f\|_{\mathcal{H}_{\frac{3}{4}}}^2 \qquad (f\in\mathcal{H}_{\frac{3}{4}},\;\mathrm{Re}\zeta\geq\lambda),$$

and so $\zeta+\hat{A}$ is a bijection; $\|\zeta+\hat{A}\|_{\mathcal{H}_{\frac{3}{4}} o\mathcal{H}_{-\frac{1}{4}}}\geq 1.$ Clearly

$$D(A) = \{ f \in \mathcal{H}_{\frac{3}{4}} \mid \hat{A}f \in \mathcal{H}_0 \} \text{ and } A^{-1} = (\lambda + \hat{A})^{-1} \upharpoonright \mathcal{H}_0$$

By $|b| \in \mathbf{F}_{\delta}^{1/2}$, the operator $\hat{B} := b \cdot \nabla : \mathcal{H}_{\frac{3}{4}} \to \mathcal{H}_{-\frac{1}{4}}$ is bounded:

$$b^{\frac{1}{2}} \cdot \nabla : \mathcal{H}_{\frac{3}{4}} \to \mathcal{H}_0, \ |b|^{\frac{1}{2}} : \mathcal{H}_0 \to \mathcal{H}_{-\frac{1}{4}},$$

SO

$$\hat{B} \in \mathcal{B}(\mathcal{H}_{\frac{3}{4}},\mathcal{H}_{-\frac{1}{4}}) \text{ with } \|\hat{B}\|_{\mathcal{H}_{\frac{3}{4}} \to \mathcal{H}_{-\frac{1}{4}}} \leq \delta.$$

By $|b| \in \mathbf{F}_{\delta}^{1/2}$, the operator $\hat{B} := b \cdot \nabla : \mathcal{H}_{\frac{3}{4}} \to \mathcal{H}_{-\frac{1}{4}}$ is bounded:

$$b^{\frac{1}{2}} \cdot \nabla : \mathcal{H}_{\frac{3}{4}} \to \mathcal{H}_0, \ |b|^{\frac{1}{2}} : \mathcal{H}_0 \to \mathcal{H}_{-\frac{1}{4}},$$

SO

$$\hat{B} \in \mathcal{B}(\mathcal{H}_{\frac{3}{4}},\mathcal{H}_{-\frac{1}{4}}) \text{ with } \|\hat{B}\|_{\mathcal{H}_{\frac{3}{4}} \to \mathcal{H}_{-\frac{1}{4}}} \leq \delta.$$

Thus
$$|\langle (\zeta+\hat{A}+\hat{B})f,f\rangle_{\frac{1}{4}}|\geq (1-\delta)\|f\|_{\mathcal{H}_{\frac{3}{4}}}^2,$$
 and so

$$\zeta + \hat{\Lambda} := \zeta + \hat{A} + \hat{B} \in \mathcal{B}(\mathcal{H}_{\frac{3}{4}}, \mathcal{H}_{-\frac{1}{4}})$$

is a bijection

By $|b| \in \mathbf{F}_{\delta}^{1/2}$, the operator $\hat{B} := b \cdot \nabla : \mathcal{H}_{\frac{3}{4}} \to \mathcal{H}_{-\frac{1}{4}}$ is bounded:

$$b^{\frac{1}{2}} \cdot \nabla : \mathcal{H}_{\frac{3}{4}} \to \mathcal{H}_0, \ |b|^{\frac{1}{2}} : \mathcal{H}_0 \to \mathcal{H}_{-\frac{1}{4}},$$

so

$$\hat{B} \in \mathcal{B}(\mathcal{H}_{\frac{3}{4}},\mathcal{H}_{-\frac{1}{4}}) \text{ with } \|\hat{B}\|_{\mathcal{H}_{\frac{3}{4}} \rightarrow \mathcal{H}_{-\frac{1}{4}}} \leq \delta.$$

Thus
$$|\langle (\zeta+\hat{A}+\hat{B})f,f\rangle_{\frac{1}{4}}|\geq (1-\delta)\|f\|_{\mathcal{H}_{\frac{3}{4}}}^2,$$
 and so

$$\zeta + \hat{\Lambda} := \zeta + \hat{A} + \hat{B} \in \mathcal{B}(\mathcal{H}_{\frac{3}{4}}, \mathcal{H}_{-\frac{1}{4}})$$

is a bijection

Now, the **problem** is how to return to \mathcal{H}_0

Set
$$\hat{R}_{\zeta} := (\zeta + \hat{\Lambda})^{-1}$$

We have

$$\hat{R}_{\zeta} = \hat{R}_{\eta} + (\eta - \zeta)\hat{R}_{\zeta}\hat{R}_{\eta} \quad (\zeta, \eta \in \mathcal{O})$$
 (p₁)

and

$$R_{\zeta} := \hat{R}_{\zeta} \upharpoonright \mathcal{H}_0 = (\zeta - \Delta)^{-\frac{3}{4}} (1 + H^* S)^{-1} (\zeta - \Delta)^{-\frac{1}{4}}.$$
 (p₂)

where
$$H:=|b|^{\frac{1}{2}}(\zeta-\Delta)^{-\frac{1}{4}}$$
, $S:=b^{\frac{1}{2}}\cdot\nabla(\zeta-\Delta)^{-\frac{3}{4}}$, $\|H^*S\|_{2\to 2}\le \delta$

By (p_1) that R_{ζ} is a pseudo-resolvent, by (p_2) its null-set is $\{0\}$. Therefore, R_{ζ} is the resolvent of some closed operator Λ in \mathcal{H}_0 ,

$$\Lambda = R_{\zeta}^{-1} - \zeta, \quad D(\Lambda) = R(R_{\zeta})$$

(E. Hille).

So,
$$D(\Lambda) = \hat{R}_{\lambda} \mathcal{H}_0$$
, $\Lambda f := \hat{\Lambda} f, \ f \in D(\Lambda)$

Now, \mathcal{H}_0 is dense in $\mathcal{H}_{-\frac{1}{4}}\Rightarrow\hat{R}_{\lambda}\mathcal{H}_0$ is dense in $\mathcal{H}_{-\frac{3}{4}}\Rightarrow\hat{R}_{\lambda}\mathcal{H}_0$ is dense in \mathcal{H}_0 \Rightarrow Λ is a densely defined closed operator

Finally, since

$$||H^*Sf||_{\mathcal{H}_0} \le ||H||_{\mathcal{H}_0 \to \mathcal{H}_0} ||b|^{\frac{1}{2}} J_{\lambda} |\nabla J_{\zeta}^2 f||_{\mathcal{H}_0} \le \delta ||\nabla J_{\zeta}^2 f||_{\mathcal{H}_0} \le \delta ||f||_{\mathcal{H}_0}, \ f \in \mathcal{H}_0,$$

it follows from (p_2) that

$$||R_{\zeta}||_{\mathcal{H}_0 \to \mathcal{H}_0} \le (1 - \delta)^{-1} |\zeta|^{-1}$$
 (p₃)

i.e. $-\Lambda$ is the generator of a quasi bounded holomorphic semigroup on L^2

Damir Kinzebulatov, Université Laval http://archimede.mat.ulaval.ca/pages/kinzebulatov

 $^{^8}$ D. Kinzebulatov, Yu.A. Semenov "On the theory of the Kolmogorov operator in the spaces L^p and C_{∞} . I" arXiv:1709.08598 (2017)

Finally, since

$$||H^*Sf||_{\mathcal{H}_0} \le ||H||_{\mathcal{H}_0 \to \mathcal{H}_0} ||b|^{\frac{1}{2}} J_{\lambda} |\nabla J_{\zeta}^2 f||_{\mathcal{H}_0} \le \delta ||\nabla J_{\zeta}^2 f||_{\mathcal{H}_0} \le \delta ||f||_{\mathcal{H}_0}, \ f \in \mathcal{H}_0,$$

it follows from (p_2) that

$$||R_{\zeta}||_{\mathcal{H}_0 \to \mathcal{H}_0} \le (1 - \delta)^{-1} |\zeta|^{-1}$$
 (p₃)

i.e. $-\Lambda$ is the generator of a quasi bounded holomorphic semigroup on L^2 \Box

Remark: L^2 -theory (provided by the KLMN Theorem) is crucial for getting into L^p and C_∞ (Diffusion Processes etc)⁸

Damir Kinzebulatov, Université Laval

 $^{^8}$ D. Kinzebulatov, Yu.A. Semenov "On the theory of the Kolmogorov operator in the spaces L^p and C_{∞} . I" arXiv:1709.08598 (2017)

$$L^2$$
 theory of $-\Delta + b \cdot \nabla$

$$|b| \in \mathbf{F}_{\delta}^{1/2}$$
, $\delta < 1$

Hille-Trotter approach

Set

$$\begin{split} \Theta(\zeta,b) &:= (\zeta - \Delta)^{-\frac{3}{4}} \big(1 + P_{\zeta}(b) \big)^{-1} (\zeta - \Delta)^{-\frac{1}{4}}, \quad \zeta \in \mathcal{O} := \{z : \mathrm{Re}z \geq \lambda\}, \\ \text{where } P_{\zeta}(b) &:= (\zeta - \Delta)^{-\frac{1}{4}} |b|^{\frac{1}{2}} b^{\frac{1}{2}} \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}}, \ b^{\frac{1}{2}} := |b|^{-\frac{1}{2}} b \end{split}$$
 Since $|b| \in \mathbf{F}_{\delta}^{1/2}$,

$$||P_{\zeta}||_{L^{2} \to L^{2}} \le ||(\zeta - \Delta)^{-\frac{1}{4}}|b|^{\frac{1}{2}}||_{L^{2} \to L^{2}}||b^{\frac{1}{2}} \cdot \nabla(\zeta - \Delta)^{-\frac{3}{4}}||_{L^{2} \to L^{2}} \le \delta,$$

so
$$\Theta(\zeta,b)\in \mathcal{B}(L^2)$$

Set

$$\begin{split} \Theta(\zeta,b) &:= (\zeta - \Delta)^{-\frac{3}{4}} \big(1 + P_{\zeta}(b) \big)^{-1} (\zeta - \Delta)^{-\frac{1}{4}}, \quad \zeta \in \mathcal{O} := \{z : \mathrm{Re}z \geq \lambda\}, \\ \text{where } P_{\zeta}(b) &:= (\zeta - \Delta)^{-\frac{1}{4}} |b|^{\frac{1}{2}} b^{\frac{1}{2}} \cdot \nabla (\zeta - \Delta)^{-\frac{3}{4}}, \ b^{\frac{1}{2}} := |b|^{-\frac{1}{2}} b \end{split}$$
 Since $|b| \in \mathbf{F}_{\delta}^{1/2}$,

$$\|P_{\zeta}\|_{L^{2}\to L^{2}} \leq \|(\zeta - \Delta)^{-\frac{1}{4}}|b|^{\frac{1}{2}}\|_{L^{2}\to L^{2}}\|b^{\frac{1}{2}} \cdot \nabla(\zeta - \Delta)^{-\frac{3}{4}}\|_{L^{2}\to L^{2}} \leq \delta,$$
 so $\Theta(\zeta, b) \in \mathcal{B}(L^{2})$

The operator-valued function $\Theta(\zeta,b)$ is the **principal object** in this approach (\equiv a candidate for the resolvent of $-\Delta+b\cdot\nabla$)

Let

$$b_n := \mathbf{1}_n b, \quad n = 1, 2, \dots,$$

where $\mathbf{1}_n$ is the indicator of $\{x \in \mathbb{R}^d \mid |x| \le n, |b(x)| \le n\}$

 $\|b_n\cdot \nabla (\eta-\Delta)^{-1}\|_{L^2\to L^2}<1,\ \eta>n^2$, so by Miyadera's Perturbation Theorem, $-\tilde{\Lambda}(b_n):=\Delta-b_n\cdot \nabla$ of domain $W^{2,2}$ generates a C_0 semigroup in L^2

By iterating the resolvent identity,

$$\Theta(\eta, b_n) = (\eta + \tilde{\Lambda}(b_n))^{-1}, \quad \eta > n^2 \vee \lambda$$
 (p₁)

Direct calculations show:

$$\Theta(\zeta, b_n) - \Theta(\eta, b_n) = (\eta - \zeta)\Theta(\zeta, b_n)\Theta(\eta, b_n), \quad \zeta, \eta \in \mathcal{O},$$
 (p₂)

so $\Theta(\zeta, b_n)$ is a pseudo-resolvent on \mathcal{O}

By (p_2) , the range of $\Theta(\zeta,b_n)$ equals to the range of $\Theta(\eta,b_n)$ and hence by (p_1) is dense in L^2

Therefore,

$$\Theta(\zeta, b_n) = (\zeta + \tilde{\Lambda}(b_n))^{-1}, \quad \zeta \in \mathcal{O}, \quad n > 1$$

By the Dominated Convergence Theorem,

$$\Theta(\zeta, b_n) \stackrel{s}{\to} \Theta(\zeta, b)$$

By the definition of $\Theta(\zeta, b)$,

$$\|\Theta(\zeta, b_n)\|_{L^2 \to L^2} \le c|\zeta|^{-1}, \quad \zeta \in \mathcal{O},$$

 and^9

$$\mu\Theta(\mu,b_n)\stackrel{s}{\to} 1 \quad \text{as } \mu\to\infty$$

So, by the Trotter Approximation Theorem $\Theta(\zeta, b)$ is indeed the resolvent of an operator $-\Lambda(b)$ that generates a quasi bounded holomorphic semigroup on L^2

 $\begin{array}{l} ^{9}\Theta(\zeta,b_{n})=(\zeta-\Delta)^{-1}-(\zeta-\Delta)^{-\frac{3}{4}}H^{*}(1+SH^{*})^{-1}S(\zeta-\Delta)^{-\frac{1}{4}}, \text{ where } \\ H:=|b|^{\frac{1}{2}}(\zeta-\Delta)^{-\frac{1}{4}}, \ b^{\frac{1}{2}}:=|b|^{-\frac{1}{2}}b, \ S:=b^{\frac{1}{2}}\cdot\nabla(\zeta-\Delta)^{-\frac{3}{4}} \end{array}$

http://archimede.mat.ulaval.ca/pages/kinzebulatov Damir Kinzebulatov, Université Laval

By the Dominated Convergence Theorem,

$$\Theta(\zeta, b_n) \stackrel{s}{\to} \Theta(\zeta, b)$$

By the definition of $\Theta(\zeta, b)$,

$$\|\Theta(\zeta, b_n)\|_{L^2 \to L^2} \le c|\zeta|^{-1}, \quad \zeta \in \mathcal{O},$$

 and^9

$$\mu\Theta(\mu,b_n) \stackrel{s}{\to} 1 \quad \text{as } \mu \to \infty$$

So, by the Trotter Approximation Theorem $\Theta(\zeta,b)$ is indeed the resolvent of an operator $-\Lambda(b)$ that generates a quasi bounded holomorphic semigroup on L^2

Remark: Both "holomorphic" and the approximation are crucial for this approach

$$\begin{array}{c} \hline \\ {}^{9}\Theta(\zeta,b_{n})=(\zeta-\Delta)^{-1}-(\zeta-\Delta)^{-\frac{3}{4}}H^{*}(1+SH^{*})^{-1}S(\zeta-\Delta)^{-\frac{1}{4}}, \text{ where} \\ H:=|b|^{\frac{1}{2}}(\zeta-\Delta)^{-\frac{1}{4}}, \ b^{\frac{1}{2}}:=|b|^{-\frac{1}{2}}b, \ S:=b^{\frac{1}{2}}\cdot\nabla(\zeta-\Delta)^{-\frac{3}{4}} \end{array}$$

$$L^2$$
 theory of $-\Delta + b \cdot \nabla$

To summarize:

$$|b|^2 \in \mathbf{F}_{\delta}$$
 { Kato-Lax-Milgram approach Hille-Lions approach (new)

 \dots and a significant gain in the admissible singularities of b:

$$|b| \in \mathbf{F}_{\delta}^{1/2} \quad \left\{ \begin{array}{l} \text{A variant of the Hille-Lions approach (new)} \\ \text{Hille-Trotter approach (new)} \Rightarrow L^p \text{, } C_{\infty} \text{ theory, SDEs} \end{array} \right.$$

31 / 24

Let Y be a (complex) Banach space. A pseudo-resolvent R_{ζ} is a function defined on a subset $\mathcal O$ of the complex ζ -plane with values in $\mathcal B(Y)$ such that

$$R_{\zeta} - R_{\eta} = (\eta - \zeta) R_{\zeta} R_{\eta}, \quad \zeta, \eta \in \mathcal{O}.$$

Clearly, R_{ζ} have common null-set.

THEOREM (E. Hille)

If the null-set of R_{ζ} is $\{0\}$, then R_{ζ} is the resolvent of a closed linear operator A, the range of R_{ζ} coincides with D(A), and $A=R_{\zeta}^{-1}-\zeta$.

Proof: Put $A:=R_\zeta^{-1}-\zeta$. Since R_ζ is closed, so is R_ζ^{-1} and A. A straightforward calculation shows that $(\zeta+A)R_\zeta f=f$, $f\in Y$, and $R_\zeta(\zeta+A)g=g$, $g\in D(A)$, as needed.

THEOREM (E. Hille)

If there exists a sequence of numbers $\{\mu_k\}\subset \mathcal{O}$ such that $\lim_k |\mu_k|=\infty$ and $\sup_k \|\mu_k R_{\mu_k}\|_{Y\to Y}<\infty$, then the set $\{y\in Y: \lim_k \mu_k R_{\mu_k}y=y\}$ is contained in the closure of the range of R_ζ .

Proof: Indeed, let $\lim_k \mu_k R_{\mu_k} y = y$. That is, for every $\varepsilon > 0$, there exists k such that $\|y - \mu_k R_{\mu_k} y\| < \varepsilon$, so y belongs to the closure of the range of R_{ζ} .

Consider a sequence of C_0 semigroups e^{-tA_k} on a (complex) Banach space Y.

THEOREM (H.F. Trotter)

Let

$$\sup_{k} \|(\mu + A_k)^{-1}\|_{Y \to Y} \le \mu^{-1}, \quad \mu > \omega,$$

or

$$\sup_{k} \|(z + A_k)^{-1}\|_{Y \to Y} \le C|z|^{-1}, \quad \text{Re } z > \omega,$$

and let s- $\lim_{\mu\to\infty}\mu(\mu+A_k)^{-1}=1$ uniformly in k. Let s- $\lim_k(\zeta+A_k)^{-1}$ exist for some ζ with $\operatorname{Re}\zeta>\omega$. Then there is a C_0 semigroup e^{-tA} such that

$$(z+A_k)^{-1} \stackrel{s}{\to} (z+A)^{-1}$$
 for every $\operatorname{Re} z > \omega$,

and

$$e^{-tA_k} \stackrel{s}{\to} e^{-tA}$$

uniformly in any finite interval of $t \ge 0$.

THEOREM (Hille's Pertrubation Theorem)

Let e^{-tA} be a symmetric Markov semigroup, K a linear operator in L^r for some $r\in]1,\infty[$. If for some $\lambda>0$

$$||K(\lambda + A_r)^{-1}||_{r \to r} < \frac{1}{2},$$

then $-\Lambda_r := -A_r - K$ of domain $D(A_r)$ is the generator of a quasi bounded holomorphic semigroup on L^r .

THEOREM (Miyadera's Pertrubation Theorem)

Let e^{-tA} be a symmetric Markov semigroup, K a linear operator in L^r for some $r\in [1,\infty[.$ If for some $\lambda>0$

$$||K(\lambda + A_r)^{-1}||_{r \to r} < 1,$$

then $-\Lambda_r := -A_r - K$ of domain $D(A_r)$ is the generator of a quasi bounded C_0 semigroup on L^r .

$$||f||_{p,\infty} := \left(\sup_{t>0} t^p \mu\{|f(x)| > t\}\right)^{\frac{1}{p}}$$